1 | /*
|
---|
2 | * jchuff.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1991-1997, Thomas G. Lane.
|
---|
5 | * This file is part of the Independent JPEG Group's software.
|
---|
6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
7 | *
|
---|
8 | * This file contains Huffman entropy encoding routines.
|
---|
9 | *
|
---|
10 | * Much of the complexity here has to do with supporting output suspension.
|
---|
11 | * If the data destination module demands suspension, we want to be able to
|
---|
12 | * back up to the start of the current MCU. To do this, we copy state
|
---|
13 | * variables into local working storage, and update them back to the
|
---|
14 | * permanent JPEG objects only upon successful completion of an MCU.
|
---|
15 | */
|
---|
16 |
|
---|
17 | #define JPEG_INTERNALS
|
---|
18 | #include "jinclude.h"
|
---|
19 | #include "jpeglib.h"
|
---|
20 | #include "jchuff.h" /* Declarations shared with jcphuff.c */
|
---|
21 |
|
---|
22 |
|
---|
23 | /* Expanded entropy encoder object for Huffman encoding.
|
---|
24 | *
|
---|
25 | * The savable_state subrecord contains fields that change within an MCU,
|
---|
26 | * but must not be updated permanently until we complete the MCU.
|
---|
27 | */
|
---|
28 |
|
---|
29 | typedef struct {
|
---|
30 | INT32 put_buffer; /* current bit-accumulation buffer */
|
---|
31 | int put_bits; /* # of bits now in it */
|
---|
32 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
---|
33 | } savable_state;
|
---|
34 |
|
---|
35 | /* This macro is to work around compilers with missing or broken
|
---|
36 | * structure assignment. You'll need to fix this code if you have
|
---|
37 | * such a compiler and you change MAX_COMPS_IN_SCAN.
|
---|
38 | */
|
---|
39 |
|
---|
40 | #ifndef NO_STRUCT_ASSIGN
|
---|
41 | #define ASSIGN_STATE(dest,src) ((dest) = (src))
|
---|
42 | #else
|
---|
43 | #if MAX_COMPS_IN_SCAN == 4
|
---|
44 | #define ASSIGN_STATE(dest,src) \
|
---|
45 | ((dest).put_buffer = (src).put_buffer, \
|
---|
46 | (dest).put_bits = (src).put_bits, \
|
---|
47 | (dest).last_dc_val[0] = (src).last_dc_val[0], \
|
---|
48 | (dest).last_dc_val[1] = (src).last_dc_val[1], \
|
---|
49 | (dest).last_dc_val[2] = (src).last_dc_val[2], \
|
---|
50 | (dest).last_dc_val[3] = (src).last_dc_val[3])
|
---|
51 | #endif
|
---|
52 | #endif
|
---|
53 |
|
---|
54 |
|
---|
55 | typedef struct {
|
---|
56 | struct jpeg_entropy_encoder pub; /* public fields */
|
---|
57 |
|
---|
58 | savable_state saved; /* Bit buffer & DC state at start of MCU */
|
---|
59 |
|
---|
60 | /* These fields are NOT loaded into local working state. */
|
---|
61 | unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
---|
62 | int next_restart_num; /* next restart number to write (0-7) */
|
---|
63 |
|
---|
64 | /* Pointers to derived tables (these workspaces have image lifespan) */
|
---|
65 | c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
---|
66 | c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
---|
67 |
|
---|
68 | #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
|
---|
69 | long * dc_count_ptrs[NUM_HUFF_TBLS];
|
---|
70 | long * ac_count_ptrs[NUM_HUFF_TBLS];
|
---|
71 | #endif
|
---|
72 | } huff_entropy_encoder;
|
---|
73 |
|
---|
74 | typedef huff_entropy_encoder * huff_entropy_ptr;
|
---|
75 |
|
---|
76 | /* Working state while writing an MCU.
|
---|
77 | * This struct contains all the fields that are needed by subroutines.
|
---|
78 | */
|
---|
79 |
|
---|
80 | typedef struct {
|
---|
81 | JOCTET * next_output_byte; /* => next byte to write in buffer */
|
---|
82 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
---|
83 | savable_state cur; /* Current bit buffer & DC state */
|
---|
84 | j_compress_ptr cinfo; /* dump_buffer needs access to this */
|
---|
85 | } working_state;
|
---|
86 |
|
---|
87 |
|
---|
88 | /* Forward declarations */
|
---|
89 | METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
|
---|
90 | JBLOCKROW *MCU_data));
|
---|
91 | METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
|
---|
92 | #ifdef ENTROPY_OPT_SUPPORTED
|
---|
93 | METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
|
---|
94 | JBLOCKROW *MCU_data));
|
---|
95 | METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
|
---|
96 | #endif
|
---|
97 |
|
---|
98 |
|
---|
99 | /*
|
---|
100 | * Initialize for a Huffman-compressed scan.
|
---|
101 | * If gather_statistics is TRUE, we do not output anything during the scan,
|
---|
102 | * just count the Huffman symbols used and generate Huffman code tables.
