Internal Report 2011-06 September 2011

Universiteit Leiden

Opleiding Informatica

Exploratory research on embedding CUDA code
into hetrogeneous MP-SOC achitectures

programmed with the Daedalus framework

Rick van der Zwet

BACHELOR'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Exploratory research on embedding CUDA
code into heterogeneous MP-SoC architectures
programmed with the Daedalus framework

Rick van der Zwet
<hvdzwet@liacs.nl>
Leiden Institute of Advanced Computer Science, The Netherlands

License: Creative Commons Attribution

September 15, 2011

Abstract

The objective of this Bachelor Thesis is to explore the possibilities
of using NVIDIA CUDA enabled GPU Processors within the HDPC
framework. The HDPC framework is one of the heterogeneous MP-SoC
architectures programmed with the Daedalus framework.

This paper will focus on the transfer overhead introduced by using
the GPU and how to best cope with this introduced latency.

In this study it was found that using the GPU instead of the
CPU, the overall execution times will decrease if the execution pattern
has specific characteristics with regards to token size and processing
complexity.

1 Introduction

Traditionally computation is the domain of the general purpose CPUs, but
new computation stars are arising on the horizon. Starting from 2007 NVIDIA
has released the NVIDIA Compute Unified Device Architecture (CUDA)

framework. This framework allows programming on a CUDA enabled NVIDIA
Graphics Processing Unit (GPU).

The GPU uses specialized co-processors to offer specialized computa-
tion methods for highly parallel computations claiming faster computation
times with regards to the CPU. The faster computation time is achieved by
partitioning a (multi-threaded) program into blocks of threads that execute
independently from each other.

The GPU is not meant as replacement for the CPU, but to be used in
Stream Processing. This means that the GPU needs a supporting CPU for
control and setup. The supporting CPU offloads specific computing tasks to
the GPU and processes the results from the GPU. This specific computing
tasks on the GPU are based on Single Instruction, Multiple Data (SIMD).
SIMD is used to exploit data level parallelism [Flynn1972].

The co-processors on the GPU do not share memory with the CPU. The
CPU has its DDR memory located on the motherboard [[] (Host Memory)
and the GPU has its own dedicated DDR memory which is located on the
GPU itself (Device Memory).

As the GPU and the CPU do not share memory, memory transfers are
needed to transfer the data from the Host Memory to the Device Memory and
back. These transfers need to be processed by the communication channel
between the GPU and the mainboard.

There are multiple technologies in use to connect the GPU to the main-
board. The GPU is normally connected to the motherboard using a The Pe-
ripheral Component Interconnect Express (PCle) bus or Accelerated Graph-
ics Port bus (AGP). The AGP GPU cards are not worth considering as their
(Device to Host) bandwidth is roughly 10 times lower than the PCle. []

To make sure the GPU processing is faster than the CPU equivalent, the
time needed by the PCle communication channel to transfer the data should
not exceed the speedup gained by the highly parallel execution on the GPU.

The GPU has a fixed amount of Device Memory available. A computa-
tion which needs more memory requires the data to be split. The resulting
data chunks need to be well-balanced with regards to transfer time and com-

'The motherboard is also called mobo, mainboard, system board or logic board.
Zhttp://en.wikipedia.org/wiki/List_of_device_bandwidths

http://en.wikipedia.org/wiki/List_of_device_bandwidths

putation time. Making the data chunks too big will cause the GPU to spend
most of the time waiting for the data to transfer. Making the data chunks
too small will cause the GPU being busy doing many small transfers and
not actually making efficient computations.

Now consider a program designed as a Kahn Process Network (KPN), a
model of computation introduced by Dr. Gilles Kahn [Kahn1974]. This KPN
has computation components (processes) which are connected via commu-
nication channels. In a KPN there is no notion of a global schedule that
dictates the relative order of execution.

To make the program running as fast as possible it is advised to run a
process on the most suitable hardware platform available. This takes both
communication speed and the type of the communication channel into ac-
count.

Now consider a KPN which has two processes which are connected via
one communication channel. Both processes are scheduled to run on the CPU
sharing the Host Memory. Passing a Host Memory pointer between two CPU
processes reduces the communication channel overhead to almost 0. However,
if one process is scheduled on the GPU and the other is scheduled on the
CPU the communication channel time overhead is non-trivial.

The right chunk size of data which is transferred at ones and the number
of such data chunks, transferred during the execution of the program have
(great) impact on the performance of the GPU. Finding the right balance
between these factors is critical to consider the GPU as computation platform
next to the alternatives available.

To allow every computation component in the KPN to be executed on a

specific platform, glue-code is needed to connect them together. For a general
purpose computer architecture such as Intel and AMD x86(-64) this glue-code
is provided by the Heterogeneous Desktop Parallel Computing (HDPC) frame-
work developed at LIACS [Far(8].
HDPC currently supports the hardware platforms CPU, GPU, Field Pro-
grammable Gate Array (FPGA) and Cell Broadband Engine Architecture
(Cell BE) to be used for process execution. The HDPC framework is depicted
in Figure [I] and discussed in more detail in Section [2.1]

The HDPC framework uses as input a generated KPN by the Daedalus
framework developed at LIACS [DAC2008|. The Daedalus framework is able
to convert a sequential C/C++ program to parallel KPN. The Daedalus

4

framework in this paper will be used to generate our experiment KPN. The
HDPC framework has to choose on which platform to place a process for exe-
cution. Due to the balance problem mentioned above, the choice to use the
GPU or CPU for execution of a process is challenging.

This Bachelor Thesis will explore the proposed techniques of embedding
CUDA code into the Daedalus framework by [FarO§|. By exploration this
Bachelor Thesis will find out if the CUDA enabled NVIDIA GPU can be

used in the Daedalus framework to speedup the overall computation time.

The results of this exploratory research can also be used by program-
mers who want to take maximum advantage of the capacities of the GPU
architecture.

The document is organized as follows; Section [2| will introduce the CUDA
and HDPC terminology. The problem itself will be explained in Section |3 to
continue with computation of theoretical values in Section [d Testing will
be done with the test setup depicted in Section [5| and implemented using
Section [0 All experimental results are found in Section [7] explaining the
differences between the theoretical values and the experiment results. Exper-
iment conclusions are found in Section |8| And finally recommendations will
be given for further research in Section [9]

2 Background

2.1 HDPC

Specifying an application using a parallel Model of Computation (MoC')
such as the KPN MoC) is a time-consuming and error prone task which is
currently not well understood by developers. Therefore, we need tools that
allow us to continue writing sequential programs and automatically derive
parallel specifications.

