[95] | 1 | /*
|
---|
| 2 | * jdhuff.c
|
---|
| 3 | *
|
---|
| 4 | * Copyright (C) 1991-1997, Thomas G. Lane.
|
---|
| 5 | * This file is part of the Independent JPEG Group's software.
|
---|
| 6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
| 7 | *
|
---|
| 8 | * This file contains Huffman entropy decoding routines.
|
---|
| 9 | *
|
---|
| 10 | * Much of the complexity here has to do with supporting input suspension.
|
---|
| 11 | * If the data source module demands suspension, we want to be able to back
|
---|
| 12 | * up to the start of the current MCU. To do this, we copy state variables
|
---|
| 13 | * into local working storage, and update them back to the permanent
|
---|
| 14 | * storage only upon successful completion of an MCU.
|
---|
| 15 | */
|
---|
| 16 |
|
---|
| 17 | #define JPEG_INTERNALS
|
---|
| 18 | #include "jinclude.h"
|
---|
| 19 | #include "jpeglib.h"
|
---|
| 20 | #include "jdhuff.h" /* Declarations shared with jdphuff.c */
|
---|
| 21 |
|
---|
| 22 |
|
---|
| 23 | /*
|
---|
| 24 | * Expanded entropy decoder object for Huffman decoding.
|
---|
| 25 | *
|
---|
| 26 | * The savable_state subrecord contains fields that change within an MCU,
|
---|
| 27 | * but must not be updated permanently until we complete the MCU.
|
---|
| 28 | */
|
---|
| 29 |
|
---|
| 30 | typedef struct {
|
---|
| 31 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
---|
| 32 | } savable_state;
|
---|
| 33 |
|
---|
| 34 | /* This macro is to work around compilers with missing or broken
|
---|
| 35 | * structure assignment. You'll need to fix this code if you have
|
---|
| 36 | * such a compiler and you change MAX_COMPS_IN_SCAN.
|
---|
| 37 | */
|
---|
| 38 |
|
---|
| 39 | #ifndef NO_STRUCT_ASSIGN
|
---|
| 40 | #define ASSIGN_STATE(dest,src) ((dest) = (src))
|
---|
| 41 | #else
|
---|
| 42 | #if MAX_COMPS_IN_SCAN == 4
|
---|
| 43 | #define ASSIGN_STATE(dest,src) \
|
---|
| 44 | ((dest).last_dc_val[0] = (src).last_dc_val[0], \
|
---|
| 45 | (dest).last_dc_val[1] = (src).last_dc_val[1], \
|
---|
| 46 | (dest).last_dc_val[2] = (src).last_dc_val[2], \
|
---|
| 47 | (dest).last_dc_val[3] = (src).last_dc_val[3])
|
---|
| 48 | #endif
|
---|
| 49 | #endif
|
---|
| 50 |
|
---|
| 51 |
|
---|
| 52 | typedef struct {
|
---|
| 53 | struct jpeg_entropy_decoder pub; /* public fields */
|
---|
| 54 |
|
---|
| 55 | /* These fields are loaded into local variables at start of each MCU.
|
---|
| 56 | * In case of suspension, we exit WITHOUT updating them.
|
---|
| 57 | */
|
---|
| 58 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */
|
---|
| 59 | savable_state saved; /* Other state at start of MCU */
|
---|
| 60 |
|
---|
| 61 | /* These fields are NOT loaded into local working state. */
|
---|
| 62 | unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
---|
| 63 |
|
---|
| 64 | /* Pointers to derived tables (these workspaces have image lifespan) */
|
---|
| 65 | d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
---|
| 66 | d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
---|
| 67 |
|
---|
| 68 | /* Precalculated info set up by start_pass for use in decode_mcu: */
|
---|
| 69 |
|
---|
| 70 | /* Pointers to derived tables to be used for each block within an MCU */
|
---|
| 71 | d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
---|
| 72 | d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
---|
| 73 | /* Whether we care about the DC and AC coefficient values for each block */
|
---|
| 74 | boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
|
---|
| 75 | boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
|
---|
| 76 | } huff_entropy_decoder;
|
---|
| 77 |
|
---|
| 78 | typedef huff_entropy_decoder * huff_entropy_ptr;
|
---|
| 79 |
|
---|
| 80 |
|
---|
| 81 | /*
|
---|
| 82 | * Initialize for a Huffman-compressed scan.
