1 | /*
|
---|
2 | * jcphuff.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1995-1997, Thomas G. Lane.
|
---|
5 | * This file is part of the Independent JPEG Group's software.
|
---|
6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
7 | *
|
---|
8 | * This file contains Huffman entropy encoding routines for progressive JPEG.
|
---|
9 | *
|
---|
10 | * We do not support output suspension in this module, since the library
|
---|
11 | * currently does not allow multiple-scan files to be written with output
|
---|
12 | * suspension.
|
---|
13 | */
|
---|
14 |
|
---|
15 | #define JPEG_INTERNALS
|
---|
16 | #include "jinclude.h"
|
---|
17 | #include "jpeglib.h"
|
---|
18 | #include "jchuff.h" /* Declarations shared with jchuff.c */
|
---|
19 |
|
---|
20 | #ifdef C_PROGRESSIVE_SUPPORTED
|
---|
21 |
|
---|
22 | /* Expanded entropy encoder object for progressive Huffman encoding. */
|
---|
23 |
|
---|
24 | typedef struct {
|
---|
25 | struct jpeg_entropy_encoder pub; /* public fields */
|
---|
26 |
|
---|
27 | /* Mode flag: TRUE for optimization, FALSE for actual data output */
|
---|
28 | boolean gather_statistics;
|
---|
29 |
|
---|
30 | /* Bit-level coding status.
|
---|
31 | * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
|
---|
32 | */
|
---|
33 | JOCTET * next_output_byte; /* => next byte to write in buffer */
|
---|
34 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
---|
35 | INT32 put_buffer; /* current bit-accumulation buffer */
|
---|
36 | int put_bits; /* # of bits now in it */
|
---|
37 | j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
|
---|
38 |
|
---|
39 | /* Coding status for DC components */
|
---|
40 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
---|
41 |
|
---|
42 | /* Coding status for AC components */
|
---|
43 | int ac_tbl_no; /* the table number of the single component */
|
---|
44 | unsigned int EOBRUN; /* run length of EOBs */
|
---|
45 | unsigned int BE; /* # of buffered correction bits before MCU */
|
---|
46 | char * bit_buffer; /* buffer for correction bits (1 per char) */
|
---|
47 | /* packing correction bits tightly would save some space but cost time... */
|
---|
48 |
|
---|
49 | unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
---|
50 | int next_restart_num; /* next restart number to write (0-7) */
|
---|
51 |
|
---|
52 | /* Pointers to derived tables (these workspaces have image lifespan).
|
---|
53 | * Since any one scan codes only DC or only AC, we only need one set
|
---|
54 | * of tables, not one for DC and one for AC.
|
---|
55 | */
|
---|
56 | c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
|
---|
57 |
|
---|
58 | /* Statistics tables for optimization; again, one set is enough */
|
---|
59 | long * count_ptrs[NUM_HUFF_TBLS];
|
---|
60 | } phuff_entropy_encoder;
|
---|
61 |
|
---|
62 | typedef phuff_entropy_encoder * phuff_entropy_ptr;
|
---|
63 |
|
---|
64 | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
|
---|
65 | * buffer can hold. Larger sizes may slightly improve compression, but
|
---|
66 | * 1000 is already well into the realm of overkill.
|
---|
67 | * The minimum safe size is 64 bits.
|
---|
68 | */
|
---|
69 |
|
---|
70 | #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
|
---|
71 |
|
---|
72 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
---|
73 | * We assume that int right shift is unsigned if INT32 right shift is,
|
---|
74 | * which should be safe.
|
---|
75 | */
|
---|
76 |
|
---|
77 | #ifdef RIGHT_SHIFT_IS_UNSIGNED
|
---|
78 | #define ISHIFT_TEMPS int ishift_temp;
|
---|
79 | #define IRIGHT_SHIFT(x,shft) \
|
---|
80 | ((ishift_temp = (x)) < 0 ? \
|
---|
81 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
---|
82 | (ishift_temp >> (shft)))
|
---|
83 | #else
|
---|
84 | #define ISHIFT_TEMPS
|
---|
85 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
---|
86 | #endif
|
---|
87 |
|
---|
88 | /* Forward declarations */
|
---|
89 | METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
|
---|
90 | JBLOCKROW *MCU_data));
|
---|
91 | METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
|
---|
92 | JBLOCKROW *MCU_data));
|
---|
93 | METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
|
---|
94 | JBLOCKROW *MCU_data));
|
---|
95 | METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
|
---|
96 | JBLOCKROW *MCU_data));
|
---|
97 | METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
|
---|
98 | METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
|
---|
99 |
|
---|
100 |
|
---|
101 | /*
|
---|
102 | * Initialize for a Huffman-compressed scan using progressive JPEG.
