| 1 | /*
|
---|
| 2 | * jchuff.c
|
---|
| 3 | *
|
---|
| 4 | * Copyright (C) 1991-1997, Thomas G. Lane.
|
---|
| 5 | * This file is part of the Independent JPEG Group's software.
|
---|
| 6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
| 7 | *
|
---|
| 8 | * This file contains Huffman entropy encoding routines.
|
---|
| 9 | *
|
---|
| 10 | * Much of the complexity here has to do with supporting output suspension.
|
---|
| 11 | * If the data destination module demands suspension, we want to be able to
|
---|
| 12 | * back up to the start of the current MCU. To do this, we copy state
|
---|
| 13 | * variables into local working storage, and update them back to the
|
---|
| 14 | * permanent JPEG objects only upon successful completion of an MCU.
|
---|
| 15 | */
|
---|
| 16 |
|
---|
| 17 | #define JPEG_INTERNALS
|
---|
| 18 | #include "jinclude.h"
|
---|
| 19 | #include "jpeglib.h"
|
---|
| 20 | #include "jchuff.h" /* Declarations shared with jcphuff.c */
|
---|
| 21 |
|
---|
| 22 |
|
---|
| 23 | /* Expanded entropy encoder object for Huffman encoding.
|
---|
| 24 | *
|
---|
| 25 | * The savable_state subrecord contains fields that change within an MCU,
|
---|
| 26 | * but must not be updated permanently until we complete the MCU.
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | typedef struct {
|
---|
| 30 | INT32 put_buffer; /* current bit-accumulation buffer */
|
---|
| 31 | int put_bits; /* # of bits now in it */
|
---|
| 32 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
---|
| 33 | } savable_state;
|
---|
| 34 |
|
---|
| 35 | /* This macro is to work around compilers with missing or broken
|
---|
| 36 | * structure assignment. You'll need to fix this code if you have
|
---|
| 37 | * such a compiler and you change MAX_COMPS_IN_SCAN.
|
---|
| 38 | */
|
---|
| 39 |
|
---|
| 40 | #ifndef NO_STRUCT_ASSIGN
|
---|
| 41 | #define ASSIGN_STATE(dest,src) ((dest) = (src))
|
---|
| 42 | #else
|
---|
| 43 | #if MAX_COMPS_IN_SCAN == 4
|
---|
| 44 | #define ASSIGN_STATE(dest,src) \
|
---|
| 45 | ((dest).put_buffer = (src).put_buffer, \
|
---|
| 46 | (dest).put_bits = (src).put_bits, \
|
---|
| 47 | (dest).last_dc_val[0] = (src).last_dc_val[0], \
|
---|
| 48 | (dest).last_dc_val[1] = (src).last_dc_val[1], \
|
---|
| 49 | (dest).last_dc_val[2] = (src).last_dc_val[2], \
|
---|
| 50 | (dest).last_dc_val[3] = (src).last_dc_val[3])
|
---|
| 51 | #endif
|
---|
| 52 | #endif
|
---|
| 53 |
|
---|
| 54 |
|
---|
| 55 | typedef struct {
|
---|
| 56 | struct jpeg_entropy_encoder pub; /* public fields */
|
---|
| 57 |
|
---|
| 58 | savable_state saved; /* Bit buffer & DC state at start of MCU */
|
---|
| 59 |
|
---|
| 60 | /* These fields are NOT loaded into local working state. */
|
---|
| 61 | unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
---|
| 62 | int next_restart_num; /* next restart number to write (0-7) */
|
---|
| 63 |
|
---|
| 64 | /* Pointers to derived tables (these workspaces have image lifespan) */
|
---|
| 65 | c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
---|
| 66 | c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
---|
| 67 |
|
---|
| 68 | #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
|
---|
| 69 | long * dc_count_ptrs[NUM_HUFF_TBLS];
|
---|
| 70 | long * ac_count_ptrs[NUM_HUFF_TBLS];
|
---|
| 71 | #endif
|
---|
| 72 | } huff_entropy_encoder;
|
---|
| 73 |
|
---|
| 74 | typedef huff_entropy_encoder * huff_entropy_ptr;
|
---|
| 75 |
|
---|
| 76 | /* Working state while writing an MCU.
|
---|
| 77 | * This struct contains all the fields that are needed by subroutines.
|
---|
| 78 | */
|
---|
| 79 |
|
---|
| 80 | typedef struct {
|
---|
| 81 | JOCTET * next_output_byte; /* => next byte to write in buffer */
|
---|
| 82 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
---|
| 83 | savable_state cur; /* Current bit buffer & DC state */
|
---|
| 84 | j_compress_ptr cinfo; /* dump_buffer needs access to this */
|
---|
| 85 | } working_state;
|
---|
| 86 |
|
---|
| 87 |
|
---|
| 88 | /* Forward declarations */
|
---|
| 89 | METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
|
---|
| 90 | JBLOCKROW *MCU_data));
|
---|
| 91 | METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
|
---|
| 92 | #ifdef ENTROPY_OPT_SUPPORTED
|
---|
| 93 | METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
|
---|
| 94 | JBLOCKROW *MCU_data));
|
---|
| 95 | METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
|
---|
| 96 | #endif
|
---|
| 97 |
|
---|
| 98 |
|
---|
| 99 | /*
|
---|
| 100 | * Initialize for a Huffman-compressed scan.
|
---|
| 101 | * If gather_statistics is TRUE, we do not output anything during the scan,
|
---|
| 102 | * just count the Huffman symbols used and generate Huffman code tables.