|
---|
| 83 | */
|
---|
| 84 |
|
---|
| 85 | METHODDEF(void)
|
---|
| 86 | start_pass_huff_decoder (j_decompress_ptr cinfo)
|
---|
| 87 | {
|
---|
| 88 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 89 | int ci, blkn, dctbl, actbl;
|
---|
| 90 | jpeg_component_info * compptr;
|
---|
| 91 |
|
---|
| 92 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
---|
| 93 | * This ought to be an error condition, but we make it a warning because
|
---|
| 94 | * there are some baseline files out there with all zeroes in these bytes.
|
---|
| 95 | */
|
---|
| 96 | if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
|
---|
| 97 | cinfo->Ah != 0 || cinfo->Al != 0)
|
---|
| 98 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
|
---|
| 99 |
|
---|
| 100 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
| 101 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 102 | dctbl = compptr->dc_tbl_no;
|
---|
| 103 | actbl = compptr->ac_tbl_no;
|
---|
| 104 | /* Compute derived values for Huffman tables */
|
---|
| 105 | /* We may do this more than once for a table, but it's not expensive */
|
---|
| 106 | jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
|
---|
| 107 | & entropy->dc_derived_tbls[dctbl]);
|
---|
| 108 | jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
|
---|
| 109 | & entropy->ac_derived_tbls[actbl]);
|
---|
| 110 | /* Initialize DC predictions to 0 */
|
---|
| 111 | entropy->saved.last_dc_val[ci] = 0;
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | /* Precalculate decoding info for each block in an MCU of this scan */
|
---|
| 115 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 116 | ci = cinfo->MCU_membership[blkn];
|
---|
| 117 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 118 | /* Precalculate which table to use for each block */
|
---|
| 119 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
|
---|
| 120 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
|
---|
| 121 | /* Decide whether we really care about the coefficient values */
|
---|
| 122 | if (compptr->component_needed) {
|
---|
| 123 | entropy->dc_needed[blkn] = TRUE;
|
---|
| 124 | /* we don't need the ACs if producing a 1/8th-size image */
|
---|
| 125 | entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
|
---|
| 126 | } else {
|
---|
| 127 | entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | /* Initialize bitread state variables */
|
---|
| 132 | entropy->bitstate.bits_left = 0;
|
---|
| 133 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
|
---|
| 134 | entropy->pub.insufficient_data = FALSE;
|
---|
| 135 |
|
---|
| 136 | /* Initialize restart counter */
|
---|
| 137 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 |
|
---|
| 141 | /*
|
---|
| 142 | * Compute the derived values for a Huffman table.
|
---|
| 143 | * This routine also performs some validation checks on the table.
|
---|
| 144 | *
|
---|
| 145 | * Note this is also used by jdphuff.c.
|
---|
| 146 | */
|
---|
| 147 |
|
---|
| 148 | GLOBAL(void)
|
---|
| 149 | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
|
---|
| 150 | d_derived_tbl ** pdtbl)
|
---|
| 151 | {
|
---|
| 152 | JHUFF_TBL *htbl;
|
---|
| 153 | d_derived_tbl *dtbl;
|
---|
| 154 | int p, i, l, si, numsymbols;
|
---|
| 155 | int lookbits, ctr;
|
---|
| 156 | char huffsize[257];
|
---|
| 157 | unsigned int huffcode[257];
|
---|
| 158 | unsigned int code;
|
---|
| 159 |
|
---|
| 160 | /* Note that huffsize[] and huffcode[] are filled in code-length order,
|
---|
| 161 | * paralleling the order of the symbols themselves in htbl->huffval[].