|
---|
103 | */
|
---|
104 |
|
---|
105 | METHODDEF(void)
|
---|
106 | start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
|
---|
107 | {
|
---|
108 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
---|
109 | boolean is_DC_band;
|
---|
110 | int ci, tbl;
|
---|
111 | jpeg_component_info * compptr;
|
---|
112 |
|
---|
113 | entropy->cinfo = cinfo;
|
---|
114 | entropy->gather_statistics = gather_statistics;
|
---|
115 |
|
---|
116 | is_DC_band = (cinfo->Ss == 0);
|
---|
117 |
|
---|
118 | /* We assume jcmaster.c already validated the scan parameters. */
|
---|
119 |
|
---|
120 | /* Select execution routines */
|
---|
121 | if (cinfo->Ah == 0) {
|
---|
122 | if (is_DC_band)
|
---|
123 | entropy->pub.encode_mcu = encode_mcu_DC_first;
|
---|
124 | else
|
---|
125 | entropy->pub.encode_mcu = encode_mcu_AC_first;
|
---|
126 | } else {
|
---|
127 | if (is_DC_band)
|
---|
128 | entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
---|
129 | else {
|
---|
130 | entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
---|
131 | /* AC refinement needs a correction bit buffer */
|
---|
132 | if (entropy->bit_buffer == NULL)
|
---|
133 | entropy->bit_buffer = (char *)
|
---|
134 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
135 | MAX_CORR_BITS * SIZEOF(char));
|
---|
136 | }
|
---|
137 | }
|
---|
138 | if (gather_statistics)
|
---|
139 | entropy->pub.finish_pass = finish_pass_gather_phuff;
|
---|
140 | else
|
---|
141 | entropy->pub.finish_pass = finish_pass_phuff;
|
---|
142 |
|
---|
143 | /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
|
---|
144 | * for AC coefficients.
|
---|
145 | */
|
---|
146 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
147 | compptr = cinfo->cur_comp_info[ci];
|
---|
148 | /* Initialize DC predictions to 0 */
|
---|
149 | entropy->last_dc_val[ci] = 0;
|
---|
150 | /* Get table index */
|
---|
151 | if (is_DC_band) {
|
---|
152 | if (cinfo->Ah != 0) /* DC refinement needs no table */
|
---|
153 | continue;
|
---|
154 | tbl = compptr->dc_tbl_no;
|
---|
155 | } else {
|
---|
156 | entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
|
---|
157 | }
|
---|
158 | if (gather_statistics) {
|
---|
159 | /* Check for invalid table index */
|
---|
160 | /* (make_c_derived_tbl does this in the other path) */
|
---|
161 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
|
---|
162 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
|
---|
163 | /* Allocate and zero the statistics tables */
|
---|
164 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
---|
165 | if (entropy->count_ptrs[tbl] == NULL)
|
---|
166 | entropy->count_ptrs[tbl] = (long *)
|
---|
167 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
168 | 257 * SIZEOF(long));
|
---|
169 | MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
|
---|
170 | } else {
|
---|
171 | /* Compute derived values for Huffman table */
|
---|
172 | /* We may do this more than once for a table, but it's not expensive */
|
---|
173 | jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
|
---|
174 | & entropy->derived_tbls[tbl]);
|
---|
175 | }
|
---|
176 | }
|
---|
177 |
|
---|
178 | /* Initialize AC stuff */
|
---|
179 | entropy->EOBRUN = 0;
|
---|
180 | entropy->BE = 0;
|
---|
181 |
|
---|
182 | /* Initialize bit buffer to empty */
|
---|
183 | entropy->put_buffer = 0;
|
---|
184 | entropy->put_bits = 0;
|
---|
185 |
|
---|
186 | /* Initialize restart stuff */
|
---|
187 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
188 | entropy->next_restart_num = 0;
|
---|
189 | }
|
---|
190 |
|
---|
191 |
|
---|
192 | /* Outputting bytes to the file.
|
---|
193 | * NB: these must be called only when actually outputting,
|
---|
194 | * that is, entropy->gather_statistics == FALSE.
