1 | /*
|
---|
2 | * jdcoefct.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1994-1997, Thomas G. Lane.
|
---|
5 | * This file is part of the Independent JPEG Group's software.
|
---|
6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
7 | *
|
---|
8 | * This file contains the coefficient buffer controller for decompression.
|
---|
9 | * This controller is the top level of the JPEG decompressor proper.
|
---|
10 | * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
|
---|
11 | *
|
---|
12 | * In buffered-image mode, this controller is the interface between
|
---|
13 | * input-oriented processing and output-oriented processing.
|
---|
14 | * Also, the input side (only) is used when reading a file for transcoding.
|
---|
15 | */
|
---|
16 |
|
---|
17 | #define JPEG_INTERNALS
|
---|
18 | #include "jinclude.h"
|
---|
19 | #include "jpeglib.h"
|
---|
20 |
|
---|
21 | /* Block smoothing is only applicable for progressive JPEG, so: */
|
---|
22 | #ifndef D_PROGRESSIVE_SUPPORTED
|
---|
23 | #undef BLOCK_SMOOTHING_SUPPORTED
|
---|
24 | #endif
|
---|
25 |
|
---|
26 | /* Private buffer controller object */
|
---|
27 |
|
---|
28 | typedef struct {
|
---|
29 | struct jpeg_d_coef_controller pub; /* public fields */
|
---|
30 |
|
---|
31 | /* These variables keep track of the current location of the input side. */
|
---|
32 | /* cinfo->input_iMCU_row is also used for this. */
|
---|
33 | JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
|
---|
34 | int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
---|
35 | int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
---|
36 |
|
---|
37 | /* The output side's location is represented by cinfo->output_iMCU_row. */
|
---|
38 |
|
---|
39 | /* In single-pass modes, it's sufficient to buffer just one MCU.
|
---|
40 | * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
|
---|
41 | * and let the entropy decoder write into that workspace each time.
|
---|
42 | * (On 80x86, the workspace is FAR even though it's not really very big;
|
---|
43 | * this is to keep the module interfaces unchanged when a large coefficient
|
---|
44 | * buffer is necessary.)
|
---|
45 | * In multi-pass modes, this array points to the current MCU's blocks
|
---|
46 | * within the virtual arrays; it is used only by the input side.
|
---|
47 | */
|
---|
48 | JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
|
---|
49 |
|
---|
50 | #ifdef D_MULTISCAN_FILES_SUPPORTED
|
---|
51 | /* In multi-pass modes, we need a virtual block array for each component. */
|
---|
52 | jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
---|
53 | #endif
|
---|
54 |
|
---|
55 | #ifdef BLOCK_SMOOTHING_SUPPORTED
|
---|
56 | /* When doing block smoothing, we latch coefficient Al values here */
|
---|
57 | int * coef_bits_latch;
|
---|
58 | #define SAVED_COEFS 6 /* we save coef_bits[0..5] */
|
---|
59 | #endif
|
---|
60 | } my_coef_controller;
|
---|
61 |
|
---|
62 | typedef my_coef_controller * my_coef_ptr;
|
---|
63 |
|
---|
64 | /* Forward declarations */
|
---|
65 | METHODDEF(int) decompress_onepass
|
---|
66 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
---|
67 | #ifdef D_MULTISCAN_FILES_SUPPORTED
|
---|
68 | METHODDEF(int) decompress_data
|
---|
69 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
---|
70 | #endif
|
---|
71 | #ifdef BLOCK_SMOOTHING_SUPPORTED
|
---|
72 | LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
|
---|
73 | METHODDEF(int) decompress_smooth_data
|
---|
74 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
---|
75 | #endif
|
---|
76 |
|
---|
77 |
|
---|
78 | LOCAL(void)
|
---|
79 | start_iMCU_row (j_decompress_ptr cinfo)
|
---|
80 | /* Reset within-iMCU-row counters for a new row (input side) */
|
---|
81 | {
|
---|
82 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
83 |
|
---|
84 | /* In an interleaved scan, an MCU row is the same as an iMCU row.
|
---|
85 | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
---|
86 | * But at the bottom of the image, process only what's left.
|
---|
87 | */
|
---|
88 | if (cinfo->comps_in_scan > 1) {
|
---|
89 | coef->MCU_rows_per_iMCU_row = 1;
|
---|
90 | } else {
|
---|
91 | if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
|
---|
92 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
---|
93 | else
|
---|
94 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
---|
95 | }
|
---|
96 |
|
---|
97 | coef->MCU_ctr = 0;
|
---|
98 | coef->MCU_vert_offset = 0;
|
---|
99 | }
|
---|
100 |
|
---|
101 |
|
---|
102 | /*
|
---|
103 | * Initialize for an input processing pass.