The Daedalus framework tools developed at LIACS are designed for this
purpose. The pn tool generates a KPN from a sequential C/C++ program.
The Embedded System-level Platform Synthesis and Application Mapping
(Espam) tool will use the generated KPN together with the platform and
mapping specification as input. The Espam tool generates several autonomous

KPN on HDSC

Device
| Memory .

[

| Cell BE.

=)

r

v S—— —

CPUL || CPUZ CPU1 | CPUZ %ﬁ{ﬂ Device
. s . L Hemory -*—'ETE[’/\
CPU3 || CPU4 CPU3 | CPU4 FPGA GPU

Figure 1: An HDPC framework example. A KPN running on our framework
with three interconnected processes, A, B, and C all execute their functions
on a device connected to the same machine. Communication channels and the
FIFO mechanism are implemented in main system memory (Host Memory)
and are under control of HDPC code. Transfer of data between different devices
happens by reading from the Device Memory associated with the processing
node into Host Memory, then writing this data in due time to the Dewvice
Memory of the consuming node. In the case of execution on the CPU this
transfer is either simply a memory copy or a pointer change as all data is in
the same address space. Picture taken from [Far08, pg.4]

»

processes that transfers data between each other through FIFO communica-
tion channels. The Daedalus framework is depicted in Figure [2]

HDPC uses above mentioned tools and generates code for a general purpose
computer such as the Intel or AMD x86(-64). The processes of a KPN can
then execute on a heterogeneous multitude of platforms.

HDPC extends upon Espam by generating back-end code for a desktop
computer that acts as the controlling and coordinating arbiter between the
processes of a KPN. The processes can then execute not only on the CPU
cores but also on various computing devices like the FPGA, Graphics Pro-

Application
[mrcH]
System-level architectural exploration |

-) 'Parallelization
{KPMgen)
High-level !
models [.
[=" | Platform spec. Mapplng spec. Kahn Process
Library of IP | in XML in XML Metwork in XML System-level
componants : | specification
[o llt
e \| Automated system-lavel synthesis

P {ESPAM)
= l l l !
i 2 = c ATL
|| Platiorm IP cores ‘e for Auxiliary specification

%5 netlist [H in VHOL LH |processors| files H '

5| o ' ' '

E 1

=1 | ATL synthesis

5! {commercial lood, e.g. Xilinx Platform Studia)

L ¥

2 ' " Gate-lavel
' Ll : s) . specification

Cesrencell |vaml

ceeeeeee-- |wPl— Xbar —wp
ml | M

MP-SoC
'HDPC

FPGA

Figure 2: Daedalus grand overview

cessing Unit (GPU), or the Cell B.E. to take advantage of their respective
strengths.

For each process in a KPN, a thread on the host CPU is created. If
computations inside the node are executed on the host machine, the CPU (of
a multi-core system) is used for the actual computation. For external devices
like the GPU, the host thread is only responsible for control flow, transfer of
data to- and from the device and starting execution of the computation on

the device; nothing more.

2.2 CUDA

NVIDIA offers the CUDA Software SDK allowing programming on the GPU
free of charge in binary format, the source code is not provided. The bi-
nary format introduces some difficulties with regards to optimizations and
limit calculations as the CUDA Software SDK is essentially a black box,
where internal implementation on new releases might change without no-

tice [Halfhill2008].

CUDA is a general purpose parallel computing architecture that leverages
the Parallel Compute Engine in NVIDIA GPUs using the CUDA Instruction
Set Architecture (ISA) and the Parallel Compute Engine in the GPU.

The ISA and the Parallel Compute Engine vary between releases of GPUs.
To provide a unified programming interface with backward compatibility the
CUDA GPU driver and the CUDA SDK provides a programming interface for
the developer. This allows the developers to perform parallel programming on
NVIDIA CUDA enabled GPUs, without the need of releasing a new version
for every new release of the CUDA driver or software.

The more cores the GPU has the less time it needs to execute the pro-
gram as threads can be scheduled on more cores. This advantage is shown in

Figure [3]

To program the CUDA architecture you will have to use C with CUDA
specific extensions, which will be processed by NVIDIA provided PathScale
Open64 C compiler and you will also need to have a NVIDIA compatible
GPU installed with the correct driver version. For debugging purposes the
software can be compiled to run in a simulation mode, which is executed on
the CPU only. The simulation mode executes very slow on the CPU, but
makes it possible to follow the execution path and spot errors on memory
reference for example.

There are 2 levels on which you can program CUDA code, the so called
high-level API and the low-level API. As those names suggest, the low-level
is used for more control over the code, but it also requires a fair amount of
bookkeeping to make sure the processes keep data synchronized and consis-
tent.

In order for the CUDA GPU to allow calculation it (1) needs to transfer
the data from the Host Memory to its own Device Memory (2) Initiate the

Time

v

Figure 3: A GPU with more cores will automatically execute the program in

Multithreaded CUDA Program

L

GPU with

2 Cores

Core 0

Core 1

GPU with 4 Cores

Core 0

Core 1

Time

Core 2
Bock2
Blocks.

iR

less time than a GPU with fewer cores.

computation (3) and do the actual computation. (4) On completion transfer
the data back from the Device Memory to the Host Memory . This flow is

depicted in Figure [4lf]

For more background information refer to the CUDA Getting Started

Guide [CUDA-GS] and CUDA C Programming Guide [CUDA-PG].

3The original figure is CC-BY Tosaka and found at http://en.wikipedia.org/wiki/|

File:CUDA_processing_flow_728En}29.PNG

http://en.wikipedia.org/wiki/File:CUDA_processing_flow_%28En%29.PNG
http://en.wikipedia.org/wiki/File:CUDA_processing_flow_%28En%29.PNG

Copy processing data

Device
Memory

-
Execute parallel
in each core

©,

GPU
(GeForce 8800)

Processing flow D
on CUDA

Figure 4: Processing flow on CUDA GPU. The part above the dashed line
is physically located on the mainboard and the part below is located on the
GPU.