|
---|
| 162 | */
|
---|
| 163 |
|
---|
| 164 | /* Find the input Huffman table */
|
---|
| 165 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
---|
| 166 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
| 167 | htbl =
|
---|
| 168 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
---|
| 169 | if (htbl == NULL)
|
---|
| 170 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
| 171 |
|
---|
| 172 | /* Allocate a workspace if we haven't already done so. */
|
---|
| 173 | if (*pdtbl == NULL)
|
---|
| 174 | *pdtbl = (d_derived_tbl *)
|
---|
| 175 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 176 | SIZEOF(d_derived_tbl));
|
---|
| 177 | dtbl = *pdtbl;
|
---|
| 178 | dtbl->pub = htbl; /* fill in back link */
|
---|
| 179 |
|
---|
| 180 | /* Figure C.1: make table of Huffman code length for each symbol */
|
---|
| 181 |
|
---|
| 182 | p = 0;
|
---|
| 183 | for (l = 1; l <= 16; l++) {
|
---|
| 184 | i = (int) htbl->bits[l];
|
---|
| 185 | if (i < 0 || p + i > 256) /* protect against table overrun */
|
---|
| 186 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 187 | while (i--)
|
---|
| 188 | huffsize[p++] = (char) l;
|
---|
| 189 | }
|
---|
| 190 | huffsize[p] = 0;
|
---|
| 191 | numsymbols = p;
|
---|
| 192 |
|
---|
| 193 | /* Figure C.2: generate the codes themselves */
|
---|
| 194 | /* We also validate that the counts represent a legal Huffman code tree. */
|
---|
| 195 |
|
---|
| 196 | code = 0;
|
---|
| 197 | si = huffsize[0];
|
---|
| 198 | p = 0;
|
---|
| 199 | while (huffsize[p]) {
|
---|
| 200 | while (((int) huffsize[p]) == si) {
|
---|
| 201 | huffcode[p++] = code;
|
---|
| 202 | code++;
|
---|
| 203 | }
|
---|
| 204 | /* code is now 1 more than the last code used for codelength si; but
|
---|
| 205 | * it must still fit in si bits, since no code is allowed to be all ones.
|
---|
| 206 | */
|
---|
| 207 | if (((INT32) code) >= (((INT32) 1) << si))
|
---|
| 208 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 209 | code <<= 1;
|
---|
| 210 | si++;
|
---|
| 211 | }
|
---|
| 212 |
|
---|
| 213 | /* Figure F.15: generate decoding tables for bit-sequential decoding */
|
---|
| 214 |
|
---|
| 215 | p = 0;
|
---|
| 216 | for (l = 1; l <= 16; l++) {
|
---|
| 217 | if (htbl->bits[l]) {
|
---|
| 218 | /* valoffset[l] = huffval[] index of 1st symbol of code length l,
|
---|
| 219 | * minus the minimum code of length l
|
---|
| 220 | */
|
---|
| 221 | dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
|
---|
| 222 | p += htbl->bits[l];
|
---|
| 223 | dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
|
---|
| 224 | } else {
|
---|
| 225 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
|
---|
| 226 | }
|
---|
| 227 | }
|
---|
| 228 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
|
---|
| 229 |
|
---|
| 230 | /* Compute lookahead tables to speed up decoding.
|
---|
| 231 | * First we set all the table entries to 0, indicating "too long";
|
---|
| 232 | * then we iterate through the Huffman codes that are short enough and
|
---|
| 233 | * fill in all the entries that correspond to bit sequences starting
|
---|
| 234 | * with that code.
|
---|
| 235 | */
|
---|
| 236 |
|
---|
| 237 | MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
|
---|
| 238 |
|
---|
| 239 | p = 0;
|
---|
| 240 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
|
---|
| 241 | for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
|
---|
| 242 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */
|
---|
| 243 | /* Generate left-justified code followed by all possible bit sequences */
|
---|
| 244 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
|
---|
| 245 | for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
|
---|
| 246 | dtbl->look_nbits[lookbits] = l;
|
---|
| 247 | dtbl->look_sym[lookbits] = htbl->huffval[p];
|
---|
| 248 | lookbits++;
|
---|
| 249 | }
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 | /* Validate symbols as being reasonable.
|
---|
| 254 | * For AC tables, we make no check, but accept all byte values 0..255.
|
---|
| 255 | * For DC tables, we require the symbols to be in range 0..15.
|
---|
| 256 | * (Tighter bounds could be applied depending on the data depth and mode,
|
---|
| 257 | * but this is sufficient to ensure safe decoding.)
|
---|
| 258 | */
|
---|
| 259 | if (isDC) {
|
---|
| 260 | for (i = 0; i < numsymbols; i++) {
|
---|
| 261 | int sym = htbl->huffval[i];
|
---|
| 262 | if (sym < 0 || sym > 15)
|
---|
| 263 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 264 | }
|
---|
| 265 | }
|
---|
| 266 | }
|
---|
| 267 |
|
---|
| 268 |
|
---|
| 269 | /*
|
---|
| 270 | * Out-of-line code for bit fetching (shared with jdphuff.c).