|
---|
103 | */
|
---|
104 |
|
---|
105 | METHODDEF(void)
|
---|
106 | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
|
---|
107 | {
|
---|
108 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
109 | int ci, dctbl, actbl;
|
---|
110 | jpeg_component_info * compptr;
|
---|
111 |
|
---|
112 | if (gather_statistics) {
|
---|
113 | #ifdef ENTROPY_OPT_SUPPORTED
|
---|
114 | entropy->pub.encode_mcu = encode_mcu_gather;
|
---|
115 | entropy->pub.finish_pass = finish_pass_gather;
|
---|
116 | #else
|
---|
117 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
118 | #endif
|
---|
119 | } else {
|
---|
120 | entropy->pub.encode_mcu = encode_mcu_huff;
|
---|
121 | entropy->pub.finish_pass = finish_pass_huff;
|
---|
122 | }
|
---|
123 |
|
---|
124 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
125 | compptr = cinfo->cur_comp_info[ci];
|
---|
126 | dctbl = compptr->dc_tbl_no;
|
---|
127 | actbl = compptr->ac_tbl_no;
|
---|
128 | if (gather_statistics) {
|
---|
129 | #ifdef ENTROPY_OPT_SUPPORTED
|
---|
130 | /* Check for invalid table indexes */
|
---|
131 | /* (make_c_derived_tbl does this in the other path) */
|
---|
132 | if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
|
---|
133 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
|
---|
134 | if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
|
---|
135 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
|
---|
136 | /* Allocate and zero the statistics tables */
|
---|
137 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
---|
138 | if (entropy->dc_count_ptrs[dctbl] == NULL)
|
---|
139 | entropy->dc_count_ptrs[dctbl] = (long *)
|
---|
140 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
141 | 257 * SIZEOF(long));
|
---|
142 | MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
|
---|
143 | if (entropy->ac_count_ptrs[actbl] == NULL)
|
---|
144 | entropy->ac_count_ptrs[actbl] = (long *)
|
---|
145 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
146 | 257 * SIZEOF(long));
|
---|
147 | MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
|
---|
148 | #endif
|
---|
149 | } else {
|
---|
150 | /* Compute derived values for Huffman tables */
|
---|
151 | /* We may do this more than once for a table, but it's not expensive */
|
---|
152 | jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
|
---|
153 | & entropy->dc_derived_tbls[dctbl]);
|
---|
154 | jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
|
---|
155 | & entropy->ac_derived_tbls[actbl]);
|
---|
156 | }
|
---|
157 | /* Initialize DC predictions to 0 */
|
---|
158 | entropy->saved.last_dc_val[ci] = 0;
|
---|
159 | }
|
---|
160 |
|
---|
161 | /* Initialize bit buffer to empty */
|
---|
162 | entropy->saved.put_buffer = 0;
|
---|
163 | entropy->saved.put_bits = 0;
|
---|
164 |
|
---|
165 | /* Initialize restart stuff */
|
---|
166 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
167 | entropy->next_restart_num = 0;
|
---|
168 | }
|
---|
169 |
|
---|
170 |
|
---|
171 | /*
|
---|
172 | * Compute the derived values for a Huffman table.
|
---|
173 | * This routine also performs some validation checks on the table.
|
---|
174 | *
|
---|
175 | * Note this is also used by jcphuff.c.
|
---|
176 | */
|
---|
177 |
|
---|
178 | GLOBAL(void)
|
---|
179 | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
|
---|
180 | c_derived_tbl ** pdtbl)
|
---|
181 | {
|
---|
182 | JHUFF_TBL *htbl;
|
---|
183 | c_derived_tbl *dtbl;
|
---|
184 | int p, i, l, lastp, si, maxsymbol;
|
---|
185 | char huffsize[257];
|
---|
186 | unsigned int huffcode[257];
|
---|
187 | unsigned int code;
|
---|
188 |
|
---|
189 | /* Note that huffsize[] and huffcode[] are filled in code-length order,
|
---|
190 | * paralleling the order of the symbols themselves in htbl->huffval[].
|
---|
191 | */
|
---|
192 |
|
---|
193 | /* Find the input Huffman table */
|
---|
194 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
---|
195 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
196 | htbl =
|
---|
197 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
---|
198 | if (htbl == NULL)
|
---|
199 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
200 |
|
---|
201 | /* Allocate a workspace if we haven't already done so. */
|
---|
202 | if (*pdtbl == NULL)
|
---|
203 | *pdtbl = (c_derived_tbl *)
|
---|
204 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
205 | SIZEOF(c_derived_tbl));
|
---|
206 | dtbl = *pdtbl;
|
---|
207 |
|
---|
208 | /* Figure C.1: make table of Huffman code length for each symbol */
|
---|
209 |
|
---|
210 | p = 0;
|
---|
211 | for (l = 1; l <= 16; l++) {
|
---|
212 | i = (int) htbl->bits[l];
|
---|
213 | if (i < 0 || p + i > 256) /* protect against table overrun */
|
---|
214 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
215 | while (i--)
|
---|
216 | huffsize[p++] = (char) l;
|
---|
217 | }
|
---|
218 | huffsize[p] = 0;
|
---|
219 | lastp = p;
|
---|
220 |
|
---|
221 | /* Figure C.2: generate the codes themselves */
|
---|
222 | /* We also validate that the counts represent a legal Huffman code tree. */
|
---|
223 |
|
---|
224 | code = 0;
|
---|
225 | si = huffsize[0];
|
---|
226 | p = 0;
|
---|
227 | while (huffsize[p]) {
|
---|
228 | while (((int) huffsize[p]) == si) {
|
---|
229 | huffcode[p++] = code;
|
---|
230 | code++;
|
---|
231 | }
|
---|
232 | /* code is now 1 more than the last code used for codelength si; but
|
---|
233 | * it must still fit in si bits, since no code is allowed to be all ones.