3 Problem description

We want to execute a simple program Producer = Calculator = Consumer,
modeled as KPN, with processes and communication channels as depicted

10

Consumer

token in;
for i in 1 .. TOKEN_COUNT
for j in 1 .. TOKEN_SIZE
assert(in[i][]] > 0)
—BUFFER_SIZE-
Producer = Calculator \ Consumer
TOKEN_SIZE
Calculator
token in, out;
Producer for i in 1 .. LOAD SIZE
token out; for j in 1 .. TOKEN SIZE
for i in 1 .. TOKEN COUNT out[j] = in[j] + 1
out = new token[TOKEN_SIZE]
for j in 1 .. TOKEN_SIZE
out[j] = 0

Figure 5: The design of Producer = Calculator = Consumer using 3 pro-
cesses (Consumer, Calculator and Consumer) and 2 FIFO communication
channels, including pseudo-code implementation of the processes.

in Figure [5. In this program there is single process Producer and a single
process Consumer which will be executed on the CPU. The single process
Calculator in the Producer = Calculator = Consumer program however

will be executed either on the GPU or the CPU.

Within the program Producer = Calculator = Consumer the Producer
generates a fixed amount of entries (ENTRY_COUNT). These entries are packed
in tokens with each token containing a specific amount of entries (TOKEN_SIZE).
As soon as a token is ready it will be written to the first communication chan-
nel. The Producer will repeat this process till a fixed amount of entries is
reached (TOKEN_COUNT).

The first communication channel transfers the tokens from the Producer

to the Calculator acting as First-In-First-Out (FIFO) buffer with limited
token capacity (BUFFER_SIZE).

11

The Calculator on its part performs a blocking read on the first commu-
nication channel. A blocking read will read a token from the communication
channel if there are tokens waiting, else it will wait for one token to arrive.
Next, the Calculator will perform a computation on every individual en-
try within a token. This computation has a constant workload set for all
entries. This workload is specified in number of loop iterations by parame-
ter LOAD_SIZE. When the computation is done the result is written in the
second communication channel. The Calculator will repeat the process, so
the Calculator will proceed processing a new entry if one is available in the
first communication channel, else it will perform the blocking read on the
first communication channel.

This computations of the Calculator (on all entries within a token) do
not share any dependency and can thus be executed in any order. This prop-
erty is needed as the operations within the Calculator need to be (highly)
parallel in order to be a suitable candidate for GPU computing.

The second communication channel has the same characteristics as the
first communication channel, but different end-point. The second FIFO buffer
will transfer tokens from the Calculator to the Consumer.

The Consumer will do a blocking read on the second communication chan-
nel and will make sure the result calculated by the Calculator is actually
valid.

Please observe that there is a strict execution order between tokens. The
Calculator can only process one token at a time and there is only one
Calculator process connected to the first and second FIFO communication
channels. The FIFO buffer of the communication channels enforces a strict
order in the tokens by design.

For the Calculator there are two platforms considered to run the code
on. First the GPU will be discussed and secondly the CPU. Both the GPU
and the CPU have two communication types for the attached FIFO channels.
Data can be transferred by either physically movement of data (COPY) or
by pointer reference type (POINTER) as defined by the HDPC framework
[Far08| pg. 6].

As the CUDA GPU is not able to access the Host Memory directly, the
GPU needs to be prepared by the supporting CPU before execution. The
two strategies of preparing memory for the CUDA GPU are implemented as
follows:

12

1) COPY: Assign memory on the GPU device and copy the content from
Host Memory to Device Memory. When the computation is done copy the
result stored in Device Memory back to Host Memory.

2) POINTER: Assign special CUDA allocated memory in Host Memory
which can be used for both the CPU and the GPU. Next give the pointers
to the newly allocated source and target address spaces to the CUDA GPU,
the back-end driver will dynamically transfer the data to the GPU when
needed.

“Preparing” the CUDA will cause an initial start-up penalty, the same
applies for memory transfers between the CUDA GPU and the Host Mem-
ory. This “setup-overhead” can eventually become larger than the gained
computation speedup, causing the overall computation to be slower.

The drawback of the COPY method comes with choosing the “wrong”
transfer sizes, which causes unnecessary many COPY transfers being initi-
ated. “Minimize data transfer between the host and the device” is advised by
CUDA [CUDA-BPG][pg. 15] but no estimation is given on the best transfer
sizes to use, in order to make best use of the GPU.

The drawback of the POINTER method comes with the fact that the
transfer logic is handled in the back-end, which cannot be given any hints on
what kind of data to expect with regards to size and type. This will cause
the build-in optimizer to guess the best transfer sizes making it potentially
(very) inefficient.

For our program Producer =- Calculator = Consumer we now have
four different execution strategies we can choose from when executing the
program, namely the executing strategies CPU COPY, CPU POINTER,
GPU COPY and GPU POINTER. But which execution strategy leads to
the lowest execution time?

Finding the answer to this question requires finding a Tipping Point
where the extra communication overhead time needed by different execution
strategies will be less than the gain achieved by the computation speedup.

Finding this Tipping Point is not-trivial as it requires writing code for
specific hardware architectures with the same software architecture in mind.
The HDPC framework can help here structuring the code in such a way that
both cases will be comparable.

13

In order to make the decision about the execution strategy, two ques-
tions emerge: 1) Would it matter if we know the amount of entries to pro-
cess (ENTRY_COUNT) and the complexity of the computation (LOAD_SIZE) in
advance? 2) Giving this knowledge can we apply basic design rules when
developing KPN process nodes which need to run on the GPU?

4 Theoretical Calculation

The interface between the GPU card and the CPU is the PCle x16 bus. The
Bandwidth of the PCIe x16 bus operates at a theoretical maximum of 5GH z.
This gives a theoretical maximum bandwidth of 500MB/s * 16 = 8GB/s[l
This theoretical maximum causes for example a transfer of 8GB to the GPU
Device Memory and back into the Host Memory to add a 2 seconds overhead
in transfer time.

The amount of Clock Cycles an arbitrary operation takes on the GPU
Cores is found at [CUDA-PG][pg. 94, table 5-1]. The Clock Cycles per ar-
bitrary operation is ranging from 8 to 48, depending on the Computation
Capacity of the GPU.