|
---|
104 | */
|
---|
105 |
|
---|
106 | METHODDEF(void)
|
---|
107 | start_input_pass (j_decompress_ptr cinfo)
|
---|
108 | {
|
---|
109 | cinfo->input_iMCU_row = 0;
|
---|
110 | start_iMCU_row(cinfo);
|
---|
111 | }
|
---|
112 |
|
---|
113 |
|
---|
114 | /*
|
---|
115 | * Initialize for an output processing pass.
|
---|
116 | */
|
---|
117 |
|
---|
118 | METHODDEF(void)
|
---|
119 | start_output_pass (j_decompress_ptr cinfo)
|
---|
120 | {
|
---|
121 | #ifdef BLOCK_SMOOTHING_SUPPORTED
|
---|
122 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
123 |
|
---|
124 | /* If multipass, check to see whether to use block smoothing on this pass */
|
---|
125 | if (coef->pub.coef_arrays != NULL) {
|
---|
126 | if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
|
---|
127 | coef->pub.decompress_data = decompress_smooth_data;
|
---|
128 | else
|
---|
129 | coef->pub.decompress_data = decompress_data;
|
---|
130 | }
|
---|
131 | #endif
|
---|
132 | cinfo->output_iMCU_row = 0;
|
---|
133 | }
|
---|
134 |
|
---|
135 |
|
---|
136 | /*
|
---|
137 | * Decompress and return some data in the single-pass case.
|
---|
138 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
---|
139 | * Input and output must run in lockstep since we have only a one-MCU buffer.
|
---|
140 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
---|
141 | *
|
---|
142 | * NB: output_buf contains a plane for each component in image,
|
---|
143 | * which we index according to the component's SOF position.
|
---|
144 | */
|
---|
145 |
|
---|
146 | METHODDEF(int)
|
---|
147 | decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
---|
148 | {
|
---|
149 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
150 | JDIMENSION MCU_col_num; /* index of current MCU within row */
|
---|
151 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
---|
152 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
---|
153 | int blkn, ci, xindex, yindex, yoffset, useful_width;
|
---|
154 | JSAMPARRAY output_ptr;
|
---|
155 | JDIMENSION start_col, output_col;
|
---|
156 | jpeg_component_info *compptr;
|
---|
157 | inverse_DCT_method_ptr inverse_DCT;
|
---|
158 |
|
---|
159 | /* Loop to process as much as one whole iMCU row */
|
---|
160 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
---|
161 | yoffset++) {
|
---|
162 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
|
---|
163 | MCU_col_num++) {
|
---|
164 | /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
|
---|
165 | jzero_far((void FAR *) coef->MCU_buffer[0],
|
---|
166 | (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
|
---|
167 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
---|
168 | /* Suspension forced; update state counters and exit */
|
---|
169 | coef->MCU_vert_offset = yoffset;
|
---|
170 | coef->MCU_ctr = MCU_col_num;
|
---|
171 | return JPEG_SUSPENDED;
|
---|
172 | }
|
---|
173 | /* Determine where data should go in output_buf and do the IDCT thing.
|
---|
174 | * We skip dummy blocks at the right and bottom edges (but blkn gets
|
---|
175 | * incremented past them!). Note the inner loop relies on having
|
---|
176 | * allocated the MCU_buffer[] blocks sequentially.