|
---|
| 271 | * See jdhuff.h for info about usage.
|
---|
| 272 | * Note: current values of get_buffer and bits_left are passed as parameters,
|
---|
| 273 | * but are returned in the corresponding fields of the state struct.
|
---|
| 274 | *
|
---|
| 275 | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
|
---|
| 276 | * of get_buffer to be used. (On machines with wider words, an even larger
|
---|
| 277 | * buffer could be used.) However, on some machines 32-bit shifts are
|
---|
| 278 | * quite slow and take time proportional to the number of places shifted.
|
---|
| 279 | * (This is true with most PC compilers, for instance.) In this case it may
|
---|
| 280 | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
|
---|
| 281 | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
|
---|
| 282 | */
|
---|
| 283 |
|
---|
| 284 | #ifdef SLOW_SHIFT_32
|
---|
| 285 | #define MIN_GET_BITS 15 /* minimum allowable value */
|
---|
| 286 | #else
|
---|
| 287 | #define MIN_GET_BITS (BIT_BUF_SIZE-7)
|
---|
| 288 | #endif
|
---|
| 289 |
|
---|
| 290 |
|
---|
| 291 | GLOBAL(boolean)
|
---|
| 292 | jpeg_fill_bit_buffer (bitread_working_state * state,
|
---|
| 293 | register bit_buf_type get_buffer, register int bits_left,
|
---|
| 294 | int nbits)
|
---|
| 295 | /* Load up the bit buffer to a depth of at least nbits */
|
---|
| 296 | {
|
---|
| 297 | /* Copy heavily used state fields into locals (hopefully registers) */
|
---|
| 298 | register const JOCTET * next_input_byte = state->next_input_byte;
|
---|
| 299 | register size_t bytes_in_buffer = state->bytes_in_buffer;
|
---|
| 300 | j_decompress_ptr cinfo = state->cinfo;
|
---|
| 301 |
|
---|
| 302 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
|
---|
| 303 | /* (It is assumed that no request will be for more than that many bits.) */
|
---|
| 304 | /* We fail to do so only if we hit a marker or are forced to suspend. */
|
---|
| 305 |
|
---|
| 306 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
|
---|
| 307 | while (bits_left < MIN_GET_BITS) {
|
---|
| 308 | register int c;
|
---|
| 309 |
|
---|
| 310 | /* Attempt to read a byte */
|
---|
| 311 | if (bytes_in_buffer == 0) {
|
---|
| 312 | if (! (*cinfo->src->fill_input_buffer) (cinfo))
|
---|
| 313 | return FALSE;
|
---|
| 314 | next_input_byte = cinfo->src->next_input_byte;
|
---|
| 315 | bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
---|
| 316 | }
|
---|
| 317 | bytes_in_buffer--;
|
---|
| 318 | c = GETJOCTET(*next_input_byte++);
|
---|
| 319 |
|
---|
| 320 | /* If it's 0xFF, check and discard stuffed zero byte */
|
---|
| 321 | if (c == 0xFF) {
|
---|
| 322 | /* Loop here to discard any padding FF's on terminating marker,
|
---|
| 323 | * so that we can save a valid unread_marker value. NOTE: we will
|
---|
| 324 | * accept multiple FF's followed by a 0 as meaning a single FF data
|
---|
| 325 | * byte. This data pattern is not valid according to the standard.
|
---|
| 326 | */
|
---|
| 327 | do {
|
---|
| 328 | if (bytes_in_buffer == 0) {
|
---|
| 329 | if (! (*cinfo->src->fill_input_buffer) (cinfo))
|
---|
| 330 | return FALSE;
|
---|
| 331 | next_input_byte = cinfo->src->next_input_byte;
|
---|
| 332 | bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
---|
| 333 | }
|
---|
| 334 | bytes_in_buffer--;
|
---|
| 335 | c = GETJOCTET(*next_input_byte++);
|
---|
| 336 | } while (c == 0xFF);
|
---|
| 337 |
|
---|
| 338 | if (c == 0) {
|
---|
| 339 | /* Found FF/00, which represents an FF data byte */
|
---|
| 340 | c = 0xFF;
|
---|
| 341 | } else {
|
---|
| 342 | /* Oops, it's actually a marker indicating end of compressed data.
|
---|
| 343 | * Save the marker code for later use.