To calculate the time needed for transfer and computation on the GPU, a
variety of constants are needed in the calculation. These constants are found
in the [CUDA-PG], [CUDA-BPG| and the data-sheet found on the manufac-
turer website. The Experiments in Section || uses the NVIDIA GeForce GTX
295 GPU card, thus the theoretical computations below are based on this
card.

The Theoretical Bandwidth on the NVIDIA GeForce GTX 295 is calcu-
lated using[CUDA-BPG], pg. 13] and the values given by NVIDIA{]

999M H z + 10° x 488bit /8bit * 4/10° = 223.8GBps (1)

In Formula the Memory Clock is 999M H z, the Memory Interface
Width is 448 bits. The multiplier 4 comes from the quad data rate configura-
tion, which is derived from the SLI feature. This concludes that the internal

“http://en.wikipedia.org/wiki/PCI_Express
Phttp://www.nvidia.com/object/product_geforce_gtx_295_us.html

14

http://en.wikipedia.org/wiki/PCI_Express
http://www.nvidia.com/object/product_geforce_gtx_295_us.html

bandwidth for the NVIDIA GeForce GTX 295 is much higher (=~ 25 times)
than the PCle Bandwidth.

Accessing the global memory costs between 400 to 600 Clock Cycles
as found in [CUDA-BPG| pg. 47|, the NVIDIA GeForce GTX 295 runs at
1242M H z, has 30 Multiprocessors (MP) and 8 Cores/M P making a total
of 240 cores. The Compute Capability is 1.3, so it will execute 8 additions/-
comparisons per Clock Cycle per Multiprocessor[CUDA-PGI pg. 94].

For the calculations below, the memory access is assumed to be perfect.
Perfect memory accesses on both the GPU and CPU are achieved if the
data is aligned properly and accesses are sequential to avoid misses and extra
transfers/calculations to make it fit in the architecture. For the CUDA GPU
the differences can be as large as ~ 8 times [CUDA-PG][pg. 164, figure G-1].

Consider processing 2 million int32_t integers = 64 million bits = 8
million bytes. Every entry will be processed by a single thread, this requires
an total of 2 million threads. An single thread will perform 1 addition (ex:
output = input + 1).

Assume the process is able to transfer the whole memory content (all 2
million integers) from Host Memory to Device Memory (and back) at ones.
The process will then take the following approach: 1) Transfer all integers to
the Device Memory. 2) compute concurrently for every single integer; a) load
the value from memory b) Perform one addition and c) store the result.
3) When all computations are done transfer the result to Host Memory.
Looking at the time needed for every individual step of the computation:

1) The transfer from Host Memory to Device Memory will take 0.5ns per
entry:
4byte /8G Bps = 0.5ns (2a)

2) One Memory Access (read or write) operation takes as much as 600 clock
cycles whereas one addition operation only takes 1 clock cycle. Due this big
differences the addition clock cycles will not be considered in the calculation.
This makes the total needed for Memory Access read and write using 30
Multiprocessors to be:

2% 2% 10%%600/30 = 1% 10" Clock Cycles (2b)
the cores are running at 1242M H z so this will take in total:
1 %107 6
ng*lo ns = 8ms (QC)

15

The total internal transfer time to the GPU is very small:

0.008GB

For that matter the transfer time to the GPU can be ignored with respect to
the calculation times. Which makes an average time to perform an addition
on 1 integer to be:

8ms/2 x 10%sec = 4ns (2e)

3) The transfer from Device Memory to Host Memory will takes per integer
0.5ns:
4byte/8G Bps = 0.5ns (2f)

The sum of all answers in Formula will be 0.5ns + 4ns + 0.5ns = dHns
per integer.

If the GPU time is reduced to Ons, the average time will still be 1ns for
transfer only. However, the average time does not equal the latency time.
The latency is significant as it cannot start computing before all integers
have been transferred. For this example it causes a 1ms(!) delay before the
computation on the GPU can start.

The actual average time will increase as the theoretical average time does
not yet include the following details; 1) The “setup costs” on the support-
ing CPU. One example of “setup costs” is the GPU driver initialization.
2) The time needed on GPU for context switches and thread initialization.
3) Overhead caused by (multiple) Memory Transfers if data is not transferred
at ones. 4) Overhead caused by hardware not fully utilized e.g. waiting for
data or instructions. 5) Overhead caused by the HDPC framework used for
programming.

NOTE: In the theoretical example of processing 2 million integers the GPU
computation power is not fully utilized. For a best case scenario all memory
fetches are pipe-lined on the GPU and during the “waiting” time the GPU
executes an addition. Best case scenario the computation load could be in-
creased to 600 clock cycles. This way a Multiprocessor can fire off half of its
cores to fetch Memory and the other half to run the computation and “fip”
between this configurations.

16

5 Construction of Test Environment

NVIDIA CUDA enabled (consumer) GPU cards are available in numerous
architectures and variety of cards with regards to main factors such as num-
ber of MultiProcessors, Compute Capability and Clock Speed. Building a
uniform test environment is preferred to rule out operating system and soft-
ware/toolkit differences.

In this experiment the Producer and Consumer run on the CPU and the
Calculator can either be a CPU process or a GPU process. This approach
will eliminate any difference in the setup. The Calculator will simulate its
load by using a simple addition on the entry. The Consumer will validate the
output of the Consumer to ensure the Consumer is not cheating or generating
errors in memory transfers.

The experiment Scheduling and Memory transfer code is automatically
generated by the Daedalus framework with target HDPC framework, which
for this experiment is Producer =- Calculator = Consumer as shown in

Figure [5

The functions that the three processes (Producer, Calculator, Consumer)
implement are manually coded, with maximum execution speed in mind.

During the compilation some compiler optimizations are disabled, to en-
sure that the compiler does not ‘trick’ the results by applying secret (un-
wanted) optimizations. Disabling the specific (loop) optimizations, makes
sure the profiling code will run as intended.

The total execution time will be calculated and divided by the number of
entries (ENTRY_COUNT) to get the execution time for a single entry. This will
include the Producer and Consumer execution time which is an unknown
constant for all setups. Converting all results to single entry execution times
is merely a practical usage, as it is easier to vary total entry counts and still
make comparisons.