|
---|
234 | */
|
---|
235 | if (((INT32) code) >= (((INT32) 1) << si))
|
---|
236 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
237 | code <<= 1;
|
---|
238 | si++;
|
---|
239 | }
|
---|
240 |
|
---|
241 | /* Figure C.3: generate encoding tables */
|
---|
242 | /* These are code and size indexed by symbol value */
|
---|
243 |
|
---|
244 | /* Set all codeless symbols to have code length 0;
|
---|
245 | * this lets us detect duplicate VAL entries here, and later
|
---|
246 | * allows emit_bits to detect any attempt to emit such symbols.
|
---|
247 | */
|
---|
248 | MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
|
---|
249 |
|
---|
250 | /* This is also a convenient place to check for out-of-range
|
---|
251 | * and duplicated VAL entries. We allow 0..255 for AC symbols
|
---|
252 | * but only 0..15 for DC. (We could constrain them further
|
---|
253 | * based on data depth and mode, but this seems enough.)
|
---|
254 | */
|
---|
255 | maxsymbol = isDC ? 15 : 255;
|
---|
256 |
|
---|
257 | for (p = 0; p < lastp; p++) {
|
---|
258 | i = htbl->huffval[p];
|
---|
259 | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
|
---|
260 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
261 | dtbl->ehufco[i] = huffcode[p];
|
---|
262 | dtbl->ehufsi[i] = huffsize[p];
|
---|
263 | }
|
---|
264 | }
|
---|
265 |
|
---|
266 |
|
---|
267 | /* Outputting bytes to the file */
|
---|
268 |
|
---|
269 | /* Emit a byte, taking 'action' if must suspend. */
|
---|
270 | #define emit_byte(state,val,action) \
|
---|
271 | { *(state)->next_output_byte++ = (JOCTET) (val); \
|
---|
272 | if (--(state)->free_in_buffer == 0) \
|
---|
273 | if (! dump_buffer(state)) \
|
---|
274 | { action; } }
|
---|
275 |
|
---|
276 |
|
---|
277 | LOCAL(boolean)
|
---|
278 | dump_buffer (working_state * state)
|
---|
279 | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
|
---|
280 | {
|
---|
281 | struct jpeg_destination_mgr * dest = state->cinfo->dest;
|
---|
282 |
|
---|
283 | if (! (*dest->empty_output_buffer) (state->cinfo))
|
---|
284 | return FALSE;
|
---|
285 | /* After a successful buffer dump, must reset buffer pointers */
|
---|
286 | state->next_output_byte = dest->next_output_byte;
|
---|
287 | state->free_in_buffer = dest->free_in_buffer;
|
---|
288 | return TRUE;
|
---|
289 | }
|
---|
290 |
|
---|
291 |
|
---|
292 | /* Outputting bits to the file */
|
---|
293 |
|
---|
294 | /* Only the right 24 bits of put_buffer are used; the valid bits are
|
---|
295 | * left-justified in this part. At most 16 bits can be passed to emit_bits
|
---|
296 | * in one call, and we never retain more than 7 bits in put_buffer
|
---|
297 | * between calls, so 24 bits are sufficient.
|
---|
298 | */
|
---|
299 |
|
---|
300 | INLINE
|
---|
301 | LOCAL(boolean)
|
---|
302 | emit_bits (working_state * state, unsigned int code, int size)
|
---|
303 | /* Emit some bits; return TRUE if successful, FALSE if must suspend */
|
---|
304 | {
|
---|
305 | /* This routine is heavily used, so it's worth coding tightly. */
|
---|
306 | register INT32 put_buffer = (INT32) code;
|
---|
307 | register int put_bits = state->cur.put_bits;
|
---|
308 |
|
---|
309 | /* if size is 0, caller used an invalid Huffman table entry */
|
---|
310 | if (size == 0)
|
---|
311 | ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
|
---|
312 |
|
---|
313 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
---|
314 |
|
---|
315 | put_bits += size; /* new number of bits in buffer */
|
---|
316 |
|
---|
317 | put_buffer <<= 24 - put_bits; /* align incoming bits */
|
---|
318 |
|
---|
319 | put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
|
---|
320 |
|
---|
321 | while (put_bits >= 8) {
|
---|
322 | int c = (int) ((put_buffer >> 16) & 0xFF);
|
---|
323 |
|
---|
324 | emit_byte(state, c, return FALSE);
|
---|
325 | if (c == 0xFF) { /* need to stuff a zero byte? */
|
---|
326 | emit_byte(state, 0, return FALSE);
|
---|
327 | }
|
---|
328 | put_buffer <<= 8;
|
---|
329 | put_bits -= 8;
|
---|
330 | }
|
---|
331 |
|
---|
332 | state->cur.put_buffer = put_buffer; /* update state variables */
|
---|
333 | state->cur.put_bits = put_bits;
|
---|
334 |
|
---|
335 | return TRUE;
