[95] | 1 | /*
|
---|
| 2 | * jcdctmgr.c
|
---|
| 3 | *
|
---|
| 4 | * Copyright (C) 1994-1996, Thomas G. Lane.
|
---|
| 5 | * This file is part of the Independent JPEG Group's software.
|
---|
| 6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
| 7 | *
|
---|
| 8 | * This file contains the forward-DCT management logic.
|
---|
| 9 | * This code selects a particular DCT implementation to be used,
|
---|
| 10 | * and it performs related housekeeping chores including coefficient
|
---|
| 11 | * quantization.
|
---|
| 12 | */
|
---|
| 13 |
|
---|
| 14 | #define JPEG_INTERNALS
|
---|
| 15 | #include "jinclude.h"
|
---|
| 16 | #include "jpeglib.h"
|
---|
| 17 | #include "jdct.h" /* Private declarations for DCT subsystem */
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | /* Private subobject for this module */
|
---|
| 21 |
|
---|
| 22 | typedef struct {
|
---|
| 23 | struct jpeg_forward_dct pub; /* public fields */
|
---|
| 24 |
|
---|
| 25 | /* Pointer to the DCT routine actually in use */
|
---|
| 26 | forward_DCT_method_ptr do_dct;
|
---|
| 27 |
|
---|
| 28 | /* The actual post-DCT divisors --- not identical to the quant table
|
---|
| 29 | * entries, because of scaling (especially for an unnormalized DCT).
|
---|
| 30 | * Each table is given in normal array order.
|
---|
| 31 | */
|
---|
| 32 | DCTELEM * divisors[NUM_QUANT_TBLS];
|
---|
| 33 |
|
---|
| 34 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
| 35 | /* Same as above for the floating-point case. */
|
---|
| 36 | float_DCT_method_ptr do_float_dct;
|
---|
| 37 | FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
---|
| 38 | #endif
|
---|
| 39 | } my_fdct_controller;
|
---|
| 40 |
|
---|
| 41 | typedef my_fdct_controller * my_fdct_ptr;
|
---|
| 42 |
|
---|
| 43 |
|
---|
| 44 | /*
|
---|
| 45 | * Initialize for a processing pass.
|
---|
| 46 | * Verify that all referenced Q-tables are present, and set up
|
---|
| 47 | * the divisor table for each one.
|
---|
| 48 | * In the current implementation, DCT of all components is done during
|
---|
| 49 | * the first pass, even if only some components will be output in the
|
---|
| 50 | * first scan. Hence all components should be examined here.
|
---|
| 51 | */
|
---|
| 52 |
|
---|
| 53 | METHODDEF(void)
|
---|
| 54 | start_pass_fdctmgr (j_compress_ptr cinfo)
|
---|
| 55 | {
|
---|
| 56 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
---|
| 57 | int ci, qtblno, i;
|
---|
| 58 | jpeg_component_info *compptr;
|
---|
| 59 | JQUANT_TBL * qtbl;
|
---|
| 60 | DCTELEM * dtbl;
|
---|
| 61 |
|
---|
| 62 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
---|
| 63 | ci++, compptr++) {
|
---|
| 64 | qtblno = compptr->quant_tbl_no;
|
---|
| 65 | /* Make sure specified quantization table is present */
|
---|
| 66 | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
---|
| 67 | cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
---|
| 68 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
---|
| 69 | qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
---|
| 70 | /* Compute divisors for this quant table */
|
---|
| 71 | /* We may do this more than once for same table, but it's not a big deal */
|
---|
| 72 | switch (cinfo->dct_method) {
|
---|
| 73 | #ifdef DCT_ISLOW_SUPPORTED
|
---|
| 74 | case JDCT_ISLOW:
|
---|
| 75 | /* For LL&M IDCT method, divisors are equal to raw quantization
|
---|
| 76 | * coefficients multiplied by 8 (to counteract scaling).
|
---|
| 77 | */
|
---|
| 78 | if (fdct->divisors[qtblno] == NULL) {
|
---|
| 79 | fdct->divisors[qtblno] = (DCTELEM *)
|
---|
| 80 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 81 | DCTSIZE2 * SIZEOF(DCTELEM));
|
---|
| 82 | }
|
---|
| 83 | dtbl = fdct->divisors[qtblno];
|
---|
| 84 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
| 85 | dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
---|
| 86 | }
|
---|
| 87 | break;
|
---|
| 88 | #endif
|
---|
| 89 | #ifdef DCT_IFAST_SUPPORTED
|
---|
| 90 | case JDCT_IFAST:
|
---|
| 91 | {
|
---|
| 92 | /* For AA&N IDCT method, divisors are equal to quantization
|
---|
| 93 | * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
---|
| 94 | * scalefactor[0] = 1
|
---|
| 95 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
---|
| 96 | * We apply a further scale factor of 8.