There will be 4 different setups to experiment with, as mentioned in
Section [3] This 4 setups are the result of combinations of the 2 architectures
(GPU, CPU) and the 2 memory transfer strategies (COPY, POINTER).
This gives the 4 combinations GPU COPY, GPU POINTER, CPU COPY
and CPU POINTER.

17

The BUFFER_SIZE of the two Communication Channels be kept constant
to the given value of 3 tokens. The Communication Channels are by design
always available for the Calculator. The Calculator code also has an er-
ror check implemented for blocking pipes. This check will raise an error if
the Calculator fails to read from the First FIFO Communication Channel
(underflow) or fails to write to the Second FIFO Communication Channel
(overflow).

In addition to test for the efficiency of the HDPC framework and allowing
to benchmark the overhead of the HDPC framework a second test setup is
manually coded. The second test setup mimics the behavior of the explained
Processes, but without the use of the HDPC framework for the Communication
Channels synchronization and concurrency for example.

6 Implementation

Using an Ubuntu 10.10 32 bit USB boot-able test environment, together
with CUDA Toolkit 3.2 allows us to run on systems without the need of
installing software on the test systems, to avoid issues like porting the code
to a different Operating System and have the flexibility to test on any CUDA
enabled system, without altering the system installed state.

The code is written in C++ compiled using gcc 4.4.5 and CUDA com-
pilation tools 3.2 and NVIDIA CUDA Driver 260.19.26. Using compilation
the code has been build with all compiler optimization possible, except for
loop-enrolling to ensure the “dummy load” will be valid.

The subset of options on the GPU has been limited to TOKEN_SIZE,
ENTRY_COUNT and LOAD_SIZE.

A “framework” in sh shell provides caches of already compiled binaries
and allows displaying results in a reproducible matter. More on this “frame-
work” is found in Appendix [A]

The “framework” also avoid endless running experiments. If a configura-
tion is running longer than (the configured) 10 seconds the configuration will
be terminated and there will be no results for the specific configuration. This
behavior is implemented to allow running the computations in batch with-
out the need of waiting for useless configurations. A (very) badly configured

18

configuration can take more than 1 hour of computation time.

CUDA device information has been inquired using the deviceQuery Util-
ity provided in the CUDA Examples Toolkit, whereas factelﬂ 1.5.7 did
gather system specific information.

7 Experiments

The experiment was run on 2 different platforms (GPU, CPU) using 2 dif-
ferent strategies (COPY, POINTER) testing 1500 different configurations.
The most important configurations variables are shown in Table [1]

The parameters are determined based on try and error as exploring the
whole scope requires the setup to be running for years. This is caused by
the 10 seconds needed to compile and execute a single configuration. This
(re)compiling is required for each experiment setup as values like TOKEN_SIZE
and BUFFER_SIZE in the HDPC framework are set during compile time. All
experiments setup are repeated at least 10 times to ensure consistency in
results.

Configuration Flag ‘ Values

LOAD_SIZE 10,100
TOKEN_SIZE 100.000, 1.000.000, 10.000.000, 16.777.216
ENTRY_COUNT 100.000, 1.000.000, 10.000.000

Table 1: Main configuration inputs used for experiments

Specification for machine used to conduct experiments; CUDA GPU GeForce
GTX 295,Capability 1.3, 30 (MP) x 8 (Cores/MP) = 240 (Cores) @ 1.24
GHz. The CPU specification 8 * Intel Core™ i7 CPU 920 @ 2.67GHz, 3GB
Memory.

For the sake of simplicity in the upcoming calculations assume that the
overhead generated by the Producer and Consumer is Ons per entry. In prac-
tice this overhead is a fixed constant per entry, causing the actual time spend
by the Calculator alone to be lower.

The y-axis on all Figures are set to the time needed in nanoseconds to

Shttp://www.puppetlabs.com/puppet/related-projects/facter/

19

http://www.puppetlabs.com/puppet/related-projects/facter/

process a single entry, where lower means better.

An important property to consider is the so called Tipping Point. A
Tipping Point is the intersection point between two graphs. The Tipping
Point indicates when to consider an alternative architecture (CPU or GPU).

NOTE: Not all graphs can be (visually) compared to each-other as the in-
put parameters differ, take good care of the type used on the x-axis of the
graph. The x-axis type is either TOKEN_SIZE or ENTRY_COUNT. Also take care
of the different values of the fixed parameters ENTRY_COUNT, LOAD_SIZE and
TOKEN_SIZE. The actual values used for the fixed parameters are shown in
the title of the graph.

Time needed to process a single entry.
Fixed variables: ENTRY_COUNT:1.000.000 LOAD SIZE:10

500 T T

GeForce GTX 295 - FOINTER —+—
GefForce GTX 295 - COPY ——«—
Core i7 CPU 920 - POINTER ——%—
Core i7 CPU G20 - COPY —&—

MNanoSeconds

Il Il
1000 1500 2000 2500 3000

TOKEN_SIZE

Figure 6: Experiment Result - The small value of the parameter LOAD_SIZE
causes the CPU COPY and CPU POINTER to be almost equal.

20

Time needed to process a single entry.
Fixed variables: ENTRY_COUNT:1.000.000 LOAD SIZE:100

1000 T

GeForce GTX 295 - POINTER —+—
GeForce GTX 295 - COPY ——e—
Core I7 CPU 920 - POINTER —%—
Core I7 CPU 920 - COPY —=—

800 .

600 - .

400 - J

MNanoSeconds

200 8

= e

0 1 Il
0 500 1000 1500 2000
TOKEMN_SIZE

Figure 7: Experiment Result - Larger value of LOAD_SIZE causes the COPY
and POINTER strategy for the GPU to be significantly different.

For small value of the LOAD_SIZE as shown Figure [0] there are almost
no differences between the COPY or POINTER strategy on CPU except
for the small TOKEN_SIZE values whereas the caches and context-switches
are causing variances. For the GPU the POINTER strategy is always faster
than the COPY strategy. This behavior is consistent for larger LOAD_SIZE
values. The difference gets more obvious if the LOAD_SIZE increases as shown
in Figure [7]

The reason the GPU POINTER and COPY graphs in Figure [7| are not
shown for TOKEN_SIZE < 50 is because execution takes longer than the pre-
defined cut-off time of 10 seconds.