|
---|
| 103 | */
|
---|
| 104 |
|
---|
| 105 | METHODDEF(void)
|
---|
| 106 | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
|
---|
| 107 | {
|
---|
| 108 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 109 | int ci, dctbl, actbl;
|
---|
| 110 | jpeg_component_info * compptr;
|
---|
| 111 |
|
---|
| 112 | if (gather_statistics) {
|
---|
| 113 | #ifdef ENTROPY_OPT_SUPPORTED
|
---|
| 114 | entropy->pub.encode_mcu = encode_mcu_gather;
|
---|
| 115 | entropy->pub.finish_pass = finish_pass_gather;
|
---|
| 116 | #else
|
---|
| 117 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
| 118 | #endif
|
---|
| 119 | } else {
|
---|
| 120 | entropy->pub.encode_mcu = encode_mcu_huff;
|
---|
| 121 | entropy->pub.finish_pass = finish_pass_huff;
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
| 125 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 126 | dctbl = compptr->dc_tbl_no;
|
---|
| 127 | actbl = compptr->ac_tbl_no;
|
---|
| 128 | if (gather_statistics) {
|
---|
| 129 | #ifdef ENTROPY_OPT_SUPPORTED
|
---|
| 130 | /* Check for invalid table indexes */
|
---|
| 131 | /* (make_c_derived_tbl does this in the other path) */
|
---|
| 132 | if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
|
---|
| 133 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
|
---|
| 134 | if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
|
---|
| 135 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
|
---|
| 136 | /* Allocate and zero the statistics tables */
|
---|
| 137 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
---|
| 138 | if (entropy->dc_count_ptrs[dctbl] == NULL)
|
---|
| 139 | entropy->dc_count_ptrs[dctbl] = (long *)
|
---|
| 140 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 141 | 257 * SIZEOF(long));
|
---|
| 142 | MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
|
---|
| 143 | if (entropy->ac_count_ptrs[actbl] == NULL)
|
---|
| 144 | entropy->ac_count_ptrs[actbl] = (long *)
|
---|
| 145 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 146 | 257 * SIZEOF(long));
|
---|
| 147 | MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
|
---|
| 148 | #endif
|
---|
| 149 | } else {
|
---|
| 150 | /* Compute derived values for Huffman tables */
|
---|
| 151 | /* We may do this more than once for a table, but it's not expensive */
|
---|
| 152 | jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
|
---|
| 153 | & entropy->dc_derived_tbls[dctbl]);
|
---|
| 154 | jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
|
---|
| 155 | & entropy->ac_derived_tbls[actbl]);
|
---|
| 156 | }
|
---|
| 157 | /* Initialize DC predictions to 0 */
|
---|
| 158 | entropy->saved.last_dc_val[ci] = 0;
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | /* Initialize bit buffer to empty */
|
---|
| 162 | entropy->saved.put_buffer = 0;
|
---|
| 163 | entropy->saved.put_bits = 0;
|
---|
| 164 |
|
---|
| 165 | /* Initialize restart stuff */
|
---|
| 166 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 167 | entropy->next_restart_num = 0;
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 |
|
---|
| 171 | /*
|
---|
| 172 | * Compute the derived values for a Huffman table.
|
---|
| 173 | * This routine also performs some validation checks on the table.
|
---|
| 174 | *
|
---|
| 175 | * Note this is also used by jcphuff.c.
|
---|
| 176 | */
|
---|
| 177 |
|
---|
| 178 | GLOBAL(void)
|
---|
| 179 | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
|
---|
| 180 | c_derived_tbl ** pdtbl)
|
---|
| 181 | {
|
---|
| 182 | JHUFF_TBL *htbl;
|
---|
| 183 | c_derived_tbl *dtbl;
|
---|
| 184 | int p, i, l, lastp, si, maxsymbol;
|
---|
| 185 | char huffsize[257];
|
---|
| 186 | unsigned int huffcode[257];
|
---|
| 187 | unsigned int code;
|
---|
| 188 |
|
---|
| 189 | /* Note that huffsize[] and huffcode[] are filled in code-length order,
|
---|
| 190 | * paralleling the order of the symbols themselves in htbl->huffval[].
|
---|
| 191 | */
|
---|
| 192 |
|
---|
| 193 | /* Find the input Huffman table */
|
---|
| 194 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
---|
| 195 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
| 196 | htbl =
|
---|
| 197 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
---|
| 198 | if (htbl == NULL)
|
---|
| 199 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
| 200 |
|
---|
| 201 | /* Allocate a workspace if we haven't already done so. */
|
---|
| 202 | if (*pdtbl == NULL)
|
---|
| 203 | *pdtbl = (c_derived_tbl *)
|
---|
| 204 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 205 | SIZEOF(c_derived_tbl));
|
---|
| 206 | dtbl = *pdtbl;
|
---|
| 207 |
|
---|
| 208 | /* Figure C.1: make table of Huffman code length for each symbol */
|
---|
| 209 |
|
---|
| 210 | p = 0;
|
---|
| 211 | for (l = 1; l <= 16; l++) {
|
---|
| 212 | i = (int) htbl->bits[l];
|
---|
| 213 | if (i < 0 || p + i > 256) /* protect against table overrun */
|
---|
| 214 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 215 | while (i--)
|
---|
| 216 | huffsize[p++] = (char) l;
|
---|
| 217 | }
|
---|
| 218 | huffsize[p] = 0;
|
---|
| 219 | lastp = p;
|
---|
| 220 |
|
---|
| 221 | /* Figure C.2: generate the codes themselves */
|
---|
| 222 | /* We also validate that the counts represent a legal Huffman code tree. */
|
---|
| 223 |
|
---|
| 224 | code = 0;
|
---|
| 225 | si = huffsize[0];
|
---|
| 226 | p = 0;
|
---|
| 227 | while (huffsize[p]) {
|
---|
| 228 | while (((int) huffsize[p]) == si) {
|
---|
| 229 | huffcode[p++] = code;
|
---|
| 230 | code++;
|
---|
| 231 | }
|
---|
| 232 | /* code is now 1 more than the last code used for codelength si; but
|
---|
| 233 | * it must still fit in si bits, since no code is allowed to be all ones.