|
---|
| 344 | * Fine point: it might appear that we should save the marker into
|
---|
| 345 | * bitread working state, not straight into permanent state. But
|
---|
| 346 | * once we have hit a marker, we cannot need to suspend within the
|
---|
| 347 | * current MCU, because we will read no more bytes from the data
|
---|
| 348 | * source. So it is OK to update permanent state right away.
|
---|
| 349 | */
|
---|
| 350 | cinfo->unread_marker = c;
|
---|
| 351 | /* See if we need to insert some fake zero bits. */
|
---|
| 352 | goto no_more_bytes;
|
---|
| 353 | }
|
---|
| 354 | }
|
---|
| 355 |
|
---|
| 356 | /* OK, load c into get_buffer */
|
---|
| 357 | get_buffer = (get_buffer << 8) | c;
|
---|
| 358 | bits_left += 8;
|
---|
| 359 | } /* end while */
|
---|
| 360 | } else {
|
---|
| 361 | no_more_bytes:
|
---|
| 362 | /* We get here if we've read the marker that terminates the compressed
|
---|
| 363 | * data segment. There should be enough bits in the buffer register
|
---|
| 364 | * to satisfy the request; if so, no problem.
|
---|
| 365 | */
|
---|
| 366 | if (nbits > bits_left) {
|
---|
| 367 | /* Uh-oh. Report corrupted data to user and stuff zeroes into
|
---|
| 368 | * the data stream, so that we can produce some kind of image.
|
---|
| 369 | * We use a nonvolatile flag to ensure that only one warning message
|
---|
| 370 | * appears per data segment.
|
---|
| 371 | */
|
---|
| 372 | if (! cinfo->entropy->insufficient_data) {
|
---|
| 373 | WARNMS(cinfo, JWRN_HIT_MARKER);
|
---|
| 374 | cinfo->entropy->insufficient_data = TRUE;
|
---|
| 375 | }
|
---|
| 376 | /* Fill the buffer with zero bits */
|
---|
| 377 | get_buffer <<= MIN_GET_BITS - bits_left;
|
---|
| 378 | bits_left = MIN_GET_BITS;
|
---|
| 379 | }
|
---|
| 380 | }
|
---|
| 381 |
|
---|
| 382 | /* Unload the local registers */
|
---|
| 383 | state->next_input_byte = next_input_byte;
|
---|
| 384 | state->bytes_in_buffer = bytes_in_buffer;
|
---|
| 385 | state->get_buffer = get_buffer;
|
---|
| 386 | state->bits_left = bits_left;
|
---|
| 387 |
|
---|
| 388 | return TRUE;
|
---|
| 389 | }
|
---|
| 390 |
|
---|
| 391 |
|
---|
| 392 | /*
|
---|
| 393 | * Out-of-line code for Huffman code decoding.
|
---|
| 394 | * See jdhuff.h for info about usage.
|
---|
| 395 | */
|
---|
| 396 |
|
---|
| 397 | GLOBAL(int)
|
---|
| 398 | jpeg_huff_decode (bitread_working_state * state,
|
---|
| 399 | register bit_buf_type get_buffer, register int bits_left,
|
---|
| 400 | d_derived_tbl * htbl, int min_bits)
|
---|
| 401 | {
|
---|
| 402 | register int l = min_bits;
|
---|
| 403 | register INT32 code;
|
---|
| 404 |
|
---|
| 405 | /* HUFF_DECODE has determined that the code is at least min_bits */
|
---|
| 406 | /* bits long, so fetch that many bits in one swoop. */
|
---|
| 407 |
|
---|
| 408 | CHECK_BIT_BUFFER(*state, l, return -1);
|
---|
| 409 | code = GET_BITS(l);
|
---|
| 410 |
|
---|
| 411 | /* Collect the rest of the Huffman code one bit at a time. */
|
---|
| 412 | /* This is per Figure F.16 in the JPEG spec. */
|
---|
| 413 |
|
---|
| 414 | while (code > htbl->maxcode[l]) {
|
---|
| 415 | code <<= 1;
|
---|
| 416 | CHECK_BIT_BUFFER(*state, 1, return -1);
|
---|
| 417 | code |= GET_BITS(1);
|
---|
| 418 | l++;
|
---|
| 419 | }
|
---|
| 420 |
|
---|
| 421 | /* Unload the local registers */
|
---|
| 422 | state->get_buffer = get_buffer;
|
---|
| 423 | state->bits_left = bits_left;
|
---|
| 424 |
|
---|
| 425 | /* With garbage input we may reach the sentinel value l = 17. */
|
---|
| 426 |
|
---|
| 427 | if (l > 16) {
|
---|
| 428 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
|
---|
| 429 | return 0; /* fake a zero as the safest result */
|
---|
| 430 | }
|
---|
| 431 |
|
---|
| 432 | return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
|
---|
| 433 | }
|
---|
| 434 |
|
---|
| 435 |
|
---|
| 436 | /*
|
---|
| 437 | * Figure F.12: extend sign bit.