Close inspection of the GPU POINTER graph in Figure [7] shows missing
results in the range 50 < TOKEN_SIZE < 500. These values are missing as the
program is unable to execute correctly this small TOKEN_SIZE input values.
The reason for the behavior is unexplained.

Increasing the LOAD_SIZE causes the Tipping Point to “shift-to-the-left
in the graphs, seen relatively to the TOKEN_SIZE values (x-axis). For example
on ENTRY_COUNT 1.000.000 and LOAD_SIZE 10 the tripping point is roughly
at TOKEN_SIZE 3000 as shown in Figure [6], whereas for LOAD_SIZE 100 the

21

tripping is roughly at TOKEN_SIZE 750 as shown in Figure [7]

The best result found in Figure [6] is found at TOKEN_SIZE 2000 and is
14ns for the GPU POINTER strategy, all the other strategies are in the
same range 14 — 16ns. The best result in Figure [7] is again with the GPU
POINTER strategy and is 42ns. The GPU COPY is pretty competitive with
45ns, but the CPU strategies are falling behind with 120ns.

Time needed to process a single entry.
Fixed variables: LOAD_SIZE: 100 TOKEN_SIZE:10.000

500 T T

GeForce GTX 295 - POINTER —+—
GeForce GTX 295 - COPY —«—
Core i7 CPU 920 - POINTER ——
Core i7 CPU 920 - COPY —s—

400 % .

300 =
) L |
0

NanoSeconds

100

2 4 6 8 10
ENTRY_COUNT in million (1076)

o]

Figure 8: Experiment Result - Variants in the ENTRY_COUNT makes the exe-
cution stable after a while.

Figure[§|shows the hyperbola graph quickly approaches “a-stable-execution-
time-per-entry-under-limit” no matter how many entries it get inserted. This
gives best result,starting from 2M entries, for the GPU strategies of 14—16ns
and for the CPU strategies 110ns.

In Figure [9]it is shown that the Tipping Point for the HDPC implementa-
tion is better than the non-HDPC implementation (2500 vs 10000). A better
Tipping Point allows the TOKEN_SIZE to be smaller with respect to the point
where the GPU implementations is faster than the CPU implementations.
The fact that the HDPC implementation is faster is because it uses a multiple
CPU setup unlike the non-HDPC implementation, so the extra work done by
scheduling and planning done by the HDPC pays off in a better performing
program. In this experiment the HDPC version is almost 4 times more effi-

22

cient with regards to TOKEN_SIZE values. Even for small TOKEN_SIZE values
(ranging from 2500 to 10000) the GPU POINTER strategy will speedup the
computation. Looking in absolute values the GPU POINTER strategy will
achieve a speedup of 2 times from 10ns to 5ns per entry.

The non-HDPC CPU POINTER graph in Figure [9] is lower in absolute
execution time than the HDPC equivalent (10ns vs 12ns). The reason for this
behavior is unexplained.

23

Time needed to process a single entry.
Fixed variables: ENTRY COUNT.16.777.216 LOAD SIZE:10

100
! GeForce GTX 295 - POINTER —+——
GeForce GTX 295 - COPY ——e—
Core 17 CPU 920 - POINTER ——
Core i7 CPU 920 - COPY —a—
80 4
z &0 =
c
8
2]
193]
o
[«
2 40 .
20 4
w
0 1 1
6000 8000 10000
TOKEN_SIZE
(a) HDPC
Time needed to process a single entry.
Fixed variables: ENTRY_COUNT:.16.777.216 LOAD _SIZE:10
100
' GeForce GTX 205 - POINTER ———
GeForce GTX 295 - COPY ——«—
Core {7 CPU 920 - POINTER ——
Core i7 CPU 920 - COPY —a—
80 - =
Z 80 - 4
C
o
(9]
2
[42]
Q
c
2 40 b 1
20 - =
B e —
[
O Il Il i 1
o] 2000 4000 6000 8000 10000

TOKEN_SIZE
(b) non-HDPC

Figure 9: Experiment Result - The non-HDPC version lacks of multiple CPU
support.

24

Time needed to process a single entry.
Fixed variables: ENTRY_COUNT: 1.000.000 LOAD_SIZE:100

200
' GeForce GTX 205 - POINTER ———
GeForce GTX 295 - COPY ——e—
Core {7 CPU 920 - POINTER ——
Core 17 CPU 920 - COPY —a—
150 - =
%]
2 NI
8
o 100 4
o
=
o
=
50 - =
0 L L 1 1
30000 31000 32000 33000 34000 35000
TOKEN_SIZE
(a) HDPC
Time needed to process a single entry.
Fixed variables: ENTRY_COUNT: 1.000.000 LOAD_SIZE:100
200 T T
GeForce GTX 295 - POINTER ——
GeForce GTX 295 - COPY —e—
Core {7 CPU 920 - POINTER ——
Core i7 CPU 920 - COPY —a—
150 -
It}
°
[
o
(9]
& 100 T g _
Q
=
[}
=
50 - 4
O Il Il i 1
30000 31000 32000 33000 34000 35000

TOKEN_SIZE

(b) non-HDPC

Figure 10: Experiment Result - CPU or Compiler optimization using int16
for small TOKEN_SIZEs and int32 for bigger ones, which only get detected in
the non-HDPC.

25

Fig. # Type | ENTRY_COUNT | LOAD_SIZE | TOKEN_SIZE | time
6] HDPC 1.000.000 10 2.000 | 14ns
7 HDPC 1.000.000 100 2.000 | 42ns
B HDPC 1.000.000 100 10.000 | 14ns
92l HDPC | 16.777.216 10 10.000 | 4ns
9b| | non-HDPC | 16.777.216 10 10.000 | 10ns

Table 2: Best experiment results found for the GPU POINTER strategy.
Column “time” list the time needed to process a single entry.

The expected theoretical value for LOAD_SIZE 10 is calculated using the
method discussed in Sectiond} 0.5ns+4ns+*10+0.5ns = 41ns. For LOAD_SIZE
100 this will become 0.5ns + 4ns * 100 + 0.5ns = 401ns. Table [2| summarized
the best results found in the experiments. The theoretical values are (much)

higher than the best results found in Figures[6] [7], [§] [0a] and [Ob]

The reason for the (big) difference between the theoretical calculated
values and the actual values is likely to be caused by better alignments of
data on the GPU. The theoretical value calculated comes with the worst-case
scenario of all data miss aligned. If the data were to be perfectly aligned, 1
read operation (600 clock cycles) would seeds |488bits/32bits| = 15 threads
of data. This makes the computation ~ 15 times faster. These experiments
come with partially aligned data, making it roughly 4 till 10 times faster.