|
---|
177 | */
|
---|
178 | blkn = 0; /* index of current DCT block within MCU */
|
---|
179 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
180 | compptr = cinfo->cur_comp_info[ci];
|
---|
181 | /* Don't bother to IDCT an uninteresting component. */
|
---|
182 | if (! compptr->component_needed) {
|
---|
183 | blkn += compptr->MCU_blocks;
|
---|
184 | continue;
|
---|
185 | }
|
---|
186 | inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
|
---|
187 | useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
---|
188 | : compptr->last_col_width;
|
---|
189 | output_ptr = output_buf[compptr->component_index] +
|
---|
190 | yoffset * compptr->DCT_scaled_size;
|
---|
191 | start_col = MCU_col_num * compptr->MCU_sample_width;
|
---|
192 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
---|
193 | if (cinfo->input_iMCU_row < last_iMCU_row ||
|
---|
194 | yoffset+yindex < compptr->last_row_height) {
|
---|
195 | output_col = start_col;
|
---|
196 | for (xindex = 0; xindex < useful_width; xindex++) {
|
---|
197 | (*inverse_DCT) (cinfo, compptr,
|
---|
198 | (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
|
---|
199 | output_ptr, output_col);
|
---|
200 | output_col += compptr->DCT_scaled_size;
|
---|
201 | }
|
---|
202 | }
|
---|
203 | blkn += compptr->MCU_width;
|
---|
204 | output_ptr += compptr->DCT_scaled_size;
|
---|
205 | }
|
---|
206 | }
|
---|
207 | }
|
---|
208 | /* Completed an MCU row, but perhaps not an iMCU row */
|
---|
209 | coef->MCU_ctr = 0;
|
---|
210 | }
|
---|
211 | /* Completed the iMCU row, advance counters for next one */
|
---|
212 | cinfo->output_iMCU_row++;
|
---|
213 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
---|
214 | start_iMCU_row(cinfo);
|
---|
215 | return JPEG_ROW_COMPLETED;
|
---|
216 | }
|
---|
217 | /* Completed the scan */
|
---|
218 | (*cinfo->inputctl->finish_input_pass) (cinfo);
|
---|
219 | return JPEG_SCAN_COMPLETED;
|
---|
220 | }
|
---|
221 |
|
---|
222 |
|
---|
223 | /*
|
---|
224 | * Dummy consume-input routine for single-pass operation.
|
---|
225 | */
|
---|
226 |
|
---|
227 | METHODDEF(int)
|
---|
228 | dummy_consume_data (j_decompress_ptr cinfo)
|
---|
229 | {
|
---|
230 | return JPEG_SUSPENDED; /* Always indicate nothing was done */
|
---|
231 | }
|
---|
232 |
|
---|
233 |
|
---|
234 | #ifdef D_MULTISCAN_FILES_SUPPORTED
|
---|
235 |
|
---|
236 | /*
|
---|
237 | * Consume input data and store it in the full-image coefficient buffer.
|
---|
238 | * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
|
---|
239 | * ie, v_samp_factor block rows for each component in the scan.
|
---|
240 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
---|
241 | */
|
---|
242 |
|
---|
243 | METHODDEF(int)
|
---|
244 | consume_data (j_decompress_ptr cinfo)
|
---|
245 | {
|
---|
246 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
247 | JDIMENSION MCU_col_num; /* index of current MCU within row */
|
---|
248 | int blkn, ci, xindex, yindex, yoffset;
|
---|
249 | JDIMENSION start_col;
|
---|
250 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
---|
251 | JBLOCKROW buffer_ptr;
|
---|
252 | jpeg_component_info *compptr;
|
---|
253 |
|
---|
254 | /* Align the virtual buffers for the components used in this scan. */
|
---|
255 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
256 | compptr = cinfo->cur_comp_info[ci];
|
---|
257 | buffer[ci] = (*cinfo->mem->access_virt_barray)
|
---|
258 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
---|
259 | cinfo->input_iMCU_row * compptr->v_samp_factor,
|
---|
260 | (JDIMENSION) compptr->v_samp_factor, TRUE);
|
---|
261 | /* Note: entropy decoder expects buffer to be zeroed,
|
---|
262 | * but this is handled automatically by the memory manager
|
---|
263 | * because we requested a pre-zeroed array.
|
---|
264 | */
|
---|
265 | }
|
---|
266 |
|
---|
267 | /* Loop to process one whole iMCU row */
|
---|
268 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
---|
269 | yoffset++) {
|
---|
270 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
---|
271 | MCU_col_num++) {
|
---|
272 | /* Construct list of pointers to DCT blocks belonging to this MCU */
|
---|
273 | blkn = 0; /* index of current DCT block within MCU */
|
---|
274 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
275 | compptr = cinfo->cur_comp_info[ci];
|
---|
276 | start_col = MCU_col_num * compptr->MCU_width;
|
---|
277 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
---|
278 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
---|
279 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
---|
280 | coef->MCU_buffer[blkn++] = buffer_ptr++;
|
---|
281 | }
|
---|
282 | }
|
---|
283 | }
|
---|
284 | /* Try to fetch the MCU. */
|
---|
285 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
---|
286 | /* Suspension forced; update state counters and exit */
|
---|
287 | coef->MCU_vert_offset = yoffset;
|
---|
288 | coef->MCU_ctr = MCU_col_num;
|
---|
289 | return JPEG_SUSPENDED;
|
---|
290 | }
|
---|
291 | }
|
---|
292 | /* Completed an MCU row, but perhaps not an iMCU row */
|
---|
293 | coef->MCU_ctr = 0;
|
---|
294 | }
|
---|
295 | /* Completed the iMCU row, advance counters for next one */
|
---|
296 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
---|
297 | start_iMCU_row(cinfo);
|
---|
298 | return JPEG_ROW_COMPLETED;
|
---|
299 | }
|
---|
300 | /* Completed the scan */
|
---|
301 | (*cinfo->inputctl->finish_input_pass) (cinfo);
|
---|
302 | return JPEG_SCAN_COMPLETED;
|
---|
303 | }
|
---|
304 |
|
---|
305 |
|
---|
306 | /*
|
---|
307 | * Decompress and return some data in the multi-pass case.
