1 | /*
|
---|
2 | * jcdctmgr.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1994-1996, Thomas G. Lane.
|
---|
5 | * This file is part of the Independent JPEG Group's software.
|
---|
6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
7 | *
|
---|
8 | * This file contains the forward-DCT management logic.
|
---|
9 | * This code selects a particular DCT implementation to be used,
|
---|
10 | * and it performs related housekeeping chores including coefficient
|
---|
11 | * quantization.
|
---|
12 | */
|
---|
13 |
|
---|
14 | #define JPEG_INTERNALS
|
---|
15 | #include "jinclude.h"
|
---|
16 | #include "jpeglib.h"
|
---|
17 | #include "jdct.h" /* Private declarations for DCT subsystem */
|
---|
18 |
|
---|
19 |
|
---|
20 | /* Private subobject for this module */
|
---|
21 |
|
---|
22 | typedef struct {
|
---|
23 | struct jpeg_forward_dct pub; /* public fields */
|
---|
24 |
|
---|
25 | /* Pointer to the DCT routine actually in use */
|
---|
26 | forward_DCT_method_ptr do_dct;
|
---|
27 |
|
---|
28 | /* The actual post-DCT divisors --- not identical to the quant table
|
---|
29 | * entries, because of scaling (especially for an unnormalized DCT).
|
---|
30 | * Each table is given in normal array order.
|
---|
31 | */
|
---|
32 | DCTELEM * divisors[NUM_QUANT_TBLS];
|
---|
33 |
|
---|
34 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
35 | /* Same as above for the floating-point case. */
|
---|
36 | float_DCT_method_ptr do_float_dct;
|
---|
37 | FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
---|
38 | #endif
|
---|
39 | } my_fdct_controller;
|
---|
40 |
|
---|
41 | typedef my_fdct_controller * my_fdct_ptr;
|
---|
42 |
|
---|
43 |
|
---|
44 | /*
|
---|
45 | * Initialize for a processing pass.
|
---|
46 | * Verify that all referenced Q-tables are present, and set up
|
---|
47 | * the divisor table for each one.
|
---|
48 | * In the current implementation, DCT of all components is done during
|
---|
49 | * the first pass, even if only some components will be output in the
|
---|
50 | * first scan. Hence all components should be examined here.
|
---|
51 | */
|
---|
52 |
|
---|
53 | METHODDEF(void)
|
---|
54 | start_pass_fdctmgr (j_compress_ptr cinfo)
|
---|
55 | {
|
---|
56 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
---|
57 | int ci, qtblno, i;
|
---|
58 | jpeg_component_info *compptr;
|
---|
59 | JQUANT_TBL * qtbl;
|
---|
60 | DCTELEM * dtbl;
|
---|
61 |
|
---|
62 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
---|
63 | ci++, compptr++) {
|
---|
64 | qtblno = compptr->quant_tbl_no;
|
---|
65 | /* Make sure specified quantization table is present */
|
---|
66 | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
---|
67 | cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
---|
68 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
---|
69 | qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
---|
70 | /* Compute divisors for this quant table */
|
---|
71 | /* We may do this more than once for same table, but it's not a big deal */
|
---|
72 | switch (cinfo->dct_method) {
|
---|
73 | #ifdef DCT_ISLOW_SUPPORTED
|
---|
74 | case JDCT_ISLOW:
|
---|
75 | /* For LL&M IDCT method, divisors are equal to raw quantization
|
---|
76 | * coefficients multiplied by 8 (to counteract scaling).
|
---|
77 | */
|
---|
78 | if (fdct->divisors[qtblno] == NULL) {
|
---|
79 | fdct->divisors[qtblno] = (DCTELEM *)
|
---|
80 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
81 | DCTSIZE2 * SIZEOF(DCTELEM));
|
---|
82 | }
|
---|
83 | dtbl = fdct->divisors[qtblno];
|
---|
84 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
85 | dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
---|
86 | }
|
---|
87 | break;
|
---|
88 | #endif
|
---|
89 | #ifdef DCT_IFAST_SUPPORTED
|
---|
90 | case JDCT_IFAST:
|
---|
91 | {
|
---|
92 | /* For AA&N IDCT method, divisors are equal to quantization
|
---|
93 | * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
---|
94 | * scalefactor[0] = 1
|
---|
95 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
---|
96 | * We apply a further scale factor of 8.