|
---|
336 | }
|
---|
337 |
|
---|
338 |
|
---|
339 | LOCAL(boolean)
|
---|
340 | flush_bits (working_state * state)
|
---|
341 | {
|
---|
342 | if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
|
---|
343 | return FALSE;
|
---|
344 | state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
|
---|
345 | state->cur.put_bits = 0;
|
---|
346 | return TRUE;
|
---|
347 | }
|
---|
348 |
|
---|
349 |
|
---|
350 | /* Encode a single block's worth of coefficients */
|
---|
351 |
|
---|
352 | LOCAL(boolean)
|
---|
353 | encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
|
---|
354 | c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
---|
355 | {
|
---|
356 | register int temp, temp2;
|
---|
357 | register int nbits;
|
---|
358 | register int k, r, i;
|
---|
359 |
|
---|
360 | /* Encode the DC coefficient difference per section F.1.2.1 */
|
---|
361 |
|
---|
362 | temp = temp2 = block[0] - last_dc_val;
|
---|
363 |
|
---|
364 | if (temp < 0) {
|
---|
365 | temp = -temp; /* temp is abs value of input */
|
---|
366 | /* For a negative input, want temp2 = bitwise complement of abs(input) */
|
---|
367 | /* This code assumes we are on a two's complement machine */
|
---|
368 | temp2--;
|
---|
369 | }
|
---|
370 |
|
---|
371 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
372 | nbits = 0;
|
---|
373 | while (temp) {
|
---|
374 | nbits++;
|
---|
375 | temp >>= 1;
|
---|
376 | }
|
---|
377 | /* Check for out-of-range coefficient values.
|
---|
378 | * Since we're encoding a difference, the range limit is twice as much.
|
---|
379 | */
|
---|
380 | if (nbits > MAX_COEF_BITS+1)
|
---|
381 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
---|
382 |
|
---|
383 | /* Emit the Huffman-coded symbol for the number of bits */
|
---|
384 | if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
|
---|
385 | return FALSE;
|
---|
386 |
|
---|
387 | /* Emit that number of bits of the value, if positive, */
|
---|
388 | /* or the complement of its magnitude, if negative. */
|
---|
389 | if (nbits) /* emit_bits rejects calls with size 0 */
|
---|
390 | if (! emit_bits(state, (unsigned int) temp2, nbits))
|
---|
391 | return FALSE;
|
---|
392 |
|
---|
393 | /* Encode the AC coefficients per section F.1.2.2 */
|
---|
394 |
|
---|
395 | r = 0; /* r = run length of zeros */
|
---|
396 |
|
---|
397 | for (k = 1; k < DCTSIZE2; k++) {
|
---|
398 | if ((temp = block[jpeg_natural_order[k]]) == 0) {
|
---|
399 | r++;
|
---|
400 | } else {
|
---|
401 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
---|
402 | while (r > 15) {
|
---|
403 | if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
|
---|
404 | return FALSE;
|
---|
405 | r -= 16;
|
---|
406 | }
|
---|
407 |
|
---|
408 | temp2 = temp;
|
---|
409 | if (temp < 0) {
|
---|
410 | temp = -temp; /* temp is abs value of input */
|
---|
411 | /* This code assumes we are on a two's complement machine */
|
---|
412 | temp2--;
|
---|
413 | }
|
---|
414 |
|
---|
415 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
416 | nbits = 1; /* there must be at least one 1 bit */
|
---|
417 | while ((temp >>= 1))
|
---|
418 | nbits++;
|
---|
419 | /* Check for out-of-range coefficient values */
|
---|
420 | if (nbits > MAX_COEF_BITS)
|
---|
421 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
---|
422 |
|
---|
423 | /* Emit Huffman symbol for run length / number of bits */
|
---|
424 | i = (r << 4) + nbits;
|
---|
425 | if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
|
---|
426 | return FALSE;
|
---|
427 |
|
---|
428 | /* Emit that number of bits of the value, if positive, */
|
---|
429 | /* or the complement of its magnitude, if negative. */
|
---|
430 | if (! emit_bits(state, (unsigned int) temp2, nbits))
|
---|
431 | return FALSE;
|
---|
432 |
|
---|
433 | r = 0;
|
---|
434 | }
|
---|
435 | }
|
---|
436 |
|
---|
437 | /* If the last coef(s) were zero, emit an end-of-block code */
|
---|
438 | if (r > 0)
|
---|
439 | if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
|
---|
440 | return FALSE;
|
---|
441 |
|
---|
442 | return TRUE;
|
---|
443 | }
|
---|
444 |
|
---|
445 |
|
---|
446 | /*
|
---|
447 | * Emit a restart marker & resynchronize predictions.
