[95] | 1 | /*
|
---|
| 2 | * jidctflt.c
|
---|
| 3 | *
|
---|
| 4 | * Copyright (C) 1994-1998, Thomas G. Lane.
|
---|
| 5 | * This file is part of the Independent JPEG Group's software.
|
---|
| 6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
| 7 | *
|
---|
| 8 | * This file contains a floating-point implementation of the
|
---|
| 9 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
---|
| 10 | * must also perform dequantization of the input coefficients.
|
---|
| 11 | *
|
---|
| 12 | * This implementation should be more accurate than either of the integer
|
---|
| 13 | * IDCT implementations. However, it may not give the same results on all
|
---|
| 14 | * machines because of differences in roundoff behavior. Speed will depend
|
---|
| 15 | * on the hardware's floating point capacity.
|
---|
| 16 | *
|
---|
| 17 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
---|
| 18 | * on each row (or vice versa, but it's more convenient to emit a row at
|
---|
| 19 | * a time). Direct algorithms are also available, but they are much more
|
---|
| 20 | * complex and seem not to be any faster when reduced to code.
|
---|
| 21 | *
|
---|
| 22 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
---|
| 23 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
---|
| 24 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
---|
| 25 | * JPEG textbook (see REFERENCES section in file README). The following code
|
---|
| 26 | * is based directly on figure 4-8 in P&M.
|
---|
| 27 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
---|
| 28 | * possible to arrange the computation so that many of the multiplies are
|
---|
| 29 | * simple scalings of the final outputs. These multiplies can then be
|
---|
| 30 | * folded into the multiplications or divisions by the JPEG quantization
|
---|
| 31 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
---|
| 32 | * to be done in the DCT itself.
|
---|
| 33 | * The primary disadvantage of this method is that with a fixed-point
|
---|
| 34 | * implementation, accuracy is lost due to imprecise representation of the
|
---|
| 35 | * scaled quantization values. However, that problem does not arise if
|
---|
| 36 | * we use floating point arithmetic.
|
---|
| 37 | */
|
---|
| 38 |
|
---|
| 39 | #define JPEG_INTERNALS
|
---|
| 40 | #include "jinclude.h"
|
---|
| 41 | #include "jpeglib.h"
|
---|
| 42 | #include "jdct.h" /* Private declarations for DCT subsystem */
|
---|
| 43 |
|
---|
| 44 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
| 45 |
|
---|
| 46 |
|
---|
| 47 | /*
|
---|
| 48 | * This module is specialized to the case DCTSIZE = 8.
|
---|
| 49 | */
|
---|
| 50 |
|
---|
| 51 | #if DCTSIZE != 8
|
---|
| 52 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
---|
| 53 | #endif
|
---|
| 54 |
|
---|
| 55 |
|
---|
| 56 | /* Dequantize a coefficient by multiplying it by the multiplier-table
|
---|
| 57 | * entry; produce a float result.
|
---|
| 58 | */
|
---|
| 59 |
|
---|
| 60 | #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
|
---|
| 61 |
|
---|
| 62 |
|
---|
| 63 | /*
|
---|
| 64 | * Perform dequantization and inverse DCT on one block of coefficients.
|
---|
| 65 | */
|
---|
| 66 |
|
---|
| 67 | GLOBAL(void)
|
---|
| 68 | jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
---|
| 69 | JCOEFPTR coef_block,
|
---|
| 70 | JSAMPARRAY output_buf, JDIMENSION output_col)
|
---|
| 71 | {
|
---|
| 72 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
---|
| 73 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
---|
| 74 | FAST_FLOAT z5, z10, z11, z12, z13;
|
---|
| 75 | JCOEFPTR inptr;
|
---|
| 76 | FLOAT_MULT_TYPE * quantptr;
|
---|
| 77 | FAST_FLOAT * wsptr;
|
---|
| 78 | JSAMPROW outptr;
|
---|
| 79 | JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
---|
| 80 | int ctr;
|
---|
| 81 | FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
---|
| 82 | SHIFT_TEMPS
|
---|
| 83 |
|
---|
| 84 | /* Pass 1: process columns from input, store into work array. */
|
---|
| 85 |
|
---|
| 86 | inptr = coef_block;
|
---|
| 87 | quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
---|
| 88 | wsptr = workspace;
|
---|
| 89 | for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
---|
| 90 | /* Due to quantization, we will usually find that many of the input
|
---|
| 91 | * coefficients are zero, especially the AC terms. We can exploit this
|
---|
| 92 | * by short-circuiting the IDCT calculation for any column in which all
|
---|
| 93 | * the AC terms are zero. In that case each output is equal to the
|
---|
| 94 | * DC coefficient (with scale factor as needed).
|
---|
| 95 | * With typical images and quantization tables, half or more of the
|
---|
| 96 | * column DCT calculations can be simplified this way.
|
---|
| 97 | */
|
---|
| 98 |
|
---|
| 99 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
---|
| 100 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
---|
| 101 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
---|
| 102 | inptr[DCTSIZE*7] == 0) {
|
---|
| 103 | /* AC terms all zero */
|
---|
| 104 | FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
---|
| 105 |
|
---|
| 106 | wsptr[DCTSIZE*0] = dcval;
|
---|
| 107 | wsptr[DCTSIZE*1] = dcval;
|
---|
| 108 | wsptr[DCTSIZE*2] = dcval;
|
---|
| 109 | wsptr[DCTSIZE*3] = dcval;
|
---|
| 110 | wsptr[DCTSIZE*4] = dcval;
|
---|
| 111 | wsptr[DCTSIZE*5] = dcval;
|
---|
| 112 | wsptr[DCTSIZE*6] = dcval;
|
---|
| 113 | wsptr[DCTSIZE*7] = dcval;
|
---|
| 114 |
|
---|
| 115 | inptr++; /* advance pointers to next column */
|
---|
| 116 | quantptr++;
|
---|
| 117 | wsptr++;
|
---|
| 118 | continue;
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | /* Even part */
|
---|
| 122 |
|
---|
| 123 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
---|
| 124 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
---|
| 125 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
---|
| 126 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
---|
| 127 |
|
---|
| 128 | tmp10 = tmp0 + tmp2; /* phase 3 */
|
---|
| 129 | tmp11 = tmp0 - tmp2;
|
---|
| 130 |
|
---|
| 131 | tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
---|
| 132 | tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
|
---|
| 133 |
|
---|
| 134 | tmp0 = tmp10 + tmp13; /* phase 2 */
|
---|
| 135 | tmp3 = tmp10 - tmp13;
|
---|
| 136 | tmp1 = tmp11 + tmp12;
|
---|
| 137 | tmp2 = tmp11 - tmp12;
|
---|
| 138 |
|
---|
| 139 | /* Odd part */
|
---|
| 140 |
|
---|
| 141 | tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
---|
| 142 | tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
---|
| 143 | tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
---|
| 144 | tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
---|
| 145 |
|
---|
| 146 | z13 = tmp6 + tmp5; /* phase 6 */
|
---|
| 147 | z10 = tmp6 - tmp5;
|
---|
| 148 | z11 = tmp4 + tmp7;
|
---|
| 149 | z12 = tmp4 - tmp7;
|
---|
| 150 |
|
---|
| 151 | tmp7 = z11 + z13; /* phase 5 */
|
---|
| 152 | tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
---|
| 153 |
|
---|
| 154 | z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
---|
| 155 | tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
---|
| 156 | tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
---|
| 157 |
|
---|
| 158 | tmp6 = tmp12 - tmp7; /* phase 2 */
|
---|
| 159 | tmp5 = tmp11 - tmp6;
|
---|
| 160 | tmp4 = tmp10 + tmp5;
|
---|
| 161 |
|
---|
| 162 | wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
---|
| 163 | wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
---|
| 164 | wsptr[DCTSIZE*1] = tmp1 + tmp6;
|
---|
| 165 | wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
---|
| 166 | wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
---|
| 167 | wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
---|
| 168 | wsptr[DCTSIZE*4] = tmp3 + tmp4;
|
---|
| 169 | wsptr[DCTSIZE*3] = tmp3 - tmp4;
|
---|
| 170 |
|
---|
| 171 | inptr++; /* advance pointers to next column */
|
---|
| 172 | quantptr++;
|
---|
| 173 | wsptr++;
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | /* Pass 2: process rows from work array, store into output array. */
|
---|
| 177 | /* Note that we must descale the results by a factor of 8 == 2**3. */
|
---|
| 178 |
|
---|
| 179 | wsptr = workspace;
|
---|
| 180 | for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
---|
| 181 | outptr = output_buf[ctr] + output_col;
|
---|
| 182 | /* Rows of zeroes can be exploited in the same way as we did with columns.
|
---|
| 183 | * However, the column calculation has created many nonzero AC terms, so
|
---|
| 184 | * the simplification applies less often (typically 5% to 10% of the time).
|
---|
| 185 | * And testing floats for zero is relatively expensive, so we don't bother.
|
---|
| 186 | */
|
---|
| 187 |
|
---|
| 188 | /* Even part */
|
---|
| 189 |
|
---|
| 190 | tmp10 = wsptr[0] + wsptr[4];
|
---|
| 191 | tmp11 = wsptr[0] - wsptr[4];
|
---|
| 192 |
|
---|
| 193 | tmp13 = wsptr[2] + wsptr[6];
|
---|
| 194 | tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
|
---|
| 195 |
|
---|
| 196 | tmp0 = tmp10 + tmp13;
|
---|
| 197 | tmp3 = tmp10 - tmp13;
|
---|
| 198 | tmp1 = tmp11 + tmp12;
|
---|
| 199 | tmp2 = tmp11 - tmp12;
|
---|
| 200 |
|
---|
| 201 | /* Odd part */
|
---|
| 202 |
|
---|
| 203 | z13 = wsptr[5] + wsptr[3];
|
---|
| 204 | z10 = wsptr[5] - wsptr[3];
|
---|
| 205 | z11 = wsptr[1] + wsptr[7];
|
---|
| 206 | z12 = wsptr[1] - wsptr[7];
|
---|
| 207 |
|
---|
| 208 | tmp7 = z11 + z13;
|
---|
| 209 | tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
|
---|
| 210 |
|
---|
| 211 | z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
---|
| 212 | tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
---|
| 213 | tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
---|
| 214 |
|
---|
| 215 | tmp6 = tmp12 - tmp7;
|
---|
| 216 | tmp5 = tmp11 - tmp6;
|
---|
| 217 | tmp4 = tmp10 + tmp5;
|
---|
| 218 |
|
---|
| 219 | /* Final output stage: scale down by a factor of 8 and range-limit */
|
---|
| 220 |
|
---|
| 221 | outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
|
---|
| 222 | & RANGE_MASK];
|
---|
| 223 | outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
|
---|
| 224 | & RANGE_MASK];
|
---|
| 225 | outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
|
---|
| 226 | & RANGE_MASK];
|
---|
| 227 | outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
|
---|
| 228 | & RANGE_MASK];
|
---|
| 229 | outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
|
---|
| 230 | & RANGE_MASK];
|
---|
| 231 | outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
|
---|
| 232 | & RANGE_MASK];
|
---|
| 233 | outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
|
---|
| 234 | & RANGE_MASK];
|
---|
| 235 | outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
---|
| 236 | & RANGE_MASK];
|
---|
| 237 |
|
---|
| 238 | wsptr += DCTSIZE; /* advance pointer to next row */
|
---|
| 239 | }
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 | #endif /* DCT_FLOAT_SUPPORTED */
|
---|