|
---|
| 234 | */
|
---|
| 235 | if (((INT32) code) >= (((INT32) 1) << si))
|
---|
| 236 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 237 | code <<= 1;
|
---|
| 238 | si++;
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | /* Figure C.3: generate encoding tables */
|
---|
| 242 | /* These are code and size indexed by symbol value */
|
---|
| 243 |
|
---|
| 244 | /* Set all codeless symbols to have code length 0;
|
---|
| 245 | * this lets us detect duplicate VAL entries here, and later
|
---|
| 246 | * allows emit_bits to detect any attempt to emit such symbols.
|
---|
| 247 | */
|
---|
| 248 | MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
|
---|
| 249 |
|
---|
| 250 | /* This is also a convenient place to check for out-of-range
|
---|
| 251 | * and duplicated VAL entries. We allow 0..255 for AC symbols
|
---|
| 252 | * but only 0..15 for DC. (We could constrain them further
|
---|
| 253 | * based on data depth and mode, but this seems enough.)
|
---|
| 254 | */
|
---|
| 255 | maxsymbol = isDC ? 15 : 255;
|
---|
| 256 |
|
---|
| 257 | for (p = 0; p < lastp; p++) {
|
---|
| 258 | i = htbl->huffval[p];
|
---|
| 259 | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
|
---|
| 260 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 261 | dtbl->ehufco[i] = huffcode[p];
|
---|
| 262 | dtbl->ehufsi[i] = huffsize[p];
|
---|
| 263 | }
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 |
|
---|
| 267 | /* Outputting bytes to the file */
|
---|
| 268 |
|
---|
| 269 | /* Emit a byte, taking 'action' if must suspend. */
|
---|
| 270 | #define emit_byte(state,val,action) \
|
---|
| 271 | { *(state)->next_output_byte++ = (JOCTET) (val); \
|
---|
| 272 | if (--(state)->free_in_buffer == 0) \
|
---|
| 273 | if (! dump_buffer(state)) \
|
---|
| 274 | { action; } }
|
---|
| 275 |
|
---|
| 276 |
|
---|
| 277 | LOCAL(boolean)
|
---|
| 278 | dump_buffer (working_state * state)
|
---|
| 279 | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
|
---|
| 280 | {
|
---|
| 281 | struct jpeg_destination_mgr * dest = state->cinfo->dest;
|
---|
| 282 |
|
---|
| 283 | if (! (*dest->empty_output_buffer) (state->cinfo))
|
---|
| 284 | return FALSE;
|
---|
| 285 | /* After a successful buffer dump, must reset buffer pointers */
|
---|
| 286 | state->next_output_byte = dest->next_output_byte;
|
---|
| 287 | state->free_in_buffer = dest->free_in_buffer;
|
---|
| 288 | return TRUE;
|
---|
| 289 | }
|
---|
| 290 |
|
---|
| 291 |
|
---|
| 292 | /* Outputting bits to the file */
|
---|
| 293 |
|
---|
| 294 | /* Only the right 24 bits of put_buffer are used; the valid bits are
|
---|
| 295 | * left-justified in this part. At most 16 bits can be passed to emit_bits
|
---|
| 296 | * in one call, and we never retain more than 7 bits in put_buffer
|
---|
| 297 | * between calls, so 24 bits are sufficient.
|
---|
| 298 | */
|
---|
| 299 |
|
---|
| 300 | INLINE
|
---|
| 301 | LOCAL(boolean)
|
---|
| 302 | emit_bits (working_state * state, unsigned int code, int size)
|
---|
| 303 | /* Emit some bits; return TRUE if successful, FALSE if must suspend */
|
---|
| 304 | {
|
---|
| 305 | /* This routine is heavily used, so it's worth coding tightly. */
|
---|
| 306 | register INT32 put_buffer = (INT32) code;
|
---|
| 307 | register int put_bits = state->cur.put_bits;
|
---|
| 308 |
|
---|
| 309 | /* if size is 0, caller used an invalid Huffman table entry */
|
---|
| 310 | if (size == 0)
|
---|
| 311 | ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
|
---|
| 312 |
|
---|
| 313 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
---|
| 314 |
|
---|
| 315 | put_bits += size; /* new number of bits in buffer */
|
---|
| 316 |
|
---|
| 317 | put_buffer <<= 24 - put_bits; /* align incoming bits */
|
---|
| 318 |
|
---|
| 319 | put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
|
---|
| 320 |
|
---|
| 321 | while (put_bits >= 8) {
|
---|
| 322 | int c = (int) ((put_buffer >> 16) & 0xFF);
|
---|
| 323 |
|
---|
| 324 | emit_byte(state, c, return FALSE);
|
---|
| 325 | if (c == 0xFF) { /* need to stuff a zero byte? */
|
---|
| 326 | emit_byte(state, 0, return FALSE);
|
---|
| 327 | }
|
---|
| 328 | put_buffer <<= 8;
|
---|
| 329 | put_bits -= 8;
|
---|
| 330 | }
|
---|
| 331 |
|
---|
| 332 | state->cur.put_buffer = put_buffer; /* update state variables */
|
---|
| 333 | state->cur.put_bits = put_bits;
|
---|
| 334 |
|
---|
| 335 | return TRUE;
|
---|
| 336 | }
|
---|
| 337 |
|
---|
| 338 |
|
---|
| 339 | LOCAL(boolean)
|
---|
| 340 | flush_bits (working_state * state)
|
---|
| 341 | {
|
---|
| 342 | if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
|
---|
| 343 | return FALSE;
|
---|
| 344 | state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
|
---|
| 345 | state->cur.put_bits = 0;
|
---|
| 346 | return TRUE;
|
---|
| 347 | }
|
---|
| 348 |
|
---|
| 349 |
|