|
---|
448 | */
|
---|
449 |
|
---|
450 | LOCAL(boolean)
|
---|
451 | emit_restart (working_state * state, int restart_num)
|
---|
452 | {
|
---|
453 | int ci;
|
---|
454 |
|
---|
455 | if (! flush_bits(state))
|
---|
456 | return FALSE;
|
---|
457 |
|
---|
458 | emit_byte(state, 0xFF, return FALSE);
|
---|
459 | emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
|
---|
460 |
|
---|
461 | /* Re-initialize DC predictions to 0 */
|
---|
462 | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
|
---|
463 | state->cur.last_dc_val[ci] = 0;
|
---|
464 |
|
---|
465 | /* The restart counter is not updated until we successfully write the MCU. */
|
---|
466 |
|
---|
467 | return TRUE;
|
---|
468 | }
|
---|
469 |
|
---|
470 |
|
---|
471 | /*
|
---|
472 | * Encode and output one MCU's worth of Huffman-compressed coefficients.
|
---|
473 | */
|
---|
474 |
|
---|
475 | METHODDEF(boolean)
|
---|
476 | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
477 | {
|
---|
478 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
479 | working_state state;
|
---|
480 | int blkn, ci;
|
---|
481 | jpeg_component_info * compptr;
|
---|
482 |
|
---|
483 | /* Load up working state */
|
---|
484 | state.next_output_byte = cinfo->dest->next_output_byte;
|
---|
485 | state.free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
486 | ASSIGN_STATE(state.cur, entropy->saved);
|
---|
487 | state.cinfo = cinfo;
|
---|
488 |
|
---|
489 | /* Emit restart marker if needed */
|
---|
490 | if (cinfo->restart_interval) {
|
---|
491 | if (entropy->restarts_to_go == 0)
|
---|
492 | if (! emit_restart(&state, entropy->next_restart_num))
|
---|
493 | return FALSE;
|
---|
494 | }
|
---|
495 |
|
---|
496 | /* Encode the MCU data blocks */
|
---|
497 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
498 | ci = cinfo->MCU_membership[blkn];
|
---|
499 | compptr = cinfo->cur_comp_info[ci];
|
---|
500 | if (! encode_one_block(&state,
|
---|
501 | MCU_data[blkn][0], state.cur.last_dc_val[ci],
|
---|
502 | entropy->dc_derived_tbls[compptr->dc_tbl_no],
|
---|
503 | entropy->ac_derived_tbls[compptr->ac_tbl_no]))
|
---|
504 | return FALSE;
|
---|
505 | /* Update last_dc_val */
|
---|
506 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
|
---|
507 | }
|
---|
508 |
|
---|
509 | /* Completed MCU, so update state */
|
---|
510 | cinfo->dest->next_output_byte = state.next_output_byte;
|
---|
511 | cinfo->dest->free_in_buffer = state.free_in_buffer;
|
---|
512 | ASSIGN_STATE(entropy->saved, state.cur);
|
---|
513 |
|
---|
514 | /* Update restart-interval state too */
|
---|
515 | if (cinfo->restart_interval) {
|
---|
516 | if (entropy->restarts_to_go == 0) {
|
---|
517 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
518 | entropy->next_restart_num++;
|
---|
519 | entropy->next_restart_num &= 7;
|
---|
520 | }
|
---|
521 | entropy->restarts_to_go--;
|
---|
522 | }
|
---|
523 |
|
---|
524 | return TRUE;
|
---|
525 | }
|
---|
526 |
|
---|
527 |
|
---|
528 | /*
|
---|
529 | * Finish up at the end of a Huffman-compressed scan.
|
---|
530 | */
|
---|
531 |
|
---|
532 | METHODDEF(void)
|
---|
533 | finish_pass_huff (j_compress_ptr cinfo)
|
---|
534 | {
|
---|
535 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
536 | working_state state;
|
---|
537 |
|
---|
538 | /* Load up working state ... flush_bits needs it */
|
---|
539 | state.next_output_byte = cinfo->dest->next_output_byte;
|
---|
540 | state.free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
541 | ASSIGN_STATE(state.cur, entropy->saved);
|
---|
542 | state.cinfo = cinfo;
|
---|
543 |
|
---|
544 | /* Flush out the last data */
|
---|
545 | if (! flush_bits(&state))
|
---|
546 | ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
---|
547 |
|
---|
548 | /* Update state */
|
---|
549 | cinfo->dest->next_output_byte = state.next_output_byte;
|
---|
550 | cinfo->dest->free_in_buffer = state.free_in_buffer;
|
---|
551 | ASSIGN_STATE(entropy->saved, state.cur);
|
---|
552 | }
|
---|
553 |
|
---|
554 |
|
---|
555 | /*
|
---|
556 | * Huffman coding optimization.
|
---|
557 | *
|
---|
558 | * We first scan the supplied data and count the number of uses of each symbol
|
---|
559 | * that is to be Huffman-coded. (This process MUST agree with the code above.)
|
---|
560 | * Then we build a Huffman coding tree for the observed counts.
|
---|
561 | * Symbols which are not needed at all for the particular image are not
|
---|
562 | * assigned any code, which saves space in the DHT marker as well as in
|
---|
563 | * the compressed data.