|
---|
195 | */
|
---|
196 |
|
---|
197 | /* Emit a byte */
|
---|
198 | #define emit_byte(entropy,val) \
|
---|
199 | { *(entropy)->next_output_byte++ = (JOCTET) (val); \
|
---|
200 | if (--(entropy)->free_in_buffer == 0) \
|
---|
201 | dump_buffer(entropy); }
|
---|
202 |
|
---|
203 |
|
---|
204 | LOCAL(void)
|
---|
205 | dump_buffer (phuff_entropy_ptr entropy)
|
---|
206 | /* Empty the output buffer; we do not support suspension in this module. */
|
---|
207 | {
|
---|
208 | struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
|
---|
209 |
|
---|
210 | if (! (*dest->empty_output_buffer) (entropy->cinfo))
|
---|
211 | ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
|
---|
212 | /* After a successful buffer dump, must reset buffer pointers */
|
---|
213 | entropy->next_output_byte = dest->next_output_byte;
|
---|
214 | entropy->free_in_buffer = dest->free_in_buffer;
|
---|
215 | }
|
---|
216 |
|
---|
217 |
|
---|
218 | /* Outputting bits to the file */
|
---|
219 |
|
---|
220 | /* Only the right 24 bits of put_buffer are used; the valid bits are
|
---|
221 | * left-justified in this part. At most 16 bits can be passed to emit_bits
|
---|
222 | * in one call, and we never retain more than 7 bits in put_buffer
|
---|
223 | * between calls, so 24 bits are sufficient.
|
---|
224 | */
|
---|
225 |
|
---|
226 | INLINE
|
---|
227 | LOCAL(void)
|
---|
228 | emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
|
---|
229 | /* Emit some bits, unless we are in gather mode */
|
---|
230 | {
|
---|
231 | /* This routine is heavily used, so it's worth coding tightly. */
|
---|
232 | register INT32 put_buffer = (INT32) code;
|
---|
233 | register int put_bits = entropy->put_bits;
|
---|
234 |
|
---|
235 | /* if size is 0, caller used an invalid Huffman table entry */
|
---|
236 | if (size == 0)
|
---|
237 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
---|
238 |
|
---|
239 | if (entropy->gather_statistics)
|
---|
240 | return; /* do nothing if we're only getting stats */
|
---|
241 |
|
---|
242 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
---|
243 |
|
---|
244 | put_bits += size; /* new number of bits in buffer */
|
---|
245 |
|
---|
246 | put_buffer <<= 24 - put_bits; /* align incoming bits */
|
---|
247 |
|
---|
248 | put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
|
---|
249 |
|
---|
250 | while (put_bits >= 8) {
|
---|
251 | int c = (int) ((put_buffer >> 16) & 0xFF);
|
---|
252 |
|
---|
253 | emit_byte(entropy, c);
|
---|
254 | if (c == 0xFF) { /* need to stuff a zero byte? */
|
---|
255 | emit_byte(entropy, 0);
|
---|
256 | }
|
---|
257 | put_buffer <<= 8;
|
---|
258 | put_bits -= 8;
|
---|
259 | }
|
---|
260 |
|
---|
261 | entropy->put_buffer = put_buffer; /* update variables */
|
---|
262 | entropy->put_bits = put_bits;
|
---|
263 | }
|
---|
264 |
|
---|
265 |
|
---|
266 | LOCAL(void)
|
---|
267 | flush_bits (phuff_entropy_ptr entropy)
|
---|
268 | {
|
---|
269 | emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
|
---|
270 | entropy->put_buffer = 0; /* and reset bit-buffer to empty */
|
---|
271 | entropy->put_bits = 0;
|
---|
272 | }
|
---|
273 |
|
---|
274 |
|
---|
275 | /*
|
---|
276 | * Emit (or just count) a Huffman symbol.
|
---|
277 | */
|
---|
278 |
|
---|
279 | INLINE
|
---|
280 | LOCAL(void)
|
---|
281 | emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
|
---|
282 | {
|
---|
283 | if (entropy->gather_statistics)
|
---|
284 | entropy->count_ptrs[tbl_no][symbol]++;
|
---|
285 | else {
|
---|
286 | c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
|
---|
287 | emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
|
---|
288 | }
|
---|
289 | }
|
---|
290 |
|
---|
291 |
|
---|
292 | /*
|
---|
293 | * Emit bits from a correction bit buffer.