---|
| 350 | /* Encode a single block's worth of coefficients */
|
---|
| 351 |
|
---|
| 352 | LOCAL(boolean)
|
---|
| 353 | encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
|
---|
| 354 | c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
---|
| 355 | {
|
---|
| 356 | register int temp, temp2;
|
---|
| 357 | register int nbits;
|
---|
| 358 | register int k, r, i;
|
---|
| 359 |
|
---|
| 360 | /* Encode the DC coefficient difference per section F.1.2.1 */
|
---|
| 361 |
|
---|
| 362 | temp = temp2 = block[0] - last_dc_val;
|
---|
| 363 |
|
---|
| 364 | if (temp < 0) {
|
---|
| 365 | temp = -temp; /* temp is abs value of input */
|
---|
| 366 | /* For a negative input, want temp2 = bitwise complement of abs(input) */
|
---|
| 367 | /* This code assumes we are on a two's complement machine */
|
---|
| 368 | temp2--;
|
---|
| 369 | }
|
---|
| 370 |
|
---|
| 371 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 372 | nbits = 0;
|
---|
| 373 | while (temp) {
|
---|
| 374 | nbits++;
|
---|
| 375 | temp >>= 1;
|
---|
| 376 | }
|
---|
| 377 | /* Check for out-of-range coefficient values.
|
---|
| 378 | * Since we're encoding a difference, the range limit is twice as much.
|
---|
| 379 | */
|
---|
| 380 | if (nbits > MAX_COEF_BITS+1)
|
---|
| 381 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
---|
| 382 |
|
---|
| 383 | /* Emit the Huffman-coded symbol for the number of bits */
|
---|
| 384 | if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
|
---|
| 385 | return FALSE;
|
---|
| 386 |
|
---|
| 387 | /* Emit that number of bits of the value, if positive, */
|
---|
| 388 | /* or the complement of its magnitude, if negative. */
|
---|
| 389 | if (nbits) /* emit_bits rejects calls with size 0 */
|
---|
| 390 | if (! emit_bits(state, (unsigned int) temp2, nbits))
|
---|
| 391 | return FALSE;
|
---|
| 392 |
|
---|
| 393 | /* Encode the AC coefficients per section F.1.2.2 */
|
---|
| 394 |
|
---|
| 395 | r = 0; /* r = run length of zeros */
|
---|
| 396 |
|
---|
| 397 | for (k = 1; k < DCTSIZE2; k++) {
|
---|
| 398 | if ((temp = block[jpeg_natural_order[k]]) == 0) {
|
---|
| 399 | r++;
|
---|
| 400 | } else {
|
---|
| 401 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
---|
| 402 | while (r > 15) {
|
---|
| 403 | if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
|
---|
| 404 | return FALSE;
|
---|
| 405 | r -= 16;
|
---|
| 406 | }
|
---|
| 407 |
|
---|
| 408 | temp2 = temp;
|
---|
| 409 | if (temp < 0) {
|
---|
| 410 | temp = -temp; /* temp is abs value of input */
|
---|
| 411 | /* This code assumes we are on a two's complement machine */
|
---|
| 412 | temp2--;
|
---|
| 413 | }
|
---|
| 414 |
|
---|
| 415 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 416 | nbits = 1; /* there must be at least one 1 bit */
|
---|
| 417 | while ((temp >>= 1))
|
---|
| 418 | nbits++;
|
---|
| 419 | /* Check for out-of-range coefficient values */
|
---|
| 420 | if (nbits > MAX_COEF_BITS)
|
---|
| 421 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
---|
| 422 |
|
---|
| 423 | /* Emit Huffman symbol for run length / number of bits */
|
---|
| 424 | i = (r << 4) + nbits;
|
---|
| 425 | if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
|
---|
| 426 | return FALSE;
|
---|
| 427 |
|
---|
| 428 | /* Emit that number of bits of the value, if positive, */
|
---|
| 429 | /* or the complement of its magnitude, if negative. */
|
---|
| 430 | if (! emit_bits(state, (unsigned int) temp2, nbits))
|
---|
| 431 | return FALSE;
|
---|
| 432 |
|
---|
| 433 | r = 0;
|
---|
| 434 | }
|
---|
| 435 | }
|
---|
| 436 |
|
---|
| 437 | /* If the last coef(s) were zero, emit an end-of-block code */
|
---|
| 438 | if (r > 0)
|
---|
| 439 | if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
|
---|
| 440 | return FALSE;
|
---|
| 441 |
|
---|
| 442 | return TRUE;
|
---|
| 443 | }
|
---|
| 444 |
|
---|
| 445 |
|
---|
| 446 | /*
|
---|
| 447 | * Emit a restart marker & resynchronize predictions.
|
---|
| 448 | */
|
---|
| 449 |
|
---|
| 450 | LOCAL(boolean)
|
---|
| 451 | emit_restart (working_state * state, int restart_num)
|
---|
| 452 | {
|
---|
| 453 | int ci;
|
---|
| 454 |
|
---|
| 455 | if (! flush_bits(state))
|
---|
| 456 | return FALSE;
|
---|
| 457 |
|
---|
| 458 | emit_byte(state, 0xFF, return FALSE);
|
---|
| 459 | emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
|
---|
| 460 |
|
---|
| 461 | /* Re-initialize DC predictions to 0 */
|
---|
| 462 | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
|
---|
| 463 | state->cur.last_dc_val[ci] = 0;
|
---|
| 464 |
|
---|
| 465 | /* The restart counter is not updated until we successfully write the MCU. */
|
---|
| 466 |
|
---|
| 467 | return TRUE;
|
---|
| 468 | }
|
---|
| 469 |
|
---|
| 470 |
|
---|
| 471 | /*
|
---|
| 472 | * Encode and output one MCU's worth of Huffman-compressed coefficients.