|
---|
| 438 | * On some machines, a shift and add will be faster than a table lookup.
|
---|
| 439 | */
|
---|
| 440 |
|
---|
| 441 | #ifdef AVOID_TABLES
|
---|
| 442 |
|
---|
| 443 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
|
---|
| 444 |
|
---|
| 445 | #else
|
---|
| 446 |
|
---|
| 447 | #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
|
---|
| 448 |
|
---|
| 449 | static const int extend_test[16] = /* entry n is 2**(n-1) */
|
---|
| 450 | { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
|
---|
| 451 | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
|
---|
| 452 |
|
---|
| 453 | static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
|
---|
| 454 | { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
|
---|
| 455 | ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
|
---|
| 456 | ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
|
---|
| 457 | ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
|
---|
| 458 |
|
---|
| 459 | #endif /* AVOID_TABLES */
|
---|
| 460 |
|
---|
| 461 |
|
---|
| 462 | /*
|
---|
| 463 | * Check for a restart marker & resynchronize decoder.
|
---|
| 464 | * Returns FALSE if must suspend.
|
---|
| 465 | */
|
---|
| 466 |
|
---|
| 467 | LOCAL(boolean)
|
---|
| 468 | process_restart (j_decompress_ptr cinfo)
|
---|
| 469 | {
|
---|
| 470 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 471 | int ci;
|
---|
| 472 |
|
---|
| 473 | /* Throw away any unused bits remaining in bit buffer; */
|
---|
| 474 | /* include any full bytes in next_marker's count of discarded bytes */
|
---|
| 475 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
|
---|
| 476 | entropy->bitstate.bits_left = 0;
|
---|
| 477 |
|
---|
| 478 | /* Advance past the RSTn marker */
|
---|
| 479 | if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
---|
| 480 | return FALSE;
|
---|
| 481 |
|
---|
| 482 | /* Re-initialize DC predictions to 0 */
|
---|
| 483 | for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
---|
| 484 | entropy->saved.last_dc_val[ci] = 0;
|
---|
| 485 |
|
---|
| 486 | /* Reset restart counter */
|
---|
| 487 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 488 |
|
---|
| 489 | /* Reset out-of-data flag, unless read_restart_marker left us smack up
|
---|
| 490 | * against a marker. In that case we will end up treating the next data
|
---|
| 491 | * segment as empty, and we can avoid producing bogus output pixels by
|
---|
| 492 | * leaving the flag set.
|
---|
| 493 | */
|
---|
| 494 | if (cinfo->unread_marker == 0)
|
---|
| 495 | entropy->pub.insufficient_data = FALSE;
|
---|
| 496 |
|
---|
| 497 | return TRUE;
|
---|
| 498 | }
|
---|
| 499 |
|
---|
| 500 |
|
---|
| 501 | /*
|
---|
| 502 | * Decode and return one MCU's worth of Huffman-compressed coefficients.
|
---|
| 503 | * The coefficients are reordered from zigzag order into natural array order,
|
---|
| 504 | * but are not dequantized.
|
---|
| 505 | *
|
---|
| 506 | * The i'th block of the MCU is stored into the block pointed to by
|
---|
| 507 | * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
|
---|
| 508 | * (Wholesale zeroing is usually a little faster than retail...)
|
---|
| 509 | *
|
---|
| 510 | * Returns FALSE if data source requested suspension. In that case no
|
---|
| 511 | * changes have been made to permanent state. (Exception: some output
|
---|
| 512 | * coefficients may already have been assigned. This is harmless for
|
---|
| 513 | * this module, since we'll just re-assign them on the next call.)