|
---|
97 | */
|
---|
98 | #define CONST_BITS 14
|
---|
99 | static const INT16 aanscales[DCTSIZE2] = {
|
---|
100 | /* precomputed values scaled up by 14 bits */
|
---|
101 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
---|
102 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
---|
103 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
---|
104 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
---|
105 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
---|
106 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
---|
107 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
---|
108 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
---|
109 | };
|
---|
110 | SHIFT_TEMPS
|
---|
111 |
|
---|
112 | if (fdct->divisors[qtblno] == NULL) {
|
---|
113 | fdct->divisors[qtblno] = (DCTELEM *)
|
---|
114 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
115 | DCTSIZE2 * SIZEOF(DCTELEM));
|
---|
116 | }
|
---|
117 | dtbl = fdct->divisors[qtblno];
|
---|
118 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
119 | dtbl[i] = (DCTELEM)
|
---|
120 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
---|
121 | (INT32) aanscales[i]),
|
---|
122 | CONST_BITS-3);
|
---|
123 | }
|
---|
124 | }
|
---|
125 | break;
|
---|
126 | #endif
|
---|
127 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
128 | case JDCT_FLOAT:
|
---|
129 | {
|
---|
130 | /* For float AA&N IDCT method, divisors are equal to quantization
|
---|
131 | * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
---|
132 | * scalefactor[0] = 1
|
---|
133 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
---|
134 | * We apply a further scale factor of 8.
|
---|
135 | * What's actually stored is 1/divisor so that the inner loop can
|
---|
136 | * use a multiplication rather than a division.
|
---|
137 | */
|
---|
138 | FAST_FLOAT * fdtbl;
|
---|
139 | int row, col;
|
---|
140 | static const double aanscalefactor[DCTSIZE] = {
|
---|
141 | 1.0, 1.387039845, 1.306562965, 1.175875602,
|
---|
142 | 1.0, 0.785694958, 0.541196100, 0.275899379
|
---|
143 | };
|
---|
144 |
|
---|
145 | if (fdct->float_divisors[qtblno] == NULL) {
|
---|
146 | fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
---|
147 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
148 | DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
---|
149 | }
|
---|
150 | fdtbl = fdct->float_divisors[qtblno];
|
---|
151 | i = 0;
|
---|
152 | for (row = 0; row < DCTSIZE; row++) {
|
---|
153 | for (col = 0; col < DCTSIZE; col++) {
|
---|
154 | fdtbl[i] = (FAST_FLOAT)
|
---|
155 | (1.0 / (((double) qtbl->quantval[i] *
|
---|
156 | aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
---|
157 | i++;
|
---|
158 | }
|
---|
159 | }
|
---|
160 | }
|
---|
161 | break;
|
---|
162 | #endif
|
---|
163 | default:
|
---|
164 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
165 | break;
|
---|
166 | }
|
---|
167 | }
|
---|
168 | }
|
---|
169 |
|
---|
170 |
|
---|
171 | /*
|
---|
172 | * Perform forward DCT on one or more blocks of a component.
|
---|
173 | *
|
---|
174 | * The input samples are taken from the sample_data[] array starting at
|
---|
175 | * position start_row/start_col, and moving to the right for any additional
|
---|
176 | * blocks. The quantized coefficients are returned in coef_blocks[].