|
---|
308 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
---|
309 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
---|
310 | *
|
---|
311 | * NB: output_buf contains a plane for each component in image.
|
---|
312 | */
|
---|
313 |
|
---|
314 | METHODDEF(int)
|
---|
315 | decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
---|
316 | {
|
---|
317 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
318 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
---|
319 | JDIMENSION block_num;
|
---|
320 | int ci, block_row, block_rows;
|
---|
321 | JBLOCKARRAY buffer;
|
---|
322 | JBLOCKROW buffer_ptr;
|
---|
323 | JSAMPARRAY output_ptr;
|
---|
324 | JDIMENSION output_col;
|
---|
325 | jpeg_component_info *compptr;
|
---|
326 | inverse_DCT_method_ptr inverse_DCT;
|
---|
327 |
|
---|
328 | /* Force some input to be done if we are getting ahead of the input. */
|
---|
329 | while (cinfo->input_scan_number < cinfo->output_scan_number ||
|
---|
330 | (cinfo->input_scan_number == cinfo->output_scan_number &&
|
---|
331 | cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
|
---|
332 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
|
---|
333 | return JPEG_SUSPENDED;
|
---|
334 | }
|
---|
335 |
|
---|
336 | /* OK, output from the virtual arrays. */
|
---|
337 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
---|
338 | ci++, compptr++) {
|
---|
339 | /* Don't bother to IDCT an uninteresting component. */
|
---|
340 | if (! compptr->component_needed)
|
---|
341 | continue;
|
---|
342 | /* Align the virtual buffer for this component. */
|
---|
343 | buffer = (*cinfo->mem->access_virt_barray)
|
---|
344 | ((j_common_ptr) cinfo, coef->whole_image[ci],
|
---|
345 | cinfo->output_iMCU_row * compptr->v_samp_factor,
|
---|
346 | (JDIMENSION) compptr->v_samp_factor, FALSE);
|
---|
347 | /* Count non-dummy DCT block rows in this iMCU row. */
|
---|
348 | if (cinfo->output_iMCU_row < last_iMCU_row)
|
---|
349 | block_rows = compptr->v_samp_factor;
|
---|
350 | else {
|
---|
351 | /* NB: can't use last_row_height here; it is input-side-dependent! */
|
---|
352 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
---|
353 | if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
---|
354 | }
|
---|
355 | inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
---|
356 | output_ptr = output_buf[ci];
|
---|
357 | /* Loop over all DCT blocks to be processed. */
|
---|
358 | for (block_row = 0; block_row < block_rows; block_row++) {
|
---|
359 | buffer_ptr = buffer[block_row];
|
---|
360 | output_col = 0;
|
---|
361 | for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
|
---|
362 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
|
---|
363 | output_ptr, output_col);
|
---|
364 | buffer_ptr++;
|
---|
365 | output_col += compptr->DCT_scaled_size;
|
---|
366 | }
|
---|
367 | output_ptr += compptr->DCT_scaled_size;
|
---|
368 | }
|
---|
369 | }
|
---|
370 |
|
---|
371 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
---|
372 | return JPEG_ROW_COMPLETED;
|
---|
373 | return JPEG_SCAN_COMPLETED;
|
---|
374 | }
|
---|
375 |
|
---|
376 | #endif /* D_MULTISCAN_FILES_SUPPORTED */
|
---|
377 |
|
---|
378 |
|
---|
379 | #ifdef BLOCK_SMOOTHING_SUPPORTED
|
---|
380 |
|
---|
381 | /*
|
---|
382 | * This code applies interblock smoothing as described by section K.8
|
---|
383 | * of the JPEG standard: the first 5 AC coefficients are estimated from
|
---|
384 | * the DC values of a DCT block and its 8 neighboring blocks.