|
---|
294 | */
|
---|
295 |
|
---|
296 | LOCAL(void)
|
---|
297 | emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
|
---|
298 | unsigned int nbits)
|
---|
299 | {
|
---|
300 | if (entropy->gather_statistics)
|
---|
301 | return; /* no real work */
|
---|
302 |
|
---|
303 | while (nbits > 0) {
|
---|
304 | emit_bits(entropy, (unsigned int) (*bufstart), 1);
|
---|
305 | bufstart++;
|
---|
306 | nbits--;
|
---|
307 | }
|
---|
308 | }
|
---|
309 |
|
---|
310 |
|
---|
311 | /*
|
---|
312 | * Emit any pending EOBRUN symbol.
|
---|
313 | */
|
---|
314 |
|
---|
315 | LOCAL(void)
|
---|
316 | emit_eobrun (phuff_entropy_ptr entropy)
|
---|
317 | {
|
---|
318 | register int temp, nbits;
|
---|
319 |
|
---|
320 | if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
|
---|
321 | temp = entropy->EOBRUN;
|
---|
322 | nbits = 0;
|
---|
323 | while ((temp >>= 1))
|
---|
324 | nbits++;
|
---|
325 | /* safety check: shouldn't happen given limited correction-bit buffer */
|
---|
326 | if (nbits > 14)
|
---|
327 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
---|
328 |
|
---|
329 | emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
|
---|
330 | if (nbits)
|
---|
331 | emit_bits(entropy, entropy->EOBRUN, nbits);
|
---|
332 |
|
---|
333 | entropy->EOBRUN = 0;
|
---|
334 |
|
---|
335 | /* Emit any buffered correction bits */
|
---|
336 | emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
|
---|
337 | entropy->BE = 0;
|
---|
338 | }
|
---|
339 | }
|
---|
340 |
|
---|
341 |
|
---|
342 | /*
|
---|
343 | * Emit a restart marker & resynchronize predictions.
|
---|
344 | */
|
---|
345 |
|
---|
346 | LOCAL(void)
|
---|
347 | emit_restart (phuff_entropy_ptr entropy, int restart_num)
|
---|
348 | {
|
---|
349 | int ci;
|
---|
350 |
|
---|
351 | emit_eobrun(entropy);
|
---|
352 |
|
---|
353 | if (! entropy->gather_statistics) {
|
---|
354 | flush_bits(entropy);
|
---|
355 | emit_byte(entropy, 0xFF);
|
---|
356 | emit_byte(entropy, JPEG_RST0 + restart_num);
|
---|
357 | }
|
---|
358 |
|
---|
359 | if (entropy->cinfo->Ss == 0) {
|
---|
360 | /* Re-initialize DC predictions to 0 */
|
---|
361 | for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
|
---|
362 | entropy->last_dc_val[ci] = 0;
|
---|
363 | } else {
|
---|
364 | /* Re-initialize all AC-related fields to 0 */
|
---|
365 | entropy->EOBRUN = 0;
|
---|
366 | entropy->BE = 0;
|
---|
367 | }
|
---|
368 | }
|
---|
369 |
|
---|
370 |
|
---|
371 | /*
|
---|
372 | * MCU encoding for DC initial scan (either spectral selection,
|
---|
373 | * or first pass of successive approximation).
|
---|
374 | */
|
---|
375 |
|
---|
376 | METHODDEF(boolean)
|
---|
377 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
378 | {
|
---|
379 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
---|
380 | register int temp, temp2;
|
---|
381 | register int nbits;
|
---|
382 | int blkn, ci;
|
---|
383 | int Al = cinfo->Al;
|
---|
384 | JBLOCKROW block;
|
---|
385 | jpeg_component_info * compptr;
|
---|
386 | ISHIFT_TEMPS
|
---|
387 |
|
---|
388 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
389 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
390 |
|
---|
391 | /* Emit restart marker if needed */
|
---|
392 | if (cinfo->restart_interval)
|
---|
393 | if (entropy->restarts_to_go == 0)
|
---|
394 | emit_restart(entropy, entropy->next_restart_num);
|
---|
395 |
|
---|
396 | /* Encode the MCU data blocks */
|
---|
397 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
398 | block = MCU_data[blkn];
|
---|
399 | ci = cinfo->MCU_membership[blkn];
|
---|
400 | compptr = cinfo->cur_comp_info[ci];
|
---|
401 |
|
---|
402 | /* Compute the DC value after the required point transform by Al.
|
---|
403 | * This is simply an arithmetic right shift.