|
---|
| 97 | */
|
---|
| 98 | #define CONST_BITS 14
|
---|
| 99 | static const INT16 aanscales[DCTSIZE2] = {
|
---|
| 100 | /* precomputed values scaled up by 14 bits */
|
---|
| 101 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
---|
| 102 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
---|
| 103 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
---|
| 104 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
---|
| 105 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
---|
| 106 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
---|
| 107 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
---|
| 108 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
---|
| 109 | };
|
---|
| 110 | SHIFT_TEMPS
|
---|
| 111 |
|
---|
| 112 | if (fdct->divisors[qtblno] == NULL) {
|
---|
| 113 | fdct->divisors[qtblno] = (DCTELEM *)
|
---|
| 114 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 115 | DCTSIZE2 * SIZEOF(DCTELEM));
|
---|
| 116 | }
|
---|
| 117 | dtbl = fdct->divisors[qtblno];
|
---|
| 118 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
| 119 | dtbl[i] = (DCTELEM)
|
---|
| 120 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
---|
| 121 | (INT32) aanscales[i]),
|
---|
| 122 | CONST_BITS-3);
|
---|
| 123 | }
|
---|
| 124 | }
|
---|
| 125 | break;
|
---|
| 126 | #endif
|
---|
| 127 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
| 128 | case JDCT_FLOAT:
|
---|
| 129 | {
|
---|
| 130 | /* For float AA&N IDCT method, divisors are equal to quantization
|
---|
| 131 | * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
---|
| 132 | * scalefactor[0] = 1
|
---|
| 133 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
---|
| 134 | * We apply a further scale factor of 8.
|
---|
| 135 | * What's actually stored is 1/divisor so that the inner loop can
|
---|
| 136 | * use a multiplication rather than a division.
|
---|
| 137 | */
|
---|
| 138 | FAST_FLOAT * fdtbl;
|
---|
| 139 | int row, col;
|
---|
| 140 | static const double aanscalefactor[DCTSIZE] = {
|
---|
| 141 | 1.0, 1.387039845, 1.306562965, 1.175875602,
|
---|
| 142 | 1.0, 0.785694958, 0.541196100, 0.275899379
|
---|
| 143 | };
|
---|
| 144 |
|
---|
| 145 | if (fdct->float_divisors[qtblno] == NULL) {
|
---|
| 146 | fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
---|
| 147 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 148 | DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
---|
| 149 | }
|
---|
| 150 | fdtbl = fdct->float_divisors[qtblno];
|
---|
| 151 | i = 0;
|
---|
| 152 | for (row = 0; row < DCTSIZE; row++) {
|
---|
| 153 | for (col = 0; col < DCTSIZE; col++) {
|
---|
| 154 | fdtbl[i] = (FAST_FLOAT)
|
---|
| 155 | (1.0 / (((double) qtbl->quantval[i] *
|
---|
| 156 | aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
---|
| 157 | i++;
|
---|
| 158 | }
|
---|
| 159 | }
|
---|
| 160 | }
|
---|
| 161 | break;
|
---|
| 162 | #endif
|
---|
| 163 | default:
|
---|
| 164 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
| 165 | break;
|
---|
| 166 | }
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 |
|
---|
| 171 | /*
|
---|
| 172 | * Perform forward DCT on one or more blocks of a component.
|
---|
| 173 | *
|
---|
| 174 | * The input samples are taken from the sample_data[] array starting at
|
---|
| 175 | * position start_row/start_col, and moving to the right for any additional
|
---|
| 176 | * blocks. The quantized coefficients are returned in coef_blocks[].