|
---|
385 | * We apply smoothing only for progressive JPEG decoding, and only if
|
---|
386 | * the coefficients it can estimate are not yet known to full precision.
|
---|
387 | */
|
---|
388 |
|
---|
389 | /* Natural-order array positions of the first 5 zigzag-order coefficients */
|
---|
390 | #define Q01_POS 1
|
---|
391 | #define Q10_POS 8
|
---|
392 | #define Q20_POS 16
|
---|
393 | #define Q11_POS 9
|
---|
394 | #define Q02_POS 2
|
---|
395 |
|
---|
396 | /*
|
---|
397 | * Determine whether block smoothing is applicable and safe.
|
---|
398 | * We also latch the current states of the coef_bits[] entries for the
|
---|
399 | * AC coefficients; otherwise, if the input side of the decompressor
|
---|
400 | * advances into a new scan, we might think the coefficients are known
|
---|
401 | * more accurately than they really are.
|
---|
402 | */
|
---|
403 |
|
---|
404 | LOCAL(boolean)
|
---|
405 | smoothing_ok (j_decompress_ptr cinfo)
|
---|
406 | {
|
---|
407 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
408 | boolean smoothing_useful = FALSE;
|
---|
409 | int ci, coefi;
|
---|
410 | jpeg_component_info *compptr;
|
---|
411 | JQUANT_TBL * qtable;
|
---|
412 | int * coef_bits;
|
---|
413 | int * coef_bits_latch;
|
---|
414 |
|
---|
415 | if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
|
---|
416 | return FALSE;
|
---|
417 |
|
---|
418 | /* Allocate latch area if not already done */
|
---|
419 | if (coef->coef_bits_latch == NULL)
|
---|
420 | coef->coef_bits_latch = (int *)
|
---|
421 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
422 | cinfo->num_components *
|
---|
423 | (SAVED_COEFS * SIZEOF(int)));
|
---|
424 | coef_bits_latch = coef->coef_bits_latch;
|
---|
425 |
|
---|
426 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
---|
427 | ci++, compptr++) {
|
---|
428 | /* All components' quantization values must already be latched. */
|
---|
429 | if ((qtable = compptr->quant_table) == NULL)
|
---|
430 | return FALSE;
|
---|
431 | /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
|
---|
432 | if (qtable->quantval[0] == 0 ||
|
---|
433 | qtable->quantval[Q01_POS] == 0 ||
|
---|
434 | qtable->quantval[Q10_POS] == 0 ||
|
---|
435 | qtable->quantval[Q20_POS] == 0 ||
|
---|
436 | qtable->quantval[Q11_POS] == 0 ||
|
---|
437 | qtable->quantval[Q02_POS] == 0)
|
---|
438 | return FALSE;
|
---|
439 | /* DC values must be at least partly known for all components. */
|
---|
440 | coef_bits = cinfo->coef_bits[ci];
|
---|
441 | if (coef_bits[0] < 0)
|
---|
442 | return FALSE;
|
---|
443 | /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
|
---|
444 | for (coefi = 1; coefi <= 5; coefi++) {
|
---|
445 | coef_bits_latch[coefi] = coef_bits[coefi];
|
---|
446 | if (coef_bits[coefi] != 0)
|
---|
447 | smoothing_useful = TRUE;
|
---|
448 | }
|
---|
449 | coef_bits_latch += SAVED_COEFS;
|
---|
450 | }
|
---|
451 |
|
---|
452 | return smoothing_useful;
|
---|
453 | }
|
---|
454 |
|
---|
455 |
|
---|
456 | /*
|
---|
457 | * Variant of decompress_data for use when doing block smoothing.