|
---|
404 | */
|
---|
405 | temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
|
---|
406 |
|
---|
407 | /* DC differences are figured on the point-transformed values. */
|
---|
408 | temp = temp2 - entropy->last_dc_val[ci];
|
---|
409 | entropy->last_dc_val[ci] = temp2;
|
---|
410 |
|
---|
411 | /* Encode the DC coefficient difference per section G.1.2.1 */
|
---|
412 | temp2 = temp;
|
---|
413 | if (temp < 0) {
|
---|
414 | temp = -temp; /* temp is abs value of input */
|
---|
415 | /* For a negative input, want temp2 = bitwise complement of abs(input) */
|
---|
416 | /* This code assumes we are on a two's complement machine */
|
---|
417 | temp2--;
|
---|
418 | }
|
---|
419 |
|
---|
420 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
421 | nbits = 0;
|
---|
422 | while (temp) {
|
---|
423 | nbits++;
|
---|
424 | temp >>= 1;
|
---|
425 | }
|
---|
426 | /* Check for out-of-range coefficient values.
|
---|
427 | * Since we're encoding a difference, the range limit is twice as much.
|
---|
428 | */
|
---|
429 | if (nbits > MAX_COEF_BITS+1)
|
---|
430 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
431 |
|
---|
432 | /* Count/emit the Huffman-coded symbol for the number of bits */
|
---|
433 | emit_symbol(entropy, compptr->dc_tbl_no, nbits);
|
---|
434 |
|
---|
435 | /* Emit that number of bits of the value, if positive, */
|
---|
436 | /* or the complement of its magnitude, if negative. */
|
---|
437 | if (nbits) /* emit_bits rejects calls with size 0 */
|
---|
438 | emit_bits(entropy, (unsigned int) temp2, nbits);
|
---|
439 | }
|
---|
440 |
|
---|
441 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
442 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
443 |
|
---|
444 | /* Update restart-interval state too */
|
---|
445 | if (cinfo->restart_interval) {
|
---|
446 | if (entropy->restarts_to_go == 0) {
|
---|
447 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
448 | entropy->next_restart_num++;
|
---|
449 | entropy->next_restart_num &= 7;
|
---|
450 | }
|
---|
451 | entropy->restarts_to_go--;
|
---|
452 | }
|
---|
453 |
|
---|
454 | return TRUE;
|
---|
455 | }
|
---|
456 |
|
---|
457 |
|
---|
458 | /*
|
---|
459 | * MCU encoding for AC initial scan (either spectral selection,
|
---|
460 | * or first pass of successive approximation).
|
---|
461 | */
|
---|
462 |
|
---|
463 | METHODDEF(boolean)
|
---|
464 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
465 | {
|
---|
466 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
---|
467 | register int temp, temp2;
|
---|
468 | register int nbits;
|
---|
469 | register int r, k;
|
---|
470 | int Se = cinfo->Se;
|
---|
471 | int Al = cinfo->Al;
|
---|
472 | JBLOCKROW block;
|
---|
473 |
|
---|
474 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
475 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
476 |
|
---|
477 | /* Emit restart marker if needed */
|
---|
478 | if (cinfo->restart_interval)
|
---|
479 | if (entropy->restarts_to_go == 0)
|
---|
480 | emit_restart(entropy, entropy->next_restart_num);
|
---|
481 |
|
---|
482 | /* Encode the MCU data block */
|
---|
483 | block = MCU_data[0];
|
---|
484 |
|
---|
485 | /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
|
---|
486 |
|
---|
487 | r = 0; /* r = run length of zeros */
|
---|
488 |
|
---|
489 | for (k = cinfo->Ss; k <= Se; k++) {
|
---|
490 | if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
|
---|
491 | r++;
|
---|
492 | continue;
|
---|
493 | }
|
---|
494 | /* We must apply the point transform by Al. For AC coefficients this
|
---|
495 | * is an integer division with rounding towards 0. To do this portably
|
---|
496 | * in C, we shift after obtaining the absolute value; so the code is
|
---|
497 | * interwoven with finding the abs value (temp) and output bits (temp2).