|
---|
| 177 | */
|
---|
| 178 |
|
---|
| 179 | METHODDEF(void)
|
---|
| 180 | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
---|
| 181 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
---|
| 182 | JDIMENSION start_row, JDIMENSION start_col,
|
---|
| 183 | JDIMENSION num_blocks)
|
---|
| 184 | /* This version is used for integer DCT implementations. */
|
---|
| 185 | {
|
---|
| 186 | /* This routine is heavily used, so it's worth coding it tightly. */
|
---|
| 187 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
---|
| 188 | forward_DCT_method_ptr do_dct = fdct->do_dct;
|
---|
| 189 | DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
---|
| 190 | DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
---|
| 191 | JDIMENSION bi;
|
---|
| 192 |
|
---|
| 193 | sample_data += start_row; /* fold in the vertical offset once */
|
---|
| 194 |
|
---|
| 195 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
---|
| 196 | /* Load data into workspace, applying unsigned->signed conversion */
|
---|
| 197 | { register DCTELEM *workspaceptr;
|
---|
| 198 | register JSAMPROW elemptr;
|
---|
| 199 | register int elemr;
|
---|
| 200 |
|
---|
| 201 | workspaceptr = workspace;
|
---|
| 202 | for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
---|
| 203 | elemptr = sample_data[elemr] + start_col;
|
---|
| 204 | #if DCTSIZE == 8 /* unroll the inner loop */
|
---|
| 205 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
| 206 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
| 207 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
| 208 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
| 209 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
| 210 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
| 211 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
| 212 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
| 213 | #else
|
---|
| 214 | { register int elemc;
|
---|
| 215 | for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
---|
| 216 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
| 217 | }
|
---|
| 218 | }
|
---|
| 219 | #endif
|
---|
| 220 | }
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | /* Perform the DCT */
|
---|
| 224 | (*do_dct) (workspace);
|
---|
| 225 |
|
---|
| 226 | /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
---|
| 227 | { register DCTELEM temp, qval;
|
---|
| 228 | register int i;
|
---|
| 229 | register JCOEFPTR output_ptr = coef_blocks[bi];
|
---|
| 230 |
|
---|
| 231 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
| 232 | qval = divisors[i];
|
---|
| 233 | temp = workspace[i];
|
---|
| 234 | /* Divide the coefficient value by qval, ensuring proper rounding.
|
---|
| 235 | * Since C does not specify the direction of rounding for negative
|
---|
| 236 | * quotients, we have to force the dividend positive for portability.
|
---|
| 237 | *
|
---|
| 238 | * In most files, at least half of the output values will be zero
|
---|
| 239 | * (at default quantization settings, more like three-quarters...)
|
---|
| 240 | * so we should ensure that this case is fast. On many machines,
|
---|
| 241 | * a comparison is enough cheaper than a divide to make a special test
|
---|
| 242 | * a win. Since both inputs will be nonnegative, we need only test
|
---|
| 243 | * for a < b to discover whether a/b is 0.
|
---|
| 244 | * If your machine's division is fast enough, define FAST_DIVIDE.
|
---|
| 245 | */
|
---|
| 246 | #ifdef FAST_DIVIDE
|
---|
| 247 | #define DIVIDE_BY(a,b) a /= b
|
---|
| 248 | #else
|
---|
| 249 | #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
---|
| 250 | #endif
|
---|
| 251 | if (temp < 0) {
|
---|
| 252 | temp = -temp;
|
---|
| 253 | temp += qval>>1; /* for rounding */
|
---|
| 254 | DIVIDE_BY(temp, qval);
|
---|
| 255 | temp = -temp;
|
---|
| 256 | } else {
|
---|
| 257 | temp += qval>>1; /* for rounding */
|
---|
| 258 | DIVIDE_BY(temp, qval);
|
---|
| 259 | }
|
---|
| 260 | output_ptr[i] = (JCOEF) temp;
|
---|
| 261 | }
|
---|
| 262 | }
|
---|
| 263 | }
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 |
|
---|
| 267 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
| 268 |
|
---|
| 269 | METHODDEF(void)
|
---|
| 270 | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
---|
| 271 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
---|
| 272 | JDIMENSION start_row, JDIMENSION start_col,
|
---|
| 273 | JDIMENSION num_blocks)
|
---|
| 274 | /* This version is used for floating-point DCT implementations. */
|
---|
| 275 | {
|
---|
| 276 | /* This routine is heavily used, so it's worth coding it tightly. */