|
---|
458 | */
|
---|
459 |
|
---|
460 | METHODDEF(int)
|
---|
461 | decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
---|
462 | {
|
---|
463 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
464 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
---|
465 | JDIMENSION block_num, last_block_column;
|
---|
466 | int ci, block_row, block_rows, access_rows;
|
---|
467 | JBLOCKARRAY buffer;
|
---|
468 | JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
|
---|
469 | JSAMPARRAY output_ptr;
|
---|
470 | JDIMENSION output_col;
|
---|
471 | jpeg_component_info *compptr;
|
---|
472 | inverse_DCT_method_ptr inverse_DCT;
|
---|
473 | boolean first_row, last_row;
|
---|
474 | JBLOCK workspace;
|
---|
475 | int *coef_bits;
|
---|
476 | JQUANT_TBL *quanttbl;
|
---|
477 | INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
|
---|
478 | int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
|
---|
479 | int Al, pred;
|
---|
480 |
|
---|
481 | /* Force some input to be done if we are getting ahead of the input. */
|
---|
482 | while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
---|
483 | ! cinfo->inputctl->eoi_reached) {
|
---|
484 | if (cinfo->input_scan_number == cinfo->output_scan_number) {
|
---|
485 | /* If input is working on current scan, we ordinarily want it to
|
---|
486 | * have completed the current row. But if input scan is DC,
|
---|
487 | * we want it to keep one row ahead so that next block row's DC
|
---|
488 | * values are up to date.
|
---|
489 | */
|
---|
490 | JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
|
---|
491 | if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
|
---|
492 | break;
|
---|
493 | }
|
---|
494 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
|
---|
495 | return JPEG_SUSPENDED;
|
---|
496 | }
|
---|
497 |
|
---|
498 | /* OK, output from the virtual arrays. */
|
---|
499 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
---|
500 | ci++, compptr++) {
|
---|
501 | /* Don't bother to IDCT an uninteresting component. */
|
---|
502 | if (! compptr->component_needed)
|
---|
503 | continue;
|
---|
504 | /* Count non-dummy DCT block rows in this iMCU row. */
|
---|
505 | if (cinfo->output_iMCU_row < last_iMCU_row) {
|
---|
506 | block_rows = compptr->v_samp_factor;
|
---|
507 | access_rows = block_rows * 2; /* this and next iMCU row */
|
---|
508 | last_row = FALSE;
|
---|
509 | } else {
|
---|
510 | /* NB: can't use last_row_height here; it is input-side-dependent! */
|
---|
511 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
---|
512 | if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
---|
513 | access_rows = block_rows; /* this iMCU row only */
|
---|
514 | last_row = TRUE;
|
---|
515 | }
|
---|
516 | /* Align the virtual buffer for this component. */
|
---|
517 | if (cinfo->output_iMCU_row > 0) {
|
---|
518 | access_rows += compptr->v_samp_factor; /* prior iMCU row too */
|
---|
519 | buffer = (*cinfo->mem->access_virt_barray)
|
---|
520 | ((j_common_ptr) cinfo, coef->whole_image[ci],
|
---|
521 | (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
|
---|
522 | (JDIMENSION) access_rows, FALSE);
|
---|
523 | buffer += compptr->v_samp_factor; /* point to current iMCU row */
|
---|
524 | first_row = FALSE;
|
---|
525 | } else {
|
---|
526 | buffer = (*cinfo->mem->access_virt_barray)
|
---|
527 | ((j_common_ptr) cinfo, coef->whole_image[ci],
|
---|
528 | (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
|
---|
529 | first_row = TRUE;
|
---|
530 | }
|
---|
531 | /* Fetch component-dependent info */
|
---|
532 | coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
|
---|
533 | quanttbl = compptr->quant_table;
|
---|
534 | Q00 = quanttbl->quantval[0];
|
---|
535 | Q01 = quanttbl->quantval[Q01_POS];
|
---|
536 | Q10 = quanttbl->quantval[Q10_POS];
|
---|
537 | Q20 = quanttbl->quantval[Q20_POS];
|
---|
538 | Q11 = quanttbl->quantval[Q11_POS];
|
---|
539 | Q02 = quanttbl->quantval[Q02_POS];
|
---|
540 | inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
---|
541 | output_ptr = output_buf[ci];
|
---|
542 | /* Loop over all DCT blocks to be processed. */
|
---|
543 | for (block_row = 0; block_row < block_rows; block_row++) {
|
---|
544 | buffer_ptr = buffer[block_row];
|
---|
545 | if (first_row && block_row == 0)
|
---|
546 | prev_block_row = buffer_ptr;
|
---|
547 | else
|
---|
548 | prev_block_row = buffer[block_row-1];
|
---|
549 | if (last_row && block_row == block_rows-1)
|
---|
550 | next_block_row = buffer_ptr;
|
---|
551 | else
|
---|
552 | next_block_row = buffer[block_row+1];
|
---|
553 | /* We fetch the surrounding DC values using a sliding-register approach.
|
---|
554 | * Initialize all nine here so as to do the right thing on narrow pics.