|
---|
177 | */
|
---|
178 |
|
---|
179 | METHODDEF(void)
|
---|
180 | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
---|
181 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
---|
182 | JDIMENSION start_row, JDIMENSION start_col,
|
---|
183 | JDIMENSION num_blocks)
|
---|
184 | /* This version is used for integer DCT implementations. */
|
---|
185 | {
|
---|
186 | /* This routine is heavily used, so it's worth coding it tightly. */
|
---|
187 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
---|
188 | forward_DCT_method_ptr do_dct = fdct->do_dct;
|
---|
189 | DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
---|
190 | DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
---|
191 | JDIMENSION bi;
|
---|
192 |
|
---|
193 | sample_data += start_row; /* fold in the vertical offset once */
|
---|
194 |
|
---|
195 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
---|
196 | /* Load data into workspace, applying unsigned->signed conversion */
|
---|
197 | { register DCTELEM *workspaceptr;
|
---|
198 | register JSAMPROW elemptr;
|
---|
199 | register int elemr;
|
---|
200 |
|
---|
201 | workspaceptr = workspace;
|
---|
202 | for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
---|
203 | elemptr = sample_data[elemr] + start_col;
|
---|
204 | #if DCTSIZE == 8 /* unroll the inner loop */
|
---|
205 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
206 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
207 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
208 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
209 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
210 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
211 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
212 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
213 | #else
|
---|
214 | { register int elemc;
|
---|
215 | for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
---|
216 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
---|
217 | }
|
---|
218 | }
|
---|
219 | #endif
|
---|
220 | }
|
---|
221 | }
|
---|
222 |
|
---|
223 | /* Perform the DCT */
|
---|
224 | (*do_dct) (workspace);
|
---|
225 |
|
---|
226 | /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
---|
227 | { register DCTELEM temp, qval;
|
---|
228 | register int i;
|
---|
229 | register JCOEFPTR output_ptr = coef_blocks[bi];
|
---|
230 |
|
---|
231 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
232 | qval = divisors[i];
|
---|
233 | temp = workspace[i];
|
---|
234 | /* Divide the coefficient value by qval, ensuring proper rounding.
|
---|
235 | * Since C does not specify the direction of rounding for negative
|
---|
236 | * quotients, we have to force the dividend positive for portability.
|
---|
237 | *
|
---|
238 | * In most files, at least half of the output values will be zero
|
---|
239 | * (at default quantization settings, more like three-quarters...)
|
---|
240 | * so we should ensure that this case is fast. On many machines,
|
---|
241 | * a comparison is enough cheaper than a divide to make a special test
|
---|
242 | * a win. Since both inputs will be nonnegative, we need only test
|
---|
243 | * for a < b to discover whether a/b is 0.
|
---|
244 | * If your machine's division is fast enough, define FAST_DIVIDE.
|
---|
245 | */
|
---|
246 | #ifdef FAST_DIVIDE
|
---|
247 | #define DIVIDE_BY(a,b) a /= b
|
---|
248 | #else
|
---|
249 | #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
---|
250 | #endif
|
---|
251 | if (temp < 0) {
|
---|
252 | temp = -temp;
|
---|
253 | temp += qval>>1; /* for rounding */
|
---|
254 | DIVIDE_BY(temp, qval);
|
---|
255 | temp = -temp;
|
---|
256 | } else {
|
---|
257 | temp += qval>>1; /* for rounding */
|
---|
258 | DIVIDE_BY(temp, qval);
|
---|
259 | }
|
---|
260 | output_ptr[i] = (JCOEF) temp;
|
---|
261 | }
|
---|
262 | }
|
---|
263 | }
|
---|
264 | }
|
---|
265 |
|
---|
266 |
|
---|
267 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
268 |
|
---|
269 | METHODDEF(void)
|
---|
270 | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
---|
271 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
---|
272 | JDIMENSION start_row, JDIMENSION start_col,
|
---|
273 | JDIMENSION num_blocks)
|
---|
274 | /* This version is used for floating-point DCT implementations. */
|
---|
275 | {
|
---|
276 | /* This routine is heavily used, so it's worth coding it tightly. */