|
---|
564 | */
|
---|
565 |
|
---|
566 | #ifdef ENTROPY_OPT_SUPPORTED
|
---|
567 |
|
---|
568 |
|
---|
569 | /* Process a single block's worth of coefficients */
|
---|
570 |
|
---|
571 | LOCAL(void)
|
---|
572 | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
|
---|
573 | long dc_counts[], long ac_counts[])
|
---|
574 | {
|
---|
575 | register int temp;
|
---|
576 | register int nbits;
|
---|
577 | register int k, r;
|
---|
578 |
|
---|
579 | /* Encode the DC coefficient difference per section F.1.2.1 */
|
---|
580 |
|
---|
581 | temp = block[0] - last_dc_val;
|
---|
582 | if (temp < 0)
|
---|
583 | temp = -temp;
|
---|
584 |
|
---|
585 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
586 | nbits = 0;
|
---|
587 | while (temp) {
|
---|
588 | nbits++;
|
---|
589 | temp >>= 1;
|
---|
590 | }
|
---|
591 | /* Check for out-of-range coefficient values.
|
---|
592 | * Since we're encoding a difference, the range limit is twice as much.
|
---|
593 | */
|
---|
594 | if (nbits > MAX_COEF_BITS+1)
|
---|
595 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
596 |
|
---|
597 | /* Count the Huffman symbol for the number of bits */
|
---|
598 | dc_counts[nbits]++;
|
---|
599 |
|
---|
600 | /* Encode the AC coefficients per section F.1.2.2 */
|
---|
601 |
|
---|
602 | r = 0; /* r = run length of zeros */
|
---|
603 |
|
---|
604 | for (k = 1; k < DCTSIZE2; k++) {
|
---|
605 | if ((temp = block[jpeg_natural_order[k]]) == 0) {
|
---|
606 | r++;
|
---|
607 | } else {
|
---|
608 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
---|
609 | while (r > 15) {
|
---|
610 | ac_counts[0xF0]++;
|
---|
611 | r -= 16;
|
---|
612 | }
|
---|
613 |
|
---|
614 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
615 | if (temp < 0)
|
---|
616 | temp = -temp;
|
---|
617 |
|
---|
618 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
619 | nbits = 1; /* there must be at least one 1 bit */
|
---|
620 | while ((temp >>= 1))
|
---|
621 | nbits++;
|
---|
622 | /* Check for out-of-range coefficient values */
|
---|
623 | if (nbits > MAX_COEF_BITS)
|
---|
624 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
625 |
|
---|
626 | /* Count Huffman symbol for run length / number of bits */
|
---|
627 | ac_counts[(r << 4) + nbits]++;
|
---|
628 |
|
---|
629 | r = 0;
|
---|
630 | }
|
---|
631 | }
|
---|
632 |
|
---|
633 | /* If the last coef(s) were zero, emit an end-of-block code */
|
---|
634 | if (r > 0)
|
---|
635 | ac_counts[0]++;
|
---|
636 | }
|
---|
637 |
|
---|
638 |
|
---|
639 | /*
|
---|
640 | * Trial-encode one MCU's worth of Huffman-compressed coefficients.
|
---|
641 | * No data is actually output, so no suspension return is possible.
|
---|
642 | */
|
---|
643 |
|
---|
644 | METHODDEF(boolean)
|
---|
645 | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
646 | {
|
---|
647 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
648 | int blkn, ci;
|
---|
649 | jpeg_component_info * compptr;
|
---|
650 |
|
---|
651 | /* Take care of restart intervals if needed */
|
---|
652 | if (cinfo->restart_interval) {
|
---|
653 | if (entropy->restarts_to_go == 0) {
|
---|
654 | /* Re-initialize DC predictions to 0 */
|
---|
655 | for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
---|
656 | entropy->saved.last_dc_val[ci] = 0;
|
---|
657 | /* Update restart state */
|
---|
658 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
659 | }
|
---|
660 | entropy->restarts_to_go--;
|
---|
661 | }
|
---|
662 |
|
---|
663 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
664 | ci = cinfo->MCU_membership[blkn];
|
---|
665 | compptr = cinfo->cur_comp_info[ci];
|
---|
666 | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
|
---|
667 | entropy->dc_count_ptrs[compptr->dc_tbl_no],
|
---|
668 | entropy->ac_count_ptrs[compptr->ac_tbl_no]);
|
---|
669 | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
|
---|
670 | }
|
---|
671 |
|
---|
672 | return TRUE;
|
---|
673 | }
|
---|
674 |
|
---|
675 |
|
---|
676 | /*
|
---|
677 | * Generate the best Huffman code table for the given counts, fill htbl.
|
---|
678 | * Note this is also used by jcphuff.c.
|
---|
679 | *
|
---|
680 | * The JPEG standard requires that no symbol be assigned a codeword of all
|
---|
681 | * one bits (so that padding bits added at the end of a compressed segment
|
---|
682 | * can't look like a valid code). Because of the canonical ordering of
|
---|
683 | * codewords, this just means that there must be an unused slot in the
|
---|
684 | * longest codeword length category. Section K.2 of the JPEG spec suggests
|
---|
685 | * reserving such a slot by pretending that symbol 256 is a valid symbol
|
---|
686 | * with count 1. In theory that's not optimal; giving it count zero but
|
---|
687 | * including it in the symbol set anyway should give a better Huffman code.
|
---|
688 | * But the theoretically better code actually seems to come out worse in
|
---|
689 | * practice, because it produces more all-ones bytes (which incur stuffed
|
---|
690 | * zero bytes in the final file). In any case the difference is tiny.
