1 | /*
|
---|
2 | * jmemmgr.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1991-1997, Thomas G. Lane.
|
---|
5 | * This file is part of the Independent JPEG Group's software.
|
---|
6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
7 | *
|
---|
8 | * This file contains the JPEG system-independent memory management
|
---|
9 | * routines. This code is usable across a wide variety of machines; most
|
---|
10 | * of the system dependencies have been isolated in a separate file.
|
---|
11 | * The major functions provided here are:
|
---|
12 | * * pool-based allocation and freeing of memory;
|
---|
13 | * * policy decisions about how to divide available memory among the
|
---|
14 | * virtual arrays;
|
---|
15 | * * control logic for swapping virtual arrays between main memory and
|
---|
16 | * backing storage.
|
---|
17 | * The separate system-dependent file provides the actual backing-storage
|
---|
18 | * access code, and it contains the policy decision about how much total
|
---|
19 | * main memory to use.
|
---|
20 | * This file is system-dependent in the sense that some of its functions
|
---|
21 | * are unnecessary in some systems. For example, if there is enough virtual
|
---|
22 | * memory so that backing storage will never be used, much of the virtual
|
---|
23 | * array control logic could be removed. (Of course, if you have that much
|
---|
24 | * memory then you shouldn't care about a little bit of unused code...)
|
---|
25 | */
|
---|
26 |
|
---|
27 | #define JPEG_INTERNALS
|
---|
28 | #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
|
---|
29 | #include "jinclude.h"
|
---|
30 | #include "jpeglib.h"
|
---|
31 | #include "jmemsys.h" /* import the system-dependent declarations */
|
---|
32 |
|
---|
33 | #ifndef NO_GETENV
|
---|
34 | #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
|
---|
35 | extern char * getenv JPP((const char * name));
|
---|
36 | #endif
|
---|
37 | #endif
|
---|
38 |
|
---|
39 |
|
---|
40 | /*
|
---|
41 | * Some important notes:
|
---|
42 | * The allocation routines provided here must never return NULL.
|
---|
43 | * They should exit to error_exit if unsuccessful.
|
---|
44 | *
|
---|
45 | * It's not a good idea to try to merge the sarray and barray routines,
|
---|
46 | * even though they are textually almost the same, because samples are
|
---|
47 | * usually stored as bytes while coefficients are shorts or ints. Thus,
|
---|
48 | * in machines where byte pointers have a different representation from
|
---|
49 | * word pointers, the resulting machine code could not be the same.
|
---|
50 | */
|
---|
51 |
|
---|
52 |
|
---|
53 | /*
|
---|
54 | * Many machines require storage alignment: longs must start on 4-byte
|
---|
55 | * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
|
---|
56 | * always returns pointers that are multiples of the worst-case alignment
|
---|
57 | * requirement, and we had better do so too.
|
---|
58 | * There isn't any really portable way to determine the worst-case alignment
|
---|
59 | * requirement. This module assumes that the alignment requirement is
|
---|
60 | * multiples of sizeof(ALIGN_TYPE).
|
---|
61 | * By default, we define ALIGN_TYPE as double. This is necessary on some
|
---|
62 | * workstations (where doubles really do need 8-byte alignment) and will work
|
---|
63 | * fine on nearly everything. If your machine has lesser alignment needs,
|
---|
64 | * you can save a few bytes by making ALIGN_TYPE smaller.
|
---|
65 | * The only place I know of where this will NOT work is certain Macintosh
|
---|
66 | * 680x0 compilers that define double as a 10-byte IEEE extended float.
|
---|
67 | * Doing 10-byte alignment is counterproductive because longwords won't be
|
---|
68 | * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
|
---|
69 | * such a compiler.
|
---|
70 | */
|
---|
71 |
|
---|
72 | #ifndef ALIGN_TYPE /* so can override from jconfig.h */
|
---|
73 | #define ALIGN_TYPE double
|
---|
74 | #endif
|
---|
75 |
|
---|
76 |
|
---|
77 | /*
|
---|
78 | * We allocate objects from "pools", where each pool is gotten with a single
|
---|
79 | * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
|
---|
80 | * overhead within a pool, except for alignment padding. Each pool has a
|
---|
81 | * header with a link to the next pool of the same class.