|
---|
277 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
---|
278 | float_DCT_method_ptr do_dct = fdct->do_float_dct;
|
---|
279 | FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
---|
280 | FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
---|
281 | JDIMENSION bi;
|
---|
282 |
|
---|
283 | sample_data += start_row; /* fold in the vertical offset once */
|
---|
284 |
|
---|
285 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
---|
286 | /* Load data into workspace, applying unsigned->signed conversion */
|
---|
287 | { register FAST_FLOAT *workspaceptr;
|
---|
288 | register JSAMPROW elemptr;
|
---|
289 | register int elemr;
|
---|
290 |
|
---|
291 | workspaceptr = workspace;
|
---|
292 | for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
---|
293 | elemptr = sample_data[elemr] + start_col;
|
---|
294 | #if DCTSIZE == 8 /* unroll the inner loop */
|
---|
295 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
296 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
297 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
298 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
299 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
300 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
301 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
302 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
303 | #else
|
---|
304 | { register int elemc;
|
---|
305 | for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
---|
306 | *workspaceptr++ = (FAST_FLOAT)
|
---|
307 | (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
---|
308 | }
|
---|
309 | }
|
---|
310 | #endif
|
---|
311 | }
|
---|
312 | }
|
---|
313 |
|
---|
314 | /* Perform the DCT */
|
---|
315 | (*do_dct) (workspace);
|
---|
316 |
|
---|
317 | /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
---|
318 | { register FAST_FLOAT temp;
|
---|
319 | register int i;
|
---|
320 | register JCOEFPTR output_ptr = coef_blocks[bi];
|
---|
321 |
|
---|
322 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
323 | /* Apply the quantization and scaling factor */
|
---|
324 | temp = workspace[i] * divisors[i];
|
---|
325 | /* Round to nearest integer.
|
---|
326 | * Since C does not specify the direction of rounding for negative
|
---|
327 | * quotients, we have to force the dividend positive for portability.
|
---|
328 | * The maximum coefficient size is +-16K (for 12-bit data), so this
|
---|
329 | * code should work for either 16-bit or 32-bit ints.
|
---|
330 | */
|
---|
331 | output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
---|
332 | }
|
---|
333 | }
|
---|
334 | }
|
---|
335 | }
|
---|
336 |
|
---|
337 | #endif /* DCT_FLOAT_SUPPORTED */
|
---|
338 |
|
---|
339 |
|
---|
340 | /*
|
---|
341 | * Initialize FDCT manager.
|
---|
342 | */
|
---|
343 |
|
---|
344 | GLOBAL(void)
|
---|
345 | jinit_forward_dct (j_compress_ptr cinfo)
|
---|
346 | {
|
---|
347 | my_fdct_ptr fdct;
|
---|
348 | int i;
|
---|
349 |
|
---|
350 | fdct = (my_fdct_ptr)
|
---|
351 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
352 | SIZEOF(my_fdct_controller));
|
---|
353 | cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
---|
354 | fdct->pub.start_pass = start_pass_fdctmgr;
|
---|
355 |
|
---|
356 | switch (cinfo->dct_method) {
|
---|
357 | #ifdef DCT_ISLOW_SUPPORTED
|
---|
358 | case JDCT_ISLOW:
|
---|
359 | fdct->pub.forward_DCT = forward_DCT;
|
---|
360 | fdct->do_dct = jpeg_fdct_islow;
|
---|
361 | break;
|
---|
362 | #endif
|
---|
363 | #ifdef DCT_IFAST_SUPPORTED
|
---|
364 | case JDCT_IFAST:
|
---|
365 | fdct->pub.forward_DCT = forward_DCT;
|
---|
366 | fdct->do_dct = jpeg_fdct_ifast;
|
---|
367 | break;
|
---|
368 | #endif
|
---|
369 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
370 | case JDCT_FLOAT:
|
---|
371 | fdct->pub.forward_DCT = forward_DCT_float;
|
---|
372 | fdct->do_float_dct = jpeg_fdct_float;
|
---|
373 | break;
|
---|
374 | #endif
|
---|
375 | default:
|
---|
376 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
377 | break;
|
---|
378 | }
|
---|
379 |
|
---|
380 | /* Mark divisor tables unallocated */
|
---|
381 | for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
---|
382 | fdct->divisors[i] = NULL;
|
---|
383 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
384 | fdct->float_divisors[i] = NULL;
|
---|
385 | #endif
|
---|
386 | }
|
---|
387 | }
|
---|