|
---|
498 | */
|
---|
499 | if (temp < 0) {
|
---|
500 | temp = -temp; /* temp is abs value of input */
|
---|
501 | temp >>= Al; /* apply the point transform */
|
---|
502 | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
|
---|
503 | temp2 = ~temp;
|
---|
504 | } else {
|
---|
505 | temp >>= Al; /* apply the point transform */
|
---|
506 | temp2 = temp;
|
---|
507 | }
|
---|
508 | /* Watch out for case that nonzero coef is zero after point transform */
|
---|
509 | if (temp == 0) {
|
---|
510 | r++;
|
---|
511 | continue;
|
---|
512 | }
|
---|
513 |
|
---|
514 | /* Emit any pending EOBRUN */
|
---|
515 | if (entropy->EOBRUN > 0)
|
---|
516 | emit_eobrun(entropy);
|
---|
517 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
---|
518 | while (r > 15) {
|
---|
519 | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
---|
520 | r -= 16;
|
---|
521 | }
|
---|
522 |
|
---|
523 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
524 | nbits = 1; /* there must be at least one 1 bit */
|
---|
525 | while ((temp >>= 1))
|
---|
526 | nbits++;
|
---|
527 | /* Check for out-of-range coefficient values */
|
---|
528 | if (nbits > MAX_COEF_BITS)
|
---|
529 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
530 |
|
---|
531 | /* Count/emit Huffman symbol for run length / number of bits */
|
---|
532 | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
|
---|
533 |
|
---|
534 | /* Emit that number of bits of the value, if positive, */
|
---|
535 | /* or the complement of its magnitude, if negative. */
|
---|
536 | emit_bits(entropy, (unsigned int) temp2, nbits);
|
---|
537 |
|
---|
538 | r = 0; /* reset zero run length */
|
---|
539 | }
|
---|
540 |
|
---|
541 | if (r > 0) { /* If there are trailing zeroes, */
|
---|
542 | entropy->EOBRUN++; /* count an EOB */
|
---|
543 | if (entropy->EOBRUN == 0x7FFF)
|
---|
544 | emit_eobrun(entropy); /* force it out to avoid overflow */
|
---|
545 | }
|
---|
546 |
|
---|
547 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
548 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
549 |
|
---|
550 | /* Update restart-interval state too */
|
---|
551 | if (cinfo->restart_interval) {
|
---|
552 | if (entropy->restarts_to_go == 0) {
|
---|
553 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
554 | entropy->next_restart_num++;
|
---|
555 | entropy->next_restart_num &= 7;
|
---|
556 | }
|
---|
557 | entropy->restarts_to_go--;
|
---|
558 | }
|
---|
559 |
|
---|
560 | return TRUE;
|
---|
561 | }
|
---|
562 |
|
---|
563 |
|
---|
564 | /*
|
---|
565 | * MCU encoding for DC successive approximation refinement scan.
|
---|
566 | * Note: we assume such scans can be multi-component, although the spec
|
---|
567 | * is not very clear on the point.
|
---|
568 | */
|
---|
569 |
|
---|
570 | METHODDEF(boolean)
|
---|
571 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
572 | {
|
---|
573 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
---|
574 | register int temp;
|
---|
575 | int blkn;
|
---|
576 | int Al = cinfo->Al;
|
---|
577 | JBLOCKROW block;
|
---|
578 |
|
---|
579 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
580 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
581 |
|
---|
582 | /* Emit restart marker if needed */
|
---|
583 | if (cinfo->restart_interval)
|
---|
584 | if (entropy->restarts_to_go == 0)
|
---|
585 | emit_restart(entropy, entropy->next_restart_num);
|
---|
586 |
|
---|
587 | /* Encode the MCU data blocks */
|
---|
588 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
589 | block = MCU_data[blkn];
|
---|
590 |
|
---|
591 | /* We simply emit the Al'th bit of the DC coefficient value. */
|
---|
592 | temp = (*block)[0];
|
---|
593 | emit_bits(entropy, (unsigned int) (temp >> Al), 1);
|
---|
594 | }
|
---|
595 |
|
---|
596 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
597 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
598 |
|
---|
599 | /* Update restart-interval state too */
|
---|
600 | if (cinfo->restart_interval) {
|
---|
601 | if (entropy->restarts_to_go == 0) {
|
---|
602 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
603 | entropy->next_restart_num++;
|
---|
604 | entropy->next_restart_num &= 7;
|
---|
605 | }
|
---|
606 | entropy->restarts_to_go--;
|
---|
607 | }
|
---|
608 |
|
---|
609 | return TRUE;
|
---|
610 | }
|
---|
611 |
|
---|
612 |
|
---|
613 | /*
|
---|
614 | * MCU encoding for AC successive approximation refinement scan.