|
---|
| 473 | */
|
---|
| 474 |
|
---|
| 475 | METHODDEF(boolean)
|
---|
| 476 | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 477 | {
|
---|
| 478 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 479 | working_state state;
|
---|
| 480 | int blkn, ci;
|
---|
| 481 | jpeg_component_info * compptr;
|
---|
| 482 |
|
---|
| 483 | /* Load up working state */
|
---|
| 484 | state.next_output_byte = cinfo->dest->next_output_byte;
|
---|
| 485 | state.free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
| 486 | ASSIGN_STATE(state.cur, entropy->saved);
|
---|
| 487 | state.cinfo = cinfo;
|
---|
| 488 |
|
---|
| 489 | /* Emit restart marker if needed */
|
---|
| 490 | if (cinfo->restart_interval) {
|
---|
| 491 | if (entropy->restarts_to_go == 0)
|
---|
| 492 | if (! emit_restart(&state, entropy->next_restart_num))
|
---|
| 493 | return FALSE;
|
---|
| 494 | }
|
---|
| 495 |
|
---|
| 496 | /* Encode the MCU data blocks */
|
---|
| 497 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 498 | ci = cinfo->MCU_membership[blkn];
|
---|
| 499 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 500 | if (! encode_one_block(&state,
|
---|
| 501 | MCU_data[blkn][0], state.cur.last_dc_val[ci],
|
---|
| 502 | entropy->dc_derived_tbls[compptr->dc_tbl_no],
|
---|
| 503 | entropy->ac_derived_tbls[compptr->ac_tbl_no]))
|
---|
| 504 | return FALSE;
|
---|
| 505 | /* Update last_dc_val */
|
---|
| 506 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
|
---|
| 507 | }
|
---|
| 508 |
|
---|
| 509 | /* Completed MCU, so update state */
|
---|
| 510 | cinfo->dest->next_output_byte = state.next_output_byte;
|
---|
| 511 | cinfo->dest->free_in_buffer = state.free_in_buffer;
|
---|
| 512 | ASSIGN_STATE(entropy->saved, state.cur);
|
---|
| 513 |
|
---|
| 514 | /* Update restart-interval state too */
|
---|
| 515 | if (cinfo->restart_interval) {
|
---|
| 516 | if (entropy->restarts_to_go == 0) {
|
---|
| 517 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 518 | entropy->next_restart_num++;
|
---|
| 519 | entropy->next_restart_num &= 7;
|
---|
| 520 | }
|
---|
| 521 | entropy->restarts_to_go--;
|
---|
| 522 | }
|
---|
| 523 |
|
---|
| 524 | return TRUE;
|
---|
| 525 | }
|
---|
| 526 |
|
---|
| 527 |
|
---|
| 528 | /*
|
---|
| 529 | * Finish up at the end of a Huffman-compressed scan.
|
---|
| 530 | */
|
---|
| 531 |
|
---|
| 532 | METHODDEF(void)
|
---|
| 533 | finish_pass_huff (j_compress_ptr cinfo)
|
---|
| 534 | {
|
---|
| 535 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 536 | working_state state;
|
---|
| 537 |
|
---|
| 538 | /* Load up working state ... flush_bits needs it */
|
---|
| 539 | state.next_output_byte = cinfo->dest->next_output_byte;
|
---|
| 540 | state.free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
| 541 | ASSIGN_STATE(state.cur, entropy->saved);
|
---|
| 542 | state.cinfo = cinfo;
|
---|
| 543 |
|
---|
| 544 | /* Flush out the last data */
|
---|
| 545 | if (! flush_bits(&state))
|
---|
| 546 | ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
---|
| 547 |
|
---|
| 548 | /* Update state */
|
---|
| 549 | cinfo->dest->next_output_byte = state.next_output_byte;
|
---|
| 550 | cinfo->dest->free_in_buffer = state.free_in_buffer;
|
---|
| 551 | ASSIGN_STATE(entropy->saved, state.cur);
|
---|
| 552 | }
|
---|
| 553 |
|
---|
| 554 |
|
---|
| 555 | /*
|
---|
| 556 | * Huffman coding optimization.
|
---|
| 557 | *
|
---|
| 558 | * We first scan the supplied data and count the number of uses of each symbol
|
---|
| 559 | * that is to be Huffman-coded. (This process MUST agree with the code above.)
|
---|
| 560 | * Then we build a Huffman coding tree for the observed counts.
|
---|
| 561 | * Symbols which are not needed at all for the particular image are not
|
---|
| 562 | * assigned any code, which saves space in the DHT marker as well as in
|
---|
| 563 | * the compressed data.