The differences between the theoretical best values and the experiment
best values also shows that determining accurate theoretical values (to be
used in some analysis) is quite difficult and challenging. Systematic and
(semi-)automated practical experiments are important to reliably validate
the design decisions made with the theoretical calculations.

Looking at the experimental results there are three important observa-
tions; 1) The LOAD_SIZE has a more significant impact if the TOKEN_SIZE is
small. 2) Calculation with LOAD_SIZE 100 seems to take roughly 3.5 times
longer than the same experiment setup with LOAD_SIZE 10. The value 3.5 is
likely tight to the specific GPU used, computing the exact value is unknown.
4) The best result is achieved with the largest number of entries and the
largest TOKEN_SIZE and a moderate LOAD_SIZE.

NOTE: The CPU COPY and CPU POINTER strategies test results from
the HDPC setup have a higher deviation than the non-HDPC graphs. The line
plotted through the points in the graph is more irregular for the HDPC graph
than for the non-HDPC graph as seen in Figure[9] This irregularity is best seen

26

in the TOKEN_SIZE range 0 till 1000. This deviation is most likely caused by
the extra work required in the HDPC framework for Communication Channels
synchronization, various statistics and context switching between CPUs. Pin-
pointing the exact component causing the spread turned out to be hard as
adding more profiling code extra calls to the HDPC timer functions caused the
program to behave differently and introduced even more spread. This gives
a strong indication that the actual context switches are causing this spread.

NOTE: The compiler or hardware optimization can play tricks during the
experiments. A specific CPU optimization was not detected in the HDPC
code whereas it was detected in the non-HDPC code as this program was
more simple for the compiler to understand. Figure [10b[shows the interesting
“jump” for the from 120ns to 150ns for the CPU based strategies at the non-
HDPC exactly at the value of a short integer (int16) boundary 2!°—1 = 32767.

8 Conclusion

The KPN generated by HDPC for Producer =- Calculator = Consumer
can use the GPU to speedup execution, if the amount of data to process is
sufficiently high. A minimum 100.000 items (ENTRY_COUNT) is needed when
using the NVIDIA GeForce GTX 295.

Choose the TOKEN_SIZE as large as possible. Every extra memory transfer
from Host Memory to Device Memory or back has a negative impact on
performance. Choose at least 1000 items to transfer on every memory transfer
(TOKEN_SIZE), anything less is worthless on the GPU as alternative.

The dummy LOAD_SIZE used in the experiments is equivalent to a very
large computation as global memory access was used to mimic high-load
computations. A LOAD_SIZE of 10 is equivalent of roughly 600210 = 12.000
clock cycles on the GPU.

When you like to deploy your own code on CUDA run on initial check to
test for complexity. The complexity (LOAD_SIZE) should together with your
TOKEN_SIZE value give a “fair” amount of work for the GPU to compute.

To answer the first question formulated at the end of Section 3| (on
page; Knowing in advance the amount of entries to process (ENTRY_COUNT)
and the complexity of the computation (LOAD_SIZE) gives an indication of

27

whether to use the GPU at all. However, it does not give a definitive answer
of the configuration parameter (TOKEN_SIZE) to use.

To answer the second question; The TOKEN_SIZE is the most important
parameter during the process of designing and implementation of running
(some) KPN nodes on the GPU. Determining the optimal TOKEN_SIZE during
run-time is preferred, but requires more research of finding an algorithm
able to make this run-time optimizations. Determining the (semi-)optimal
TOKEN_SIZE in advance for a specific configuration,by means of exploration,
allows significant speedups during run-time.

The Daedalus tools and the HDPC framework has been proved to be a
useful tool to quickly and efficiently build a framework application. The KPN
and the choice of HDPC for having a dedicated C'PU thread for controlling
the GPU implementation of a KPN process has a positive effect on the
performance of the program. The HDPC has proven to be a flexible framework
allowing model variations of the TOKEN_SIZE parameters in a consistent and
controlled way.

One downside of the HDPC implementation is the static TOKEN_SIZE assign-
ment during compile time, which require knowledge of the target architecture
in advance.

The GPU is a very powerful co-processor, but its application area is
somehow limited within general purpose computing. Off-loading “standard”
CPU based processes and try to run them on the GPU without modification
is not going to work. Significant effort needs to be spend in order to rewrite a
process to fit in the highly parallel architecture of the GPU. Thus it is better
to look at the data parallelism as basic-building block during the development
of the application.

For the two GPU memory transfer strategies tested, the GPU POINTER
strategy is preferred over the GPU COPY variant. 1) The GPU POINTER
is equal or faster in overall execution. This makes the implementation in par-
ticular more interesting if smaller TOKEN_SIZE values are needed. 2) The GPU
POINTER strategy has the advantage that memory transfer management is
hidden in the CUDA framework making programming the code potentially
faster and more dynamic. The wide variety of NVIDIA GPU cards around
causes the GPU COPY code to be fairly specific as it requires knowledge of
the card it is going to be executed on. The GPU POINTER implementation
does not have this limitation.

28

9 Future Work

The CUDA Framework 4.0 has made improvements in concurrent computa-
tion, memory transfer and streamed transfers from one GPU to another GPU
without invoking main memory, this is in line with the Daedalus framework,
but is currently not implemented in the HDPC framework.

The CUDA Framework provides GPU-accelerated libraries for Basic Lin-
ear Algebra Subprograms (BLAS), Fourier Transform (FT'), Spare Matrix
and Random Number Generation (RNG) calculations. Using this libraries as
basic building blocks in the KPN allows to use the power of the GPU more
easily.

The POINTER strategy proved sufficient for simple programs with our
Producer = Calculator = Consumer example. However for more complex
concurrent examples the efficiency is still unknown.

The card used in this experiments is a high-end GPU Card, but not
specially tailored for CUDA computations. The NVIDIA Tesla Cards are
specially tailored for computations, running the experiments should give a
whole different Tipping Point.