|
---|
| 514 | */
|
---|
| 515 |
|
---|
| 516 | METHODDEF(boolean)
|
---|
| 517 | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 518 | {
|
---|
| 519 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 520 | int blkn;
|
---|
| 521 | BITREAD_STATE_VARS;
|
---|
| 522 | savable_state state;
|
---|
| 523 |
|
---|
| 524 | /* Process restart marker if needed; may have to suspend */
|
---|
| 525 | if (cinfo->restart_interval) {
|
---|
| 526 | if (entropy->restarts_to_go == 0)
|
---|
| 527 | if (! process_restart(cinfo))
|
---|
| 528 | return FALSE;
|
---|
| 529 | }
|
---|
| 530 |
|
---|
| 531 | /* If we've run out of data, just leave the MCU set to zeroes.
|
---|
| 532 | * This way, we return uniform gray for the remainder of the segment.
|
---|
| 533 | */
|
---|
| 534 | if (! entropy->pub.insufficient_data) {
|
---|
| 535 |
|
---|
| 536 | /* Load up working state */
|
---|
| 537 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
| 538 | ASSIGN_STATE(state, entropy->saved);
|
---|
| 539 |
|
---|
| 540 | /* Outer loop handles each block in the MCU */
|
---|
| 541 |
|
---|
| 542 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 543 | JBLOCKROW block = MCU_data[blkn];
|
---|
| 544 | d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
|
---|
| 545 | d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
|
---|
| 546 | register int s, k, r;
|
---|
| 547 |
|
---|
| 548 | /* Decode a single block's worth of coefficients */
|
---|
| 549 |
|
---|
| 550 | /* Section F.2.2.1: decode the DC coefficient difference */
|
---|
| 551 | HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
|
---|
| 552 | if (s) {
|
---|
| 553 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 554 | r = GET_BITS(s);
|
---|
| 555 | s = HUFF_EXTEND(r, s);
|
---|
| 556 | }
|
---|
| 557 |
|
---|
| 558 | if (entropy->dc_needed[blkn]) {
|
---|
| 559 | /* Convert DC difference to actual value, update last_dc_val */
|
---|
| 560 | int ci = cinfo->MCU_membership[blkn];
|
---|
| 561 | s += state.last_dc_val[ci];
|
---|
| 562 | state.last_dc_val[ci] = s;
|
---|
| 563 | /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
|
---|
| 564 | (*block)[0] = (JCOEF) s;
|
---|
| 565 | }
|
---|
| 566 |
|
---|
| 567 | if (entropy->ac_needed[blkn]) {
|
---|
| 568 |
|
---|
| 569 | /* Section F.2.2.2: decode the AC coefficients */
|
---|
| 570 | /* Since zeroes are skipped, output area must be cleared beforehand */
|
---|
| 571 | for (k = 1; k < DCTSIZE2; k++) {
|
---|
| 572 | HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
|
---|
| 573 |
|
---|
| 574 | r = s >> 4;
|
---|
| 575 | s &= 15;
|
---|
| 576 |
|
---|
| 577 | if (s) {
|
---|
| 578 | k += r;
|
---|
| 579 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 580 | r = GET_BITS(s);
|
---|
| 581 | s = HUFF_EXTEND(r, s);
|
---|
| 582 | /* Output coefficient in natural (dezigzagged) order.
|
---|
| 583 | * Note: the extra entries in jpeg_natural_order[] will save us
|
---|
| 584 | * if k >= DCTSIZE2, which could happen if the data is corrupted.
|
---|
| 585 | */
|
---|
| 586 | (*block)[jpeg_natural_order[k]] = (JCOEF) s;
|
---|
| 587 | } else {
|
---|
| 588 | if (r != 15)
|
---|
| 589 | break;
|
---|
| 590 | k += 15;
|
---|
| 591 | }
|
---|
| 592 | }
|
---|
| 593 |
|
---|
| 594 | } else {
|
---|
| 595 |
|
---|
| 596 | /* Section F.2.2.2: decode the AC coefficients */
|
---|
| 597 | /* In this path we just discard the values */
|
---|
| 598 | for (k = 1; k < DCTSIZE2; k++) {
|
---|
| 599 | HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
|
---|
| 600 |
|
---|
| 601 | r = s >> 4;
|
---|
| 602 | s &= 15;
|
---|
| 603 |
|
---|
| 604 | if (s) {
|
---|
| 605 | k += r;
|
---|
| 606 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 607 | DROP_BITS(s);
|
---|
| 608 | } else {
|
---|
| 609 | if (r != 15)
|
---|
| 610 | break;
|
---|
| 611 | k += 15;
|
---|
| 612 | }
|
---|
| 613 | }
|
---|
| 614 |
|
---|
| 615 | }
|
---|
| 616 | }
|
---|
| 617 |
|
---|
| 618 | /* Completed MCU, so update state */
|
---|
| 619 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
| 620 | ASSIGN_STATE(entropy->saved, state);
|
---|
| 621 | }
|
---|
| 622 |
|
---|
| 623 | /* Account for restart interval (no-op if not using restarts) */
|
---|
| 624 | entropy->restarts_to_go--;
|
---|
| 625 |
|
---|
| 626 | return TRUE;
|
---|
| 627 | }
|
---|
| 628 |
|
---|
| 629 |
|
---|
| 630 | /*
|
---|
| 631 | * Module initialization routine for Huffman entropy decoding.
|
---|
| 632 | */
|
---|
| 633 |
|
---|
| 634 | GLOBAL(void)
|
---|
| 635 | jinit_huff_decoder (j_decompress_ptr cinfo)
|
---|
| 636 | {
|
---|
| 637 | huff_entropy_ptr entropy;
|
---|
| 638 | int i;
|
---|
| 639 |
|
---|
| 640 | entropy = (huff_entropy_ptr)
|
---|
| 641 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 642 | SIZEOF(huff_entropy_decoder));
|
---|
| 643 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
|
---|
| 644 | entropy->pub.start_pass = start_pass_huff_decoder;
|
---|
| 645 | entropy->pub.decode_mcu = decode_mcu;
|
---|
| 646 |
|
---|
| 647 | /* Mark tables unallocated */
|
---|
| 648 | for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
---|
| 649 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
---|
| 650 | }
|
---|
| 651 | }
|
---|
| 652 | /*
|
---|
| 653 | * BEWARE OF KLUDGE: This subroutine is a hack for decoding illegal JPEG-in-
|
---|
| 654 | * TIFF encapsulations produced by Microsoft's Wang Imaging
|
---|
| 655 | * for Windows application with the public-domain TIFF Library. Based upon an
|
---|
| 656 | * examination of selected output files, this program apparently divides a JPEG
|
---|
| 657 | * bit-stream into consecutive horizontal TIFF "strips", such that the JPEG
|
---|
| 658 | * encoder's/decoder's DC coefficients for each image component are reset before
|
---|
| 659 | * each "strip". Moreover, a "strip" is not necessarily encoded in a multiple
|
---|
| 660 | * of 8 bits, so one must sometimes discard 1-7 bits at the end of each "strip"
|
---|
| 661 | * for alignment to the next input-Byte storage boundary. IJG JPEG Library
|
---|
| 662 | * decoder state is not normally exposed to client applications, so this sub-
|
---|
| 663 | * routine provides the TIFF Library with a "hook" to make these corrections.
|
---|
| 664 | * It should be called after "jpeg_start_decompress()" and before
|
---|
| 665 | * "jpeg_finish_decompress()", just before decoding each "strip" using
|
---|
| 666 | * "jpeg_read_raw_data()" or "jpeg_read_scanlines()".
|
---|
| 667 | *
|
---|
| 668 | * This kludge is not sanctioned or supported by the Independent JPEG Group, and
|
---|
| 669 | * future changes to the IJG JPEG Library might invalidate it. Do not send bug
|
---|
| 670 | * reports about this code to IJG developers. Instead, contact the author for
|
---|
| 671 | * advice: Scott B. Marovich <marovich@hpl.hp.com>, Hewlett-Packard Labs, 6/01.
|
---|
| 672 | */
|
---|
| 673 | GLOBAL(void)
|
---|
| 674 | jpeg_reset_huff_decode (register j_decompress_ptr cinfo,register float *refbw)
|
---|
| 675 | { register huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
---|
| 676 | register int ci = 0;
|
---|
| 677 |
|
---|
| 678 | /* Re-initialize DC predictions */
|
---|
| 679 | do entropy->saved.last_dc_val[ci] = (int)-refbw[ci << 1];
|
---|
| 680 | while (++ci < cinfo->comps_in_scan);
|
---|
| 681 | /* Discard encoded input bits, up to the next Byte boundary */
|
---|
| 682 | entropy->bitstate.bits_left &= ~7;
|
---|
| 683 | }
|
---|