|
---|
| 564 | */
|
---|
| 565 |
|
---|
| 566 | #ifdef ENTROPY_OPT_SUPPORTED
|
---|
| 567 |
|
---|
| 568 |
|
---|
| 569 | /* Process a single block's worth of coefficients */
|
---|
| 570 |
|
---|
| 571 | LOCAL(void)
|
---|
| 572 | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
|
---|
| 573 | long dc_counts[], long ac_counts[])
|
---|
| 574 | {
|
---|
| 575 | register int temp;
|
---|
| 576 | register int nbits;
|
---|
| 577 | register int k, r;
|
---|
| 578 |
|
---|
| 579 | /* Encode the DC coefficient difference per section F.1.2.1 */
|
---|
| 580 |
|
---|
| 581 | temp = block[0] - last_dc_val;
|
---|
| 582 | if (temp < 0)
|
---|
| 583 | temp = -temp;
|
---|
| 584 |
|
---|
| 585 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 586 | nbits = 0;
|
---|
| 587 | while (temp) {
|
---|
| 588 | nbits++;
|
---|
| 589 | temp >>= 1;
|
---|
| 590 | }
|
---|
| 591 | /* Check for out-of-range coefficient values.
|
---|
| 592 | * Since we're encoding a difference, the range limit is twice as much.
|
---|
| 593 | */
|
---|
| 594 | if (nbits > MAX_COEF_BITS+1)
|
---|
| 595 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
| 596 |
|
---|
| 597 | /* Count the Huffman symbol for the number of bits */
|
---|
| 598 | dc_counts[nbits]++;
|
---|
| 599 |
|
---|
| 600 | /* Encode the AC coefficients per section F.1.2.2 */
|
---|
| 601 |
|
---|
| 602 | r = 0; /* r = run length of zeros */
|
---|
| 603 |
|
---|
| 604 | for (k = 1; k < DCTSIZE2; k++) {
|
---|
| 605 | if ((temp = block[jpeg_natural_order[k]]) == 0) {
|
---|
| 606 | r++;
|
---|
| 607 | } else {
|
---|
| 608 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
---|
| 609 | while (r > 15) {
|
---|
| 610 | ac_counts[0xF0]++;
|
---|
| 611 | r -= 16;
|
---|
| 612 | }
|
---|
| 613 |
|
---|
| 614 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 615 | if (temp < 0)
|
---|
| 616 | temp = -temp;
|
---|
| 617 |
|
---|
| 618 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 619 | nbits = 1; /* there must be at least one 1 bit */
|
---|
| 620 | while ((temp >>= 1))
|
---|
| 621 | nbits++;
|
---|
| 622 | /* Check for out-of-range coefficient values */
|
---|
| 623 | if (nbits > MAX_COEF_BITS)
|
---|
| 624 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
| 625 |
|
---|
| 626 | /* Count Huffman symbol for run length / number of bits */
|
---|
| 627 | ac_counts[(r << 4) + nbits]++;
|
---|
| 628 |
|
---|
| 629 | r = 0;
|
---|
| 630 | }
|
---|
| 631 | }
|
---|
| 632 |
|
---|
| 633 | /* If the last coef(s) were zero, emit an end-of-block code */
|
---|
| 634 | if (r > 0)
|
---|
| 635 | ac_counts[0]++;
|
---|
| 636 | }
|
---|
| 637 |
|
---|
| 638 |
|
---|
| 639 | /*
|
---|
| 640 | * Trial-encode one MCU's worth of Huffman-compressed coefficients.
|
---|
| 641 | * No data is actually output, so no suspension return is possible.
|
---|
| 642 | */
|
---|
| 643 |
|
---|
| 644 | METHODDEF(boolean)
|
---|
| 645 | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 646 | {
|
---|
| 647 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 648 | int blkn, ci;
|
---|
| 649 | jpeg_component_info * compptr;
|
---|
| 650 |
|
---|
| 651 | /* Take care of restart intervals if needed */
|
---|
| 652 | if (cinfo->restart_interval) {
|
---|
| 653 | if (entropy->restarts_to_go == 0) {
|
---|
| 654 | /* Re-initialize DC predictions to 0 */
|
---|
| 655 | for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
---|
| 656 | entropy->saved.last_dc_val[ci] = 0;
|
---|
| 657 | /* Update restart state */
|
---|
| 658 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 659 | }
|
---|
| 660 | entropy->restarts_to_go--;
|
---|
| 661 | }
|
---|
| 662 |
|
---|
| 663 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 664 | ci = cinfo->MCU_membership[blkn];
|
---|
| 665 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 666 | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
|
---|
| 667 | entropy->dc_count_ptrs[compptr->dc_tbl_no],
|
---|
| 668 | entropy->ac_count_ptrs[compptr->ac_tbl_no]);
|
---|
| 669 | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
|
---|
| 670 | }
|
---|
| 671 |
|
---|
| 672 | return TRUE;
|
---|
| 673 | }
|
---|
| 674 |
|
---|
| 675 |
|
---|
| 676 | /*
|
---|
| 677 | * Generate the best Huffman code table for the given counts, fill htbl.
|
---|
| 678 | * Note this is also used by jcphuff.c.
|
---|
| 679 | *
|
---|
| 680 | * The JPEG standard requires that no symbol be assigned a codeword of all
|
---|
| 681 | * one bits (so that padding bits added at the end of a compressed segment
|
---|
| 682 | * can't look like a valid code). Because of the canonical ordering of
|
---|
| 683 | * codewords, this just means that there must be an unused slot in the
|
---|
| 684 | * longest codeword length category. Section K.2 of the JPEG spec suggests
|
---|
| 685 | * reserving such a slot by pretending that symbol 256 is a valid symbol
|
---|
| 686 | * with count 1. In theory that's not optimal; giving it count zero but
|
---|
| 687 | * including it in the symbol set anyway should give a better Huffman code.
|
---|
| 688 | * But the theoretically better code actually seems to come out worse in
|
---|
| 689 | * practice, because it produces more all-ones bytes (which incur stuffed
|
---|
| 690 | * zero bytes in the final file). In any case the difference is tiny.
|
---|
| 691 | *
|
---|
| 692 | * The JPEG standard requires Huffman codes to be no more than 16 bits long.