|
---|
615 | */
|
---|
616 |
|
---|
617 | METHODDEF(boolean)
|
---|
618 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
619 | {
|
---|
620 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
---|
621 | register int temp;
|
---|
622 | register int r, k;
|
---|
623 | int EOB;
|
---|
624 | char *BR_buffer;
|
---|
625 | unsigned int BR;
|
---|
626 | int Se = cinfo->Se;
|
---|
627 | int Al = cinfo->Al;
|
---|
628 | JBLOCKROW block;
|
---|
629 | int absvalues[DCTSIZE2];
|
---|
630 |
|
---|
631 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
632 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
633 |
|
---|
634 | /* Emit restart marker if needed */
|
---|
635 | if (cinfo->restart_interval)
|
---|
636 | if (entropy->restarts_to_go == 0)
|
---|
637 | emit_restart(entropy, entropy->next_restart_num);
|
---|
638 |
|
---|
639 | /* Encode the MCU data block */
|
---|
640 | block = MCU_data[0];
|
---|
641 |
|
---|
642 | /* It is convenient to make a pre-pass to determine the transformed
|
---|
643 | * coefficients' absolute values and the EOB position.
|
---|
644 | */
|
---|
645 | EOB = 0;
|
---|
646 | for (k = cinfo->Ss; k <= Se; k++) {
|
---|
647 | temp = (*block)[jpeg_natural_order[k]];
|
---|
648 | /* We must apply the point transform by Al. For AC coefficients this
|
---|
649 | * is an integer division with rounding towards 0. To do this portably
|
---|
650 | * in C, we shift after obtaining the absolute value.
|
---|
651 | */
|
---|
652 | if (temp < 0)
|
---|
653 | temp = -temp; /* temp is abs value of input */
|
---|
654 | temp >>= Al; /* apply the point transform */
|
---|
655 | absvalues[k] = temp; /* save abs value for main pass */
|
---|
656 | if (temp == 1)
|
---|
657 | EOB = k; /* EOB = index of last newly-nonzero coef */
|
---|
658 | }
|
---|
659 |
|
---|
660 | /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
|
---|
661 |
|
---|
662 | r = 0; /* r = run length of zeros */
|
---|
663 | BR = 0; /* BR = count of buffered bits added now */
|
---|
664 | BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
|
---|
665 |
|
---|
666 | for (k = cinfo->Ss; k <= Se; k++) {
|
---|
667 | if ((temp = absvalues[k]) == 0) {
|
---|
668 | r++;
|
---|
669 | continue;
|
---|
670 | }
|
---|
671 |
|
---|
672 | /* Emit any required ZRLs, but not if they can be folded into EOB */
|
---|
673 | while (r > 15 && k <= EOB) {
|
---|
674 | /* emit any pending EOBRUN and the BE correction bits */
|
---|
675 | emit_eobrun(entropy);
|
---|
676 | /* Emit ZRL */
|
---|
677 | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
---|
678 | r -= 16;
|
---|
679 | /* Emit buffered correction bits that must be associated with ZRL */
|
---|
680 | emit_buffered_bits(entropy, BR_buffer, BR);
|
---|
681 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
---|
682 | BR = 0;
|
---|
683 | }
|
---|
684 |
|
---|
685 | /* If the coef was previously nonzero, it only needs a correction bit.
|
---|
686 | * NOTE: a straight translation of the spec's figure G.7 would suggest
|
---|
687 | * that we also need to test r > 15. But if r > 15, we can only get here
|
---|
688 | * if k > EOB, which implies that this coefficient is not 1.
|
---|
689 | */
|
---|
690 | if (temp > 1) {
|
---|
691 | /* The correction bit is the next bit of the absolute value. */
|
---|
692 | BR_buffer[BR++] = (char) (temp & 1);
|
---|
693 | continue;
|
---|
694 | }
|
---|
695 |
|
---|
696 | /* Emit any pending EOBRUN and the BE correction bits */
|
---|
697 | emit_eobrun(entropy);
|
---|
698 |
|
---|
699 | /* Count/emit Huffman symbol for run length / number of bits */
|
---|
700 | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
|
---|
701 |
|
---|
702 | /* Emit output bit for newly-nonzero coef */
|
---|
703 | temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
|
---|
704 | emit_bits(entropy, (unsigned int) temp, 1);
|
---|
705 |
|
---|
706 | /* Emit buffered correction bits that must be associated with this code */
|
---|
707 | emit_buffered_bits(entropy, BR_buffer, BR);
|
---|
708 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
---|
709 | BR = 0;
|
---|
710 | r = 0; /* reset zero run length */
|
---|
711 | }
|
---|
712 |
|
---|
713 | if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
|
---|
714 | entropy->EOBRUN++; /* count an EOB */
|
---|
715 | entropy->BE += BR; /* concat my correction bits to older ones */
|
---|
716 | /* We force out the EOB if we risk either:
|
---|
717 | * 1. overflow of the EOB counter;
|
---|
718 | * 2. overflow of the correction bit buffer during the next MCU.