|
---|
555 | */
|
---|
556 | DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
|
---|
557 | DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
|
---|
558 | DC7 = DC8 = DC9 = (int) next_block_row[0][0];
|
---|
559 | output_col = 0;
|
---|
560 | last_block_column = compptr->width_in_blocks - 1;
|
---|
561 | for (block_num = 0; block_num <= last_block_column; block_num++) {
|
---|
562 | /* Fetch current DCT block into workspace so we can modify it. */
|
---|
563 | jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
|
---|
564 | /* Update DC values */
|
---|
565 | if (block_num < last_block_column) {
|
---|
566 | DC3 = (int) prev_block_row[1][0];
|
---|
567 | DC6 = (int) buffer_ptr[1][0];
|
---|
568 | DC9 = (int) next_block_row[1][0];
|
---|
569 | }
|
---|
570 | /* Compute coefficient estimates per K.8.
|
---|
571 | * An estimate is applied only if coefficient is still zero,
|
---|
572 | * and is not known to be fully accurate.
|
---|
573 | */
|
---|
574 | /* AC01 */
|
---|
575 | if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
|
---|
576 | num = 36 * Q00 * (DC4 - DC6);
|
---|
577 | if (num >= 0) {
|
---|
578 | pred = (int) (((Q01<<7) + num) / (Q01<<8));
|
---|
579 | if (Al > 0 && pred >= (1<<Al))
|
---|
580 | pred = (1<<Al)-1;
|
---|
581 | } else {
|
---|
582 | pred = (int) (((Q01<<7) - num) / (Q01<<8));
|
---|
583 | if (Al > 0 && pred >= (1<<Al))
|
---|
584 | pred = (1<<Al)-1;
|
---|
585 | pred = -pred;
|
---|
586 | }
|
---|
587 | workspace[1] = (JCOEF) pred;
|
---|
588 | }
|
---|
589 | /* AC10 */
|
---|
590 | if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
|
---|
591 | num = 36 * Q00 * (DC2 - DC8);
|
---|
592 | if (num >= 0) {
|
---|
593 | pred = (int) (((Q10<<7) + num) / (Q10<<8));
|
---|
594 | if (Al > 0 && pred >= (1<<Al))
|
---|
595 | pred = (1<<Al)-1;
|
---|
596 | } else {
|
---|
597 | pred = (int) (((Q10<<7) - num) / (Q10<<8));
|
---|
598 | if (Al > 0 && pred >= (1<<Al))
|
---|
599 | pred = (1<<Al)-1;
|
---|
600 | pred = -pred;
|
---|
601 | }
|
---|
602 | workspace[8] = (JCOEF) pred;
|
---|
603 | }
|
---|
604 | /* AC20 */
|
---|
605 | if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
|
---|
606 | num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
|
---|
607 | if (num >= 0) {
|
---|
608 | pred = (int) (((Q20<<7) + num) / (Q20<<8));
|
---|
609 | if (Al > 0 && pred >= (1<<Al))
|
---|
610 | pred = (1<<Al)-1;
|
---|
611 | } else {
|
---|
612 | pred = (int) (((Q20<<7) - num) / (Q20<<8));
|
---|
613 | if (Al > 0 && pred >= (1<<Al))
|
---|
614 | pred = (1<<Al)-1;
|
---|
615 | pred = -pred;
|
---|
616 | }
|
---|
617 | workspace[16] = (JCOEF) pred;
|
---|
618 | }
|
---|
619 | /* AC11 */
|
---|
620 | if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
|
---|
621 | num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
|
---|
622 | if (num >= 0) {
|
---|
623 | pred = (int) (((Q11<<7) + num) / (Q11<<8));
|
---|
624 | if (Al > 0 && pred >= (1<<Al))
|
---|
625 | pred = (1<<Al)-1;
|
---|
626 | } else {
|
---|
627 | pred = (int) (((Q11<<7) - num) / (Q11<<8));
|
---|
628 | if (Al > 0 && pred >= (1<<Al))
|
---|
629 | pred = (1<<Al)-1;
|
---|
630 | pred = -pred;
|
---|
631 | }
|
---|
632 | workspace[9] = (JCOEF) pred;
|
---|
633 | }
|
---|
634 | /* AC02 */
|
---|
635 | if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
|
---|
636 | num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
|
---|
637 | if (num >= 0) {
|
---|
638 | pred = (int) (((Q02<<7) + num) / (Q02<<8));
|
---|
639 | if (Al > 0 && pred >= (1<<Al))
|
---|
640 | pred = (1<<Al)-1;
|
---|
641 | } else {
|
---|
642 | pred = (int) (((Q02<<7) - num) / (Q02<<8));
|
---|
643 | if (Al > 0 && pred >= (1<<Al))
|
---|
644 | pred = (1<<Al)-1;