|
---|
| 693 | * If some symbols have a very small but nonzero probability, the Huffman tree
|
---|
| 694 | * must be adjusted to meet the code length restriction. We currently use
|
---|
| 695 | * the adjustment method suggested in JPEG section K.2. This method is *not*
|
---|
| 696 | * optimal; it may not choose the best possible limited-length code. But
|
---|
| 697 | * typically only very-low-frequency symbols will be given less-than-optimal
|
---|
| 698 | * lengths, so the code is almost optimal. Experimental comparisons against
|
---|
| 699 | * an optimal limited-length-code algorithm indicate that the difference is
|
---|
| 700 | * microscopic --- usually less than a hundredth of a percent of total size.
|
---|
| 701 | * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
|
---|
| 702 | */
|
---|
| 703 |
|
---|
| 704 | GLOBAL(void)
|
---|
| 705 | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
|
---|
| 706 | {
|
---|
| 707 | #define MAX_CLEN 32 /* assumed maximum initial code length */
|
---|
| 708 | UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
|
---|
| 709 | int codesize[257]; /* codesize[k] = code length of symbol k */
|
---|
| 710 | int others[257]; /* next symbol in current branch of tree */
|
---|
| 711 | int c1, c2;
|
---|
| 712 | int p, i, j;
|
---|
| 713 | long v;
|
---|
| 714 |
|
---|
| 715 | /* This algorithm is explained in section K.2 of the JPEG standard */
|
---|
| 716 |
|
---|
| 717 | MEMZERO(bits, SIZEOF(bits));
|
---|
| 718 | MEMZERO(codesize, SIZEOF(codesize));
|
---|
| 719 | for (i = 0; i < 257; i++)
|
---|
| 720 | others[i] = -1; /* init links to empty */
|
---|
| 721 |
|
---|
| 722 | freq[256] = 1; /* make sure 256 has a nonzero count */
|
---|
| 723 | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
|
---|
| 724 | * that no real symbol is given code-value of all ones, because 256
|
---|
| 725 | * will be placed last in the largest codeword category.
|
---|
| 726 | */
|
---|
| 727 |
|
---|
| 728 | /* Huffman's basic algorithm to assign optimal code lengths to symbols */
|
---|
| 729 |
|
---|
| 730 | for (;;) {
|
---|
| 731 | /* Find the smallest nonzero frequency, set c1 = its symbol */
|
---|
| 732 | /* In case of ties, take the larger symbol number */
|
---|
| 733 | c1 = -1;
|
---|
| 734 | v = 1000000000L;
|
---|
| 735 | for (i = 0; i <= 256; i++) {
|
---|
| 736 | if (freq[i] && freq[i] <= v) {
|
---|
| 737 | v = freq[i];
|
---|
| 738 | c1 = i;
|
---|
| 739 | }
|
---|
| 740 | }
|
---|
| 741 |
|
---|
| 742 | /* Find the next smallest nonzero frequency, set c2 = its symbol */
|
---|
| 743 | /* In case of ties, take the larger symbol number */
|
---|
| 744 | c2 = -1;
|
---|
| 745 | v = 1000000000L;
|
---|
| 746 | for (i = 0; i <= 256; i++) {
|
---|
| 747 | if (freq[i] && freq[i] <= v && i != c1) {
|
---|
| 748 | v = freq[i];
|
---|
| 749 | c2 = i;
|
---|
| 750 | }
|
---|
| 751 | }
|
---|
| 752 |
|
---|
| 753 | /* Done if we've merged everything into one frequency */
|
---|
| 754 | if (c2 < 0)
|
---|
| 755 | break;
|
---|
| 756 |
|
---|
| 757 | /* Else merge the two counts/trees */
|
---|
| 758 | freq[c1] += freq[c2];
|
---|
| 759 | freq[c2] = 0;
|
---|
| 760 |
|
---|
| 761 | /* Increment the codesize of everything in c1's tree branch */
|
---|
| 762 | codesize[c1]++;
|
---|
| 763 | while (others[c1] >= 0) {
|
---|
| 764 | c1 = others[c1];
|
---|
| 765 | codesize[c1]++;
|
---|
| 766 | }
|
---|
| 767 |
|
---|
| 768 | others[c1] = c2; /* chain c2 onto c1's tree branch */
|
---|
| 769 |
|
---|
| 770 | /* Increment the codesize of everything in c2's tree branch */
|
---|
| 771 | codesize[c2]++;
|
---|
| 772 | while (others[c2] >= 0) {
|
---|
| 773 | c2 = others[c2];
|
---|
| 774 | codesize[c2]++;
|
---|
| 775 | }
|
---|
| 776 | }
|
---|
| 777 |
|
---|
| 778 | /* Now count the number of symbols of each code length */
|
---|
| 779 | for (i = 0; i <= 256; i++) {
|
---|
| 780 | if (codesize[i]) {
|
---|
| 781 | /* The JPEG standard seems to think that this can't happen, */
|
---|
| 782 | /* but I'm paranoid... */
|
---|
| 783 | if (codesize[i] > MAX_CLEN)
|
---|
| 784 | ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
|
---|
| 785 |
|
---|
| 786 | bits[codesize[i]]++;
|
---|
| 787 | }
|
---|
| 788 | }
|
---|
| 789 |
|
---|
| 790 | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
|
---|
| 791 | * Huffman procedure assigned any such lengths, we must adjust the coding.
|
---|
| 792 | * Here is what the JPEG spec says about how this next bit works:
|
---|
| 793 | * Since symbols are paired for the longest Huffman code, the symbols are
|
---|
| 794 | * removed from this length category two at a time. The prefix for the pair
|
---|
| 795 | * (which is one bit shorter) is allocated to one of the pair; then,
|
---|
| 796 | * skipping the BITS entry for that prefix length, a code word from the next
|
---|
| 797 | * shortest nonzero BITS entry is converted into a prefix for two code words
|
---|
| 798 | * one bit longer.