|
---|
691 | *
|
---|
692 | * The JPEG standard requires Huffman codes to be no more than 16 bits long.
|
---|
693 | * If some symbols have a very small but nonzero probability, the Huffman tree
|
---|
694 | * must be adjusted to meet the code length restriction. We currently use
|
---|
695 | * the adjustment method suggested in JPEG section K.2. This method is *not*
|
---|
696 | * optimal; it may not choose the best possible limited-length code. But
|
---|
697 | * typically only very-low-frequency symbols will be given less-than-optimal
|
---|
698 | * lengths, so the code is almost optimal. Experimental comparisons against
|
---|
699 | * an optimal limited-length-code algorithm indicate that the difference is
|
---|
700 | * microscopic --- usually less than a hundredth of a percent of total size.
|
---|
701 | * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
|
---|
702 | */
|
---|
703 |
|
---|
704 | GLOBAL(void)
|
---|
705 | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
|
---|
706 | {
|
---|
707 | #define MAX_CLEN 32 /* assumed maximum initial code length */
|
---|
708 | UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
|
---|
709 | int codesize[257]; /* codesize[k] = code length of symbol k */
|
---|
710 | int others[257]; /* next symbol in current branch of tree */
|
---|
711 | int c1, c2;
|
---|
712 | int p, i, j;
|
---|
713 | long v;
|
---|
714 |
|
---|
715 | /* This algorithm is explained in section K.2 of the JPEG standard */
|
---|
716 |
|
---|
717 | MEMZERO(bits, SIZEOF(bits));
|
---|
718 | MEMZERO(codesize, SIZEOF(codesize));
|
---|
719 | for (i = 0; i < 257; i++)
|
---|
720 | others[i] = -1; /* init links to empty */
|
---|
721 |
|
---|
722 | freq[256] = 1; /* make sure 256 has a nonzero count */
|
---|
723 | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
|
---|
724 | * that no real symbol is given code-value of all ones, because 256
|
---|
725 | * will be placed last in the largest codeword category.
|
---|
726 | */
|
---|
727 |
|
---|
728 | /* Huffman's basic algorithm to assign optimal code lengths to symbols */
|
---|
729 |
|
---|
730 | for (;;) {
|
---|
731 | /* Find the smallest nonzero frequency, set c1 = its symbol */
|
---|
732 | /* In case of ties, take the larger symbol number */
|
---|
733 | c1 = -1;
|
---|
734 | v = 1000000000L;
|
---|
735 | for (i = 0; i <= 256; i++) {
|
---|
736 | if (freq[i] && freq[i] <= v) {
|
---|
737 | v = freq[i];
|
---|
738 | c1 = i;
|
---|
739 | }
|
---|
740 | }
|
---|
741 |
|
---|
742 | /* Find the next smallest nonzero frequency, set c2 = its symbol */
|
---|
743 | /* In case of ties, take the larger symbol number */
|
---|
744 | c2 = -1;
|
---|
745 | v = 1000000000L;
|
---|
746 | for (i = 0; i <= 256; i++) {
|
---|
747 | if (freq[i] && freq[i] <= v && i != c1) {
|
---|
748 | v = freq[i];
|
---|
749 | c2 = i;
|
---|
750 | }
|
---|
751 | }
|
---|
752 |
|
---|
753 | /* Done if we've merged everything into one frequency */
|
---|
754 | if (c2 < 0)
|
---|
755 | break;
|
---|
756 |
|
---|
757 | /* Else merge the two counts/trees */
|
---|
758 | freq[c1] += freq[c2];
|
---|
759 | freq[c2] = 0;
|
---|
760 |
|
---|
761 | /* Increment the codesize of everything in c1's tree branch */
|
---|
762 | codesize[c1]++;
|
---|
763 | while (others[c1] >= 0) {
|
---|
764 | c1 = others[c1];
|
---|
765 | codesize[c1]++;
|
---|
766 | }
|
---|
767 |
|
---|
768 | others[c1] = c2; /* chain c2 onto c1's tree branch */
|
---|
769 |
|
---|
770 | /* Increment the codesize of everything in c2's tree branch */
|
---|
771 | codesize[c2]++;
|
---|
772 | while (others[c2] >= 0) {
|
---|
773 | c2 = others[c2];
|
---|
774 | codesize[c2]++;
|
---|
775 | }
|
---|
776 | }
|
---|
777 |
|
---|
778 | /* Now count the number of symbols of each code length */
|
---|
779 | for (i = 0; i <= 256; i++) {
|
---|
780 | if (codesize[i]) {
|
---|
781 | /* The JPEG standard seems to think that this can't happen, */
|
---|
782 | /* but I'm paranoid... */
|
---|
783 | if (codesize[i] > MAX_CLEN)
|
---|
784 | ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
|
---|
785 |
|
---|
786 | bits[codesize[i]]++;
|
---|
787 | }
|
---|
788 | }
|
---|
789 |
|
---|
790 | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
|
---|
791 | * Huffman procedure assigned any such lengths, we must adjust the coding.
|
---|
792 | * Here is what the JPEG spec says about how this next bit works:
|
---|
793 | * Since symbols are paired for the longest Huffman code, the symbols are
|
---|
794 | * removed from this length category two at a time. The prefix for the pair
|
---|
795 | * (which is one bit shorter) is allocated to one of the pair; then,
|
---|
796 | * skipping the BITS entry for that prefix length, a code word from the next
|
---|
797 | * shortest nonzero BITS entry is converted into a prefix for two code words
|
---|
798 | * one bit longer.