10 Acknowledgments

I would like to thank Hristo Nikolov at LIACS who was always ready to
answer my questions and actively participating throughout my research with
suggestions towards a better experiment setup and being a highly valuable

knowledge in explaining the optimization quirks in the background both for
the GPU and CPU as the system as whole.

References

[CUDA-PG] CUDA Programming Guide 3.2,
http://developer.download.nvidia.com/compute/cuda/3_2_prod/
toolkit/docs/OpenCL_Programming_Guide.pdf

29

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/OpenCL_Programming_Guide.pdf

[CUDA-BPG| CUDA Best Practices Guide 3.2,
http://developer.download.nvidia.com/compute/cuda/3_0/
toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf

[CUDA-GS] CUDA Getting Started Guide 3.2,
http://developer.download.nvidia.com/compute/cuda/3_0/

toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf

[Halfhill2008] Parallel Processing With CUDA, Tom R. Halfhill, 01/28/08,
http://www.nvidia.com/docs/I0/55972/220401_Reprint.pdf

[Far08] T. Farag. A framework for heterogeneous desktop parallel computing.
Masters thesis, LIACS, Leiden University, 2008.

[DAC2008] Hristo Nikolov, Mark Thompson, Todor Stefanov, Andy Pi-
mentel, Simon Polstra, Raj Bose, Claudiu Zissulescu, and Ed Deprettere,
"Daedalus: Toward Composable Multimedia MP-SoC Design”, Invited
paper In Proc. 745th ACM/IEEE Int. Design Automation Conference
(DAC’08)”, pp. 574-579, Anaheim, USA, June 8-13, 2008.
http://www.liacs.nl/~stefanov/pdf/DAC_08.pdf

[Kahn1974] Kahn G. The semantics of a simple language for parallel pro-
gramming. ARTICLE of the IFIP Congress, 74:471:475, 1974.

[Flynn1972] Michael J. Flynn,Some Computer Organizations and Their Ef-
fectiveness, IEEE Transactions on Computers, 21:948:960, September,
1972.

A Re-run the experiment

In order to redo the experiment you need to setup a work environment.
And Ubuntu USB Hard-Drive [] setup is preferred. This setup is out of
the scope of this Appendix but can be summarized as follows: 1) Run the
standard Ubuntu Installer on a USB Hard-Drive. 2) Install the NVIDIA
CUDA Driver and Development Tools. Find extra Ubuntu install hints in
Appendix . 3) Checkout the source code from the LIACS CVS Repository
at docs/students/hvdzwet/bachelor-thesis/experiment. Ff]

"USB Pen-Drive cannot be used, as the I/O is too slow when using it for compiling
8 A public snapshot is found at http://rickvanderzwet.nl/svn/briareus/

30

http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf
http://www.nvidia.com/docs/IO/55972/220401_Reprint.pdf
http://www.liacs.nl/~stefanov/pdf/DAC_08.pdf
http://rickvanderzwet.nl/svn/briareus/

The HDPC variant is found at boost-hdpc, the manual Implementation is
found at manualImp.

You will first need to populate id2device.txt using the values you get
from deviceQuery and facter, this file is used at a later stage for graphing
purposes. Now run new-experiment.sh. This will execute all the variants
used in this paper.

Next, to view the graphs run view-plots.sh. The output will point you
to a directory where the graphs are stored. For settings boundaries on the
graphs you can use the following environment settings YMIN=0 YMAX=500
XMIN=30000 XMAX=35000.

Please note that almost all scripts take a (ridiculous) set of (optional)
environment variables to tweak running the experiments one way or the other
to speedup execution times. So if you are planning to re-do experiments or
run “interactively” look through the headers of the *.sh files to see what
kind of flags you can set.

B Ubuntu Installation Hints

B.1 General Notes

1. You will get errors about libcuda missing if you have not installed the
NVIDIA CUDA driver and using the standard Ubuntu provider driver
instead.

2. If you do not want to remove your (default) Operating System, you can
use a USB-DISK on modern computers. During the install of Ubuntu
make sure to select the proper USB-DISK. Refer to your BIOS manual
for instructions to boot from a USB-DISK.

B.2 Ubuntu 10.10

Make sure to install the packages to get started:

$ sudo apt-get install libboost-thread-dev libboost-dev build-essential \\
facter gnuplot

31

The Ubuntu provided driver does NOT work with downloaded CUDA
framework, neither the nouveau (open source driver) nor the provided propri-
etary driver. Install the dev-driver from NVIDIA found at http://developer!.
nvidia.com/cuda-downloads. Make sure to remove the nouveau first:

<GOTO ttyvl (CTRL+ALT+F1) and login>

sudo service gdm stop

sudo apt-get remove xserver-xorg-video—nouveau nvidia-*
<install DEV driver>

sudo reboot

hH A H H H

Make sure to READ the release notes and add the vmalloc and upper-
mem in grub http://developer.download.nvidia.com/compute/cuda/3_
2_prod/toolkit/docs/CUDA_Toolkit_Release_Notes_Linux.txt.

B.3 CUDA

Your profile need to be setup correctly to allow compiling:

$ export LD_LIBRARY_PATH=$LB_LIBRARY_PATH:/usr/local/cuda/lib
$ export LD_LIBRARY_PATH=$LB_LIBRARY_PATH:/usr/local/cuda/1ib64
$ export PATH=$PATH:/usr/local/cuda/bin

The examples require a additional set of libraries:

$ sudo apt-get install libgli-mesa-dev libxmu-dev libxll-dev
$ sudo apt-get install libglul-mesa-dev libxi-dev libglut3-dev

Make sure to compile the helper libraries and the debug version of it:

$ make -C ~/NVIDIA_GPU_Computing_SDK/C
$ make -C ~/NVIDIA_GPU_Computing_SDK/C dbg=1

32

http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/ CUDA_Toolkit_Release_Notes_Linux.txt
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/ CUDA_Toolkit_Release_Notes_Linux.txt

	Introduction
	Background
	HDPC
	CUDA

	Problem description
	Theoretical Calculation
	Construction of Test Environment
	Implementation
	Experiments
	Conclusion
	Future Work
	Acknowledgments
	Re-run the experiment
	Ubuntu Installation Hints
	General Notes
	Ubuntu 10.10
	CUDA