|
---|
| 799 | */
|
---|
| 800 |
|
---|
| 801 | for (i = MAX_CLEN; i > 16; i--) {
|
---|
| 802 | while (bits[i] > 0) {
|
---|
| 803 | j = i - 2; /* find length of new prefix to be used */
|
---|
| 804 | while (bits[j] == 0)
|
---|
| 805 | j--;
|
---|
| 806 |
|
---|
| 807 | bits[i] -= 2; /* remove two symbols */
|
---|
| 808 | bits[i-1]++; /* one goes in this length */
|
---|
| 809 | bits[j+1] += 2; /* two new symbols in this length */
|
---|
| 810 | bits[j]--; /* symbol of this length is now a prefix */
|
---|
| 811 | }
|
---|
| 812 | }
|
---|
| 813 |
|
---|
| 814 | /* Remove the count for the pseudo-symbol 256 from the largest codelength */
|
---|
| 815 | while (bits[i] == 0) /* find largest codelength still in use */
|
---|
| 816 | i--;
|
---|
| 817 | bits[i]--;
|
---|
| 818 |
|
---|
| 819 | /* Return final symbol counts (only for lengths 0..16) */
|
---|
| 820 | MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
|
---|
| 821 |
|
---|
| 822 | /* Return a list of the symbols sorted by code length */
|
---|
| 823 | /* It's not real clear to me why we don't need to consider the codelength
|
---|
| 824 | * changes made above, but the JPEG spec seems to think this works.
|
---|
| 825 | */
|
---|
| 826 | p = 0;
|
---|
| 827 | for (i = 1; i <= MAX_CLEN; i++) {
|
---|
| 828 | for (j = 0; j <= 255; j++) {
|
---|
| 829 | if (codesize[j] == i) {
|
---|
| 830 | htbl->huffval[p] = (UINT8) j;
|
---|
| 831 | p++;
|
---|
| 832 | }
|
---|
| 833 | }
|
---|
| 834 | }
|
---|
| 835 |
|
---|
| 836 | /* Set sent_table FALSE so updated table will be written to JPEG file. */
|
---|
| 837 | htbl->sent_table = FALSE;
|
---|
| 838 | }
|
---|
| 839 |
|
---|
| 840 |
|
---|
| 841 | /*
|
---|
| 842 | * Finish up a statistics-gathering pass and create the new Huffman tables.
|
---|
| 843 | */
|
---|
| 844 |
|
---|
| 845 | METHODDEF(void)
|
---|
| 846 | finish_pass_gather (j_compress_ptr cinfo)
|
---|
| 847 | {
|
---|
| 848 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 849 | int ci, dctbl, actbl;
|
---|
| 850 | jpeg_component_info * compptr;
|
---|
| 851 | JHUFF_TBL **htblptr;
|
---|
| 852 | boolean did_dc[NUM_HUFF_TBLS];
|
---|
| 853 | boolean did_ac[NUM_HUFF_TBLS];
|
---|
| 854 |
|
---|
| 855 | /* It's important not to apply jpeg_gen_optimal_table more than once
|
---|
| 856 | * per table, because it clobbers the input frequency counts!
|
---|
| 857 | */
|
---|
| 858 | MEMZERO(did_dc, SIZEOF(did_dc));
|
---|
| 859 | MEMZERO(did_ac, SIZEOF(did_ac));
|
---|
| 860 |
|
---|
| 861 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
| 862 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 863 | dctbl = compptr->dc_tbl_no;
|
---|
| 864 | actbl = compptr->ac_tbl_no;
|
---|
| 865 | if (! did_dc[dctbl]) {
|
---|
| 866 | htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
|
---|
| 867 | if (*htblptr == NULL)
|
---|
| 868 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
---|
| 869 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
|
---|
| 870 | did_dc[dctbl] = TRUE;
|
---|
| 871 | }
|
---|
| 872 | if (! did_ac[actbl]) {
|
---|
| 873 | htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
|
---|
| 874 | if (*htblptr == NULL)
|
---|
| 875 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
---|
| 876 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
|
---|
| 877 | did_ac[actbl] = TRUE;
|
---|
| 878 | }
|
---|
| 879 | }
|
---|
| 880 | }
|
---|
| 881 |
|
---|
| 882 |
|
---|
| 883 | #endif /* ENTROPY_OPT_SUPPORTED */
|
---|
| 884 |
|
---|
| 885 |
|
---|
| 886 | /*
|
---|
| 887 | * Module initialization routine for Huffman entropy encoding.
|
---|
| 888 | */
|
---|
| 889 |
|
---|
| 890 | GLOBAL(void)
|
---|
| 891 | jinit_huff_encoder (j_compress_ptr cinfo)
|
---|
| 892 | {
|
---|
| 893 | huff_entropy_ptr entropy;
|
---|
| 894 | int i;
|
---|
| 895 |
|
---|
| 896 | entropy = (huff_entropy_ptr)
|
---|
| 897 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 898 | SIZEOF(huff_entropy_encoder));
|
---|
| 899 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
---|
| 900 | entropy->pub.start_pass = start_pass_huff;
|
---|
| 901 |
|
---|
| 902 | /* Mark tables unallocated */
|
---|
| 903 | for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
---|
| 904 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
---|
| 905 | #ifdef ENTROPY_OPT_SUPPORTED
|
---|
| 906 | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
|
---|
| 907 | #endif
|
---|
| 908 | }
|
---|
| 909 | }
|
---|