|
---|
719 | */
|
---|
720 | if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
|
---|
721 | emit_eobrun(entropy);
|
---|
722 | }
|
---|
723 |
|
---|
724 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
725 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
726 |
|
---|
727 | /* Update restart-interval state too */
|
---|
728 | if (cinfo->restart_interval) {
|
---|
729 | if (entropy->restarts_to_go == 0) {
|
---|
730 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
731 | entropy->next_restart_num++;
|
---|
732 | entropy->next_restart_num &= 7;
|
---|
733 | }
|
---|
734 | entropy->restarts_to_go--;
|
---|
735 | }
|
---|
736 |
|
---|
737 | return TRUE;
|
---|
738 | }
|
---|
739 |
|
---|
740 |
|
---|
741 | /*
|
---|
742 | * Finish up at the end of a Huffman-compressed progressive scan.
|
---|
743 | */
|
---|
744 |
|
---|
745 | METHODDEF(void)
|
---|
746 | finish_pass_phuff (j_compress_ptr cinfo)
|
---|
747 | {
|
---|
748 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
---|
749 |
|
---|
750 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
751 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
752 |
|
---|
753 | /* Flush out any buffered data */
|
---|
754 | emit_eobrun(entropy);
|
---|
755 | flush_bits(entropy);
|
---|
756 |
|
---|
757 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
758 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
759 | }
|
---|
760 |
|
---|
761 |
|
---|
762 | /*
|
---|
763 | * Finish up a statistics-gathering pass and create the new Huffman tables.
|
---|
764 | */
|
---|
765 |
|
---|
766 | METHODDEF(void)
|
---|
767 | finish_pass_gather_phuff (j_compress_ptr cinfo)
|
---|
768 | {
|
---|
769 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
---|
770 | boolean is_DC_band;
|
---|
771 | int ci, tbl;
|
---|
772 | jpeg_component_info * compptr;
|
---|
773 | JHUFF_TBL **htblptr;
|
---|
774 | boolean did[NUM_HUFF_TBLS];
|
---|
775 |
|
---|
776 | /* Flush out buffered data (all we care about is counting the EOB symbol) */
|
---|
777 | emit_eobrun(entropy);
|
---|
778 |
|
---|
779 | is_DC_band = (cinfo->Ss == 0);
|
---|
780 |
|
---|
781 | /* It's important not to apply jpeg_gen_optimal_table more than once
|
---|
782 | * per table, because it clobbers the input frequency counts!
|
---|
783 | */
|
---|
784 | MEMZERO(did, SIZEOF(did));
|
---|
785 |
|
---|
786 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
787 | compptr = cinfo->cur_comp_info[ci];
|
---|
788 | if (is_DC_band) {
|
---|
789 | if (cinfo->Ah != 0) /* DC refinement needs no table */
|
---|
790 | continue;
|
---|
791 | tbl = compptr->dc_tbl_no;
|
---|
792 | } else {
|
---|
793 | tbl = compptr->ac_tbl_no;
|
---|
794 | }
|
---|
795 | if (! did[tbl]) {
|
---|
796 | if (is_DC_band)
|
---|
797 | htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
|
---|
798 | else
|
---|
799 | htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
|
---|
800 | if (*htblptr == NULL)
|
---|
801 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
---|
802 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
|
---|
803 | did[tbl] = TRUE;
|
---|
804 | }
|
---|
805 | }
|
---|
806 | }
|
---|
807 |
|
---|
808 |
|
---|
809 | /*
|
---|
810 | * Module initialization routine for progressive Huffman entropy encoding.
|
---|
811 | */
|
---|
812 |
|
---|
813 | GLOBAL(void)
|
---|
814 | jinit_phuff_encoder (j_compress_ptr cinfo)
|
---|
815 | {
|
---|
816 | phuff_entropy_ptr entropy;
|
---|
817 | int i;
|
---|
818 |
|
---|
819 | entropy = (phuff_entropy_ptr)
|
---|
820 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
821 | SIZEOF(phuff_entropy_encoder));
|
---|
822 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
---|
823 | entropy->pub.start_pass = start_pass_phuff;
|
---|
824 |
|
---|
825 | /* Mark tables unallocated */
|
---|
826 | for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
---|
827 | entropy->derived_tbls[i] = NULL;
|
---|
828 | entropy->count_ptrs[i] = NULL;
|
---|
829 | }
|
---|
830 | entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
|
---|
831 | }
|
---|
832 |
|
---|
833 | #endif /* C_PROGRESSIVE_SUPPORTED */
|
---|