|
---|
799 | */
|
---|
800 |
|
---|
801 | for (i = MAX_CLEN; i > 16; i--) {
|
---|
802 | while (bits[i] > 0) {
|
---|
803 | j = i - 2; /* find length of new prefix to be used */
|
---|
804 | while (bits[j] == 0)
|
---|
805 | j--;
|
---|
806 |
|
---|
807 | bits[i] -= 2; /* remove two symbols */
|
---|
808 | bits[i-1]++; /* one goes in this length */
|
---|
809 | bits[j+1] += 2; /* two new symbols in this length */
|
---|
810 | bits[j]--; /* symbol of this length is now a prefix */
|
---|
811 | }
|
---|
812 | }
|
---|
813 |
|
---|
814 | /* Remove the count for the pseudo-symbol 256 from the largest codelength */
|
---|
815 | while (bits[i] == 0) /* find largest codelength still in use */
|
---|
816 | i--;
|
---|
817 | bits[i]--;
|
---|
818 |
|
---|
819 | /* Return final symbol counts (only for lengths 0..16) */
|
---|
820 | MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
|
---|
821 |
|
---|
822 | /* Return a list of the symbols sorted by code length */
|
---|
823 | /* It's not real clear to me why we don't need to consider the codelength
|
---|
824 | * changes made above, but the JPEG spec seems to think this works.
|
---|
825 | */
|
---|
826 | p = 0;
|
---|
827 | for (i = 1; i <= MAX_CLEN; i++) {
|
---|
828 | for (j = 0; j <= 255; j++) {
|
---|
829 | if (codesize[j] == i) {
|
---|
830 | htbl->huffval[p] = (UINT8) j;
|
---|
831 | p++;
|
---|
832 | }
|
---|
833 | }
|
---|
834 | }
|
---|
835 |
|
---|
836 | /* Set sent_table FALSE so updated table will be written to JPEG file. */
|
---|
837 | htbl->sent_table = FALSE;
|
---|
838 | }
|
---|
839 |
|
---|
840 |
|
---|
841 | /*
|
---|
842 | * Finish up a statistics-gathering pass and create the new Huffman tables.
|
---|
843 | */
|
---|
844 |
|
---|
845 | METHODDEF(void)
|
---|
846 | finish_pass_gather (j_compress_ptr cinfo)
|
---|
847 | {
|
---|
848 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
849 | int ci, dctbl, actbl;
|
---|
850 | jpeg_component_info * compptr;
|
---|
851 | JHUFF_TBL **htblptr;
|
---|
852 | boolean did_dc[NUM_HUFF_TBLS];
|
---|
853 | boolean did_ac[NUM_HUFF_TBLS];
|
---|
854 |
|
---|
855 | /* It's important not to apply jpeg_gen_optimal_table more than once
|
---|
856 | * per table, because it clobbers the input frequency counts!
|
---|
857 | */
|
---|
858 | MEMZERO(did_dc, SIZEOF(did_dc));
|
---|
859 | MEMZERO(did_ac, SIZEOF(did_ac));
|
---|
860 |
|
---|
861 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
862 | compptr = cinfo->cur_comp_info[ci];
|
---|
863 | dctbl = compptr->dc_tbl_no;
|
---|
864 | actbl = compptr->ac_tbl_no;
|
---|
865 | if (! did_dc[dctbl]) {
|
---|
866 | htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
|
---|
867 | if (*htblptr == NULL)
|
---|
868 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
---|
869 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
|
---|
870 | did_dc[dctbl] = TRUE;
|
---|
871 | }
|
---|
872 | if (! did_ac[actbl]) {
|
---|
873 | htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
|
---|
874 | if (*htblptr == NULL)
|
---|
875 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
---|
876 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
|
---|
877 | did_ac[actbl] = TRUE;
|
---|
878 | }
|
---|
879 | }
|
---|
880 | }
|
---|
881 |
|
---|
882 |
|
---|
883 | #endif /* ENTROPY_OPT_SUPPORTED */
|
---|
884 |
|
---|
885 |
|
---|
886 | /*
|
---|
887 | * Module initialization routine for Huffman entropy encoding.
|
---|
888 | */
|
---|
889 |
|
---|
890 | GLOBAL(void)
|
---|
891 | jinit_huff_encoder (j_compress_ptr cinfo)
|
---|
892 | {
|
---|
893 | huff_entropy_ptr entropy;
|
---|
894 | int i;
|
---|
895 |
|
---|
896 | entropy = (huff_entropy_ptr)
|
---|
897 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
898 | SIZEOF(huff_entropy_encoder));
|
---|
899 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
---|
900 | entropy->pub.start_pass = start_pass_huff;
|
---|
901 |
|
---|
902 | /* Mark tables unallocated */
|
---|
903 | for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
---|
904 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
---|
905 | #ifdef ENTROPY_OPT_SUPPORTED
|
---|
906 | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
|
---|
907 | #endif
|
---|
908 | }
|
---|
909 | }
|
---|