|
---|
645 | pred = -pred;
|
---|
646 | }
|
---|
647 | workspace[2] = (JCOEF) pred;
|
---|
648 | }
|
---|
649 | /* OK, do the IDCT */
|
---|
650 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
|
---|
651 | output_ptr, output_col);
|
---|
652 | /* Advance for next column */
|
---|
653 | DC1 = DC2; DC2 = DC3;
|
---|
654 | DC4 = DC5; DC5 = DC6;
|
---|
655 | DC7 = DC8; DC8 = DC9;
|
---|
656 | buffer_ptr++, prev_block_row++, next_block_row++;
|
---|
657 | output_col += compptr->DCT_scaled_size;
|
---|
658 | }
|
---|
659 | output_ptr += compptr->DCT_scaled_size;
|
---|
660 | }
|
---|
661 | }
|
---|
662 |
|
---|
663 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
---|
664 | return JPEG_ROW_COMPLETED;
|
---|
665 | return JPEG_SCAN_COMPLETED;
|
---|
666 | }
|
---|
667 |
|
---|
668 | #endif /* BLOCK_SMOOTHING_SUPPORTED */
|
---|
669 |
|
---|
670 |
|
---|
671 | /*
|
---|
672 | * Initialize coefficient buffer controller.
|
---|
673 | */
|
---|
674 |
|
---|
675 | GLOBAL(void)
|
---|
676 | jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
---|
677 | {
|
---|
678 | my_coef_ptr coef;
|
---|
679 |
|
---|
680 | coef = (my_coef_ptr)
|
---|
681 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
682 | SIZEOF(my_coef_controller));
|
---|
683 | cinfo->coef = (struct jpeg_d_coef_controller *) coef;
|
---|
684 | coef->pub.start_input_pass = start_input_pass;
|
---|
685 | coef->pub.start_output_pass = start_output_pass;
|
---|
686 | #ifdef BLOCK_SMOOTHING_SUPPORTED
|
---|
687 | coef->coef_bits_latch = NULL;
|
---|
688 | #endif
|
---|
689 |
|
---|
690 | /* Create the coefficient buffer. */
|
---|
691 | if (need_full_buffer) {
|
---|
692 | #ifdef D_MULTISCAN_FILES_SUPPORTED
|
---|
693 | /* Allocate a full-image virtual array for each component, */
|
---|
694 | /* padded to a multiple of samp_factor DCT blocks in each direction. */
|
---|
695 | /* Note we ask for a pre-zeroed array. */
|
---|
696 | int ci, access_rows;
|
---|
697 | jpeg_component_info *compptr;
|
---|
698 |
|
---|
699 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
---|
700 | ci++, compptr++) {
|
---|
701 | access_rows = compptr->v_samp_factor;
|
---|
702 | #ifdef BLOCK_SMOOTHING_SUPPORTED
|
---|
703 | /* If block smoothing could be used, need a bigger window */
|
---|
704 | if (cinfo->progressive_mode)
|
---|
705 | access_rows *= 3;
|
---|
706 | #endif
|
---|
707 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
---|
708 | ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
|
---|
709 | (JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
---|
710 | (long) compptr->h_samp_factor),
|
---|
711 | (JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
---|
712 | (long) compptr->v_samp_factor),
|
---|
713 | (JDIMENSION) access_rows);
|
---|
714 | }
|
---|
715 | coef->pub.consume_data = consume_data;
|
---|
716 | coef->pub.decompress_data = decompress_data;
|
---|
717 | coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
|
---|
718 | #else
|
---|
719 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
720 | #endif
|
---|
721 | } else {
|
---|
722 | /* We only need a single-MCU buffer. */
|
---|
723 | JBLOCKROW buffer;
|
---|
724 | int i;
|
---|
725 |
|
---|
726 | buffer = (JBLOCKROW)
|
---|
727 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
728 | D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
---|
729 | for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
|
---|
730 | coef->MCU_buffer[i] = buffer + i;
|
---|
731 | }
|
---|
732 | coef->pub.consume_data = dummy_consume_data;
|
---|
733 | coef->pub.decompress_data = decompress_onepass;
|
---|
734 | coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
|
---|
735 | }
|
---|
736 | }
|
---|