|
---|
82 | * Small and large pool headers are identical except that the latter's
|
---|
83 | * link pointer must be FAR on 80x86 machines.
|
---|
84 | * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
|
---|
85 | * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
|
---|
86 | * of the alignment requirement of ALIGN_TYPE.
|
---|
87 | */
|
---|
88 |
|
---|
89 | typedef union small_pool_struct * small_pool_ptr;
|
---|
90 |
|
---|
91 | typedef union small_pool_struct {
|
---|
92 | struct {
|
---|
93 | small_pool_ptr next; /* next in list of pools */
|
---|
94 | size_t bytes_used; /* how many bytes already used within pool */
|
---|
95 | size_t bytes_left; /* bytes still available in this pool */
|
---|
96 | } hdr;
|
---|
97 | ALIGN_TYPE dummy; /* included in union to ensure alignment */
|
---|
98 | } small_pool_hdr;
|
---|
99 |
|
---|
100 | typedef union large_pool_struct FAR * large_pool_ptr;
|
---|
101 |
|
---|
102 | typedef union large_pool_struct {
|
---|
103 | struct {
|
---|
104 | large_pool_ptr next; /* next in list of pools */
|
---|
105 | size_t bytes_used; /* how many bytes already used within pool */
|
---|
106 | size_t bytes_left; /* bytes still available in this pool */
|
---|
107 | } hdr;
|
---|
108 | ALIGN_TYPE dummy; /* included in union to ensure alignment */
|
---|
109 | } large_pool_hdr;
|
---|
110 |
|
---|
111 |
|
---|
112 | /*
|
---|
113 | * Here is the full definition of a memory manager object.
|
---|
114 | */
|
---|
115 |
|
---|
116 | typedef struct {
|
---|
117 | struct jpeg_memory_mgr pub; /* public fields */
|
---|
118 |
|
---|
119 | /* Each pool identifier (lifetime class) names a linked list of pools. */
|
---|
120 | small_pool_ptr small_list[JPOOL_NUMPOOLS];
|
---|
121 | large_pool_ptr large_list[JPOOL_NUMPOOLS];
|
---|
122 |
|
---|
123 | /* Since we only have one lifetime class of virtual arrays, only one
|
---|
124 | * linked list is necessary (for each datatype). Note that the virtual
|
---|
125 | * array control blocks being linked together are actually stored somewhere
|
---|
126 | * in the small-pool list.
|
---|
127 | */
|
---|
128 | jvirt_sarray_ptr virt_sarray_list;
|
---|
129 | jvirt_barray_ptr virt_barray_list;
|
---|
130 |
|
---|
131 | /* This counts total space obtained from jpeg_get_small/large */
|
---|
132 | long total_space_allocated;
|
---|
133 |
|
---|
134 | /* alloc_sarray and alloc_barray set this value for use by virtual
|
---|
135 | * array routines.
|
---|
136 | */
|
---|
137 | JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
|
---|
138 | } my_memory_mgr;
|
---|
139 |
|
---|
140 | typedef my_memory_mgr * my_mem_ptr;
|
---|
141 |
|
---|
142 |
|
---|
143 | /*
|
---|
144 | * The control blocks for virtual arrays.
|
---|
145 | * Note that these blocks are allocated in the "small" pool area.
|
---|
146 | * System-dependent info for the associated backing store (if any) is hidden
|
---|
147 | * inside the backing_store_info struct.
|
---|
148 | */
|
---|
149 |
|
---|
150 | struct jvirt_sarray_control {
|
---|
151 | JSAMPARRAY mem_buffer; /* => the in-memory buffer */
|
---|
152 | JDIMENSION rows_in_array; /* total virtual array height */
|
---|
153 | JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
|
---|
154 | JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
|
---|
155 | JDIMENSION rows_in_mem; /* height of memory buffer */
|
---|
156 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
|
---|
157 | JDIMENSION cur_start_row; /* first logical row # in the buffer */
|
---|
158 | JDIMENSION first_undef_row; /* row # of first uninitialized row */
|
---|
159 | boolean pre_zero; /* pre-zero mode requested? */
|
---|
160 | boolean dirty; /* do current buffer contