1 | /*
|
---|
2 | * jfdctfst.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1994-1996, Thomas G. Lane.
|
---|
5 | * This file is part of the Independent JPEG Group's software.
|
---|
6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
7 | *
|
---|
8 | * This file contains a fast, not so accurate integer implementation of the
|
---|
9 | * forward DCT (Discrete Cosine Transform).
|
---|
10 | *
|
---|
11 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
---|
12 | * on each column. Direct algorithms are also available, but they are
|
---|
13 | * much more complex and seem not to be any faster when reduced to code.
|
---|
14 | *
|
---|
15 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
---|
16 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
---|
17 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
---|
18 | * JPEG textbook (see REFERENCES section in file README). The following code
|
---|
19 | * is based directly on figure 4-8 in P&M.
|
---|
20 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
---|
21 | * possible to arrange the computation so that many of the multiplies are
|
---|
22 | * simple scalings of the final outputs. These multiplies can then be
|
---|
23 | * folded into the multiplications or divisions by the JPEG quantization
|
---|
24 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
---|
25 | * to be done in the DCT itself.
|
---|
26 | * The primary disadvantage of this method is that with fixed-point math,
|
---|
27 | * accuracy is lost due to imprecise representation of the scaled
|
---|
28 | * quantization values. The smaller the quantization table entry, the less
|
---|
29 | * precise the scaled value, so this implementation does worse with high-
|
---|
30 | * quality-setting files than with low-quality ones.
|
---|
31 | */
|
---|
32 |
|
---|
33 | #define JPEG_INTERNALS
|
---|
34 | #include "jinclude.h"
|
---|
35 | #include "jpeglib.h"
|
---|
36 | #include "jdct.h" /* Private declarations for DCT subsystem */
|
---|
37 |
|
---|
38 | #ifdef DCT_IFAST_SUPPORTED
|
---|
39 |
|
---|
40 |
|
---|
41 | /*
|
---|
42 | * This module is specialized to the case DCTSIZE = 8.
|
---|
43 | */
|
---|
44 |
|
---|
45 | #if DCTSIZE != 8
|
---|
46 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
---|
47 | #endif
|
---|
48 |
|
---|
49 |
|
---|
50 | /* Scaling decisions are generally the same as in the LL&M algorithm;
|
---|
51 | * see jfdctint.c for more details. However, we choose to descale
|
---|
52 | * (right shift) multiplication products as soon as they are formed,
|
---|
53 | * rather than carrying additional fractional bits into subsequent additions.
|
---|
54 | * This compromises accuracy slightly, but it lets us save a few shifts.
|
---|
55 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
---|
56 | * everywhere except in the multiplications proper; this saves a good deal
|
---|
57 | * of work on 16-bit-int machines.
|
---|
58 | *
|
---|
59 | * Again to save a few shifts, the intermediate results between pass 1 and
|
---|
60 | * pass 2 are not upscaled, but are represented only to integral precision.
|
---|
61 | *
|
---|
62 | * A final compromise is to represent the multiplicative constants to only
|
---|
63 | * 8 fractional bits, rather than 13. This saves some shifting work on some
|
---|
64 | * machines, and may also reduce the cost of multiplication (since there
|
---|
65 | * are fewer one-bits in the constants).
|
---|
66 | */
|
---|
67 |
|
---|
68 | #define CONST_BITS 8
|
---|
69 |
|
---|
70 |
|
---|
71 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
---|
72 | * causing a lot of useless floating-point operations at run time.
|
---|
73 | * To get around this we use the following pre-calculated constants.
|
---|
74 | * If you change CONST_BITS you may want to add appropriate values.
|
---|
75 | * (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
---|
76 | */
|
---|
77 |
|
---|
78 | #if CONST_BITS == 8
|
---|
79 | #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
|
---|
80 | #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
|
---|
81 | #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
|
---|
82 | #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
|
---|
83 | #else
|
---|
84 | #define FIX_0_382683433 FIX(0.382683433)
|
---|
85 | #define FIX_0_541196100 FIX(0.541196100)
|
---|
86 | #define FIX_0_707106781 FIX(0.707106781)
|
---|
87 | #define FIX_1_306562965 FIX(1.306562965)
|
---|
88 | #endif
|
---|
89 |
|
---|
90 |
|
---|
91 | /* We can gain a little more speed, with a further compromise in accuracy,
|
---|
92 | * by omitting the addition in a descaling shift. This yields an incorrectly
|
---|
93 | * rounded result half the time...
|
---|
94 | */
|
---|
95 |
|
---|
96 | #ifndef USE_ACCURATE_ROUNDING
|
---|
97 | #undef DESCALE
|
---|
98 | #define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
---|
99 | #endif
|
---|
100 |
|
---|
101 |
|
---|
102 | /* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
---|
103 | * descale to yield a DCTELEM result.
|
---|
104 | */
|
---|
105 |
|
---|
106 | #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
---|
107 |
|
---|
108 |
|
---|
109 | /*
|
---|
110 | * Perform the forward DCT on one block of samples.
|
---|
111 | */
|
---|
112 |
|
---|
113 | GLOBAL(void)
|
---|
114 | jpeg_fdct_ifast (DCTELEM * data)
|
---|
115 | {
|
---|
116 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
---|
117 | DCTELEM tmp10, tmp11, tmp12, tmp13;
|
---|
118 | DCTELEM z1, z2, z3, z4, z5, z11, z13;
|
---|
119 | DCTELEM *dataptr;
|
---|
120 | int ctr;
|
---|
121 | SHIFT_TEMPS
|
---|
122 |
|
---|
123 | /* Pass 1: process rows. */
|
---|
124 |
|
---|
125 | dataptr = data;
|
---|
126 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
---|
127 | tmp0 = dataptr[0] + dataptr[7];
|
---|
128 | tmp7 = dataptr[0] - dataptr[7];
|
---|
129 | tmp1 = dataptr[1] + dataptr[6];
|
---|
130 | tmp6 = dataptr[1] - dataptr[6];
|
---|
131 | tmp2 = dataptr[2] + dataptr[5];
|
---|
132 | tmp5 = dataptr[2] - dataptr[5];
|
---|
133 | tmp3 = dataptr[3] + dataptr[4];
|
---|
134 | tmp4 = dataptr[3] - dataptr[4];
|
---|
135 |
|
---|
136 | /* Even part */
|
---|
137 |
|
---|
138 | tmp10 = tmp0 + tmp3; /* phase 2 */
|
---|
139 | tmp13 = tmp0 - tmp3;
|
---|
140 | tmp11 = tmp1 + tmp2;
|
---|
141 | tmp12 = tmp1 - tmp2;
|
---|
142 |
|
---|
143 | dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
---|
144 | dataptr[4] = tmp10 - tmp11;
|
---|
145 |
|
---|
146 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
---|
147 | dataptr[2] = tmp13 + z1; /* phase 5 */
|
---|
148 | dataptr[6] = tmp13 - z1;
|
---|
149 |
|
---|
150 | /* Odd part */
|
---|
151 |
|
---|
152 | tmp10 = tmp4 + tmp5; /* phase 2 */
|
---|
153 | tmp11 = tmp5 + tmp6;
|
---|
154 | tmp12 = tmp6 + tmp7;
|
---|
155 |
|
---|
156 | /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
---|
157 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
---|
158 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
---|
159 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
---|
160 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
---|
161 |
|
---|
162 | z11 = tmp7 + z3; /* phase 5 */
|
---|
163 | z13 = tmp7 - z3;
|
---|
164 |
|
---|
165 | dataptr[5] = z13 + z2; /* phase 6 */
|
---|
166 | dataptr[3] = z13 - z2;
|
---|
167 | dataptr[1] = z11 + z4;
|
---|
168 | dataptr[7] = z11 - z4;
|
---|
169 |
|
---|
170 | dataptr += DCTSIZE; /* advance pointer to next row */
|
---|
171 | }
|
---|
172 |
|
---|
173 | /* Pass 2: process columns. */
|
---|
174 |
|
---|
175 | dataptr = data;
|
---|
176 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
---|
177 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
---|
178 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
---|
179 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
---|
180 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
---|
181 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
---|
182 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
---|
183 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
---|
184 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
---|
185 |
|
---|
186 | /* Even part */
|
---|
187 |
|
---|
188 | tmp10 = tmp0 + tmp3; /* phase 2 */
|
---|
189 | tmp13 = tmp0 - tmp3;
|
---|
190 | tmp11 = tmp1 + tmp2;
|
---|
191 | tmp12 = tmp1 - tmp2;
|
---|
192 |
|
---|
193 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
---|
194 | dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
---|
195 |
|
---|
196 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
---|
197 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
---|
198 | dataptr[DCTSIZE*6] = tmp13 - z1;
|
---|
199 |
|
---|
200 | /* Odd part */
|
---|
201 |
|
---|
202 | tmp10 = tmp4 + tmp5; /* phase 2 */
|
---|
203 | tmp11 = tmp5 + tmp6;
|
---|
204 | tmp12 = tmp6 + tmp7;
|
---|
205 |
|
---|
206 | /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
---|
207 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
---|
208 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
---|
209 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
---|
210 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
---|
211 |
|
---|
212 | z11 = tmp7 + z3; /* phase 5 */
|
---|
213 | z13 = tmp7 - z3;
|
---|
214 |
|
---|
215 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
---|
216 | dataptr[DCTSIZE*3] = z13 - z2;
|
---|
217 | dataptr[DCTSIZE*1] = z11 + z4;
|
---|
218 | dataptr[DCTSIZE*7] = z11 - z4;
|
---|
219 |
|
---|
220 | dataptr++; /* advance pointer to next column */
|
---|
221 | }
|
---|
222 | }
|
---|
223 |
|
---|
224 | #endif /* DCT_IFAST_SUPPORTED */
|
---|