|
---|
| 277 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
---|
| 278 | float_DCT_method_ptr do_dct = fdct->do_float_dct;
|
---|
| 279 | FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
---|
| 280 | FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
---|
| 281 | JDIMENSION bi;
|
---|
| 282 |
|
---|
| 283 | sample_data += start_row; /* fold in the vertical offset once */
|
---|
| 284 |
|
---|
| 285 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
---|
| 286 | /* Load data into workspace, applying unsigned->signed conversion */
|
---|
| 287 | { register FAST_FLOAT *workspaceptr;
|
---|
| 288 | register JSAMPROW elemptr;
|
---|
| 289 | register int elemr;
|
---|
| 290 |
|
---|
| 291 | workspaceptr = workspace;
|
---|
| 292 | for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
---|
| 293 | elemptr = sample_data[elemr] + start_col;
|
---|
| 294 | #if DCTSIZE == 8 /* unroll the inner loop */
|
---|
| 295 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
| 296 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
| 297 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
| 298 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
| 299 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
| 300 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
| 301 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
| 302 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
| 303 | #else
|
---|
| 304 | { register int elemc;
|
---|
| 305 | for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
---|
| 306 | *workspaceptr++ = (FAST_FLOAT)
|
---|
| 307 | (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
| 308 | }
|
---|
| 309 | }
|
---|
| 310 | #endif
|
---|
| 311 | }
|
---|
| 312 | }
|
---|
| 313 |
|
---|
| 314 | /* Perform the DCT */
|
---|
| 315 | (*do_dct) (workspace);
|
---|
| 316 |
|
---|
| 317 | /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
---|
| 318 | { register FAST_FLOAT temp;
|
---|
| 319 | register int i;
|
---|
| 320 | register JCOEFPTR output_ptr = coef_blocks[bi];
|
---|
| 321 |
|
---|
| 322 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
| 323 | /* Apply the quantization and scaling factor */
|
---|
| 324 | temp = workspace[i] * divisors[i];
|
---|
| 325 | /* Round to nearest integer.
|
---|
| 326 | * Since C does not specify the direction of rounding for negative
|
---|
| 327 | * quotients, we have to force the dividend positive for portability.
|
---|
| 328 | * The maximum coefficient size is +-16K (for 12-bit data), so this
|
---|
| 329 | * code should work for either 16-bit or 32-bit ints.
|
---|
| 330 | */
|
---|
| 331 | output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
---|
| 332 | }
|
---|
| 333 | }
|
---|
| 334 | }
|
---|
| 335 | }
|
---|
| 336 |
|
---|
| 337 | #endif /* DCT_FLOAT_SUPPORTED */
|
---|
| 338 |
|
---|
| 339 |
|
---|
| 340 | /*
|
---|
| 341 | * Initialize FDCT manager.
|
---|
| 342 | */
|
---|
| 343 |
|
---|
| 344 | GLOBAL(void)
|
---|
| 345 | jinit_forward_dct (j_compress_ptr cinfo)
|
---|
| 346 | {
|
---|
| 347 | my_fdct_ptr fdct;
|
---|
| 348 | int i;
|
---|
| 349 |
|
---|
| 350 | fdct = (my_fdct_ptr)
|
---|
| 351 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 352 | SIZEOF(my_fdct_controller));
|
---|
| 353 | cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
---|
| 354 | fdct->pub.start_pass = start_pass_fdctmgr;
|
---|
| 355 |
|
---|
| 356 | switch (cinfo->dct_method) {
|
---|
| 357 | #ifdef DCT_ISLOW_SUPPORTED
|
---|
| 358 | case JDCT_ISLOW:
|
---|
| 359 | fdct->pub.forward_DCT = forward_DCT;
|
---|
| 360 | fdct->do_dct = jpeg_fdct_islow;
|
---|
| 361 | break;
|
---|
| 362 | #endif
|
---|
| 363 | #ifdef DCT_IFAST_SUPPORTED
|
---|
| 364 | case JDCT_IFAST:
|
---|
| 365 | fdct->pub.forward_DCT = forward_DCT;
|
---|
| 366 | fdct->do_dct = jpeg_fdct_ifast;
|
---|
| 367 | break;
|
---|
| 368 | #endif
|
---|
| 369 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
| 370 | case JDCT_FLOAT:
|
---|
| 371 | fdct->pub.forward_DCT = forward_DCT_float;
|
---|
| 372 | fdct->do_float_dct = jpeg_fdct_float;
|
---|
| 373 | break;
|
---|
| 374 | #endif
|
---|
| 375 | default:
|
---|
| 376 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
| 377 | break;
|
---|
| 378 | }
|
---|
| 379 |
|
---|
| 380 | /* Mark divisor tables unallocated */
|
---|
| 381 | for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
---|
| 382 | fdct->divisors[i] = NULL;
|
---|
| 383 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
| 384 | fdct->float_divisors[i] = NULL;
|
---|
| 385 | #endif
|
---|
| 386 | }
|
---|
| 387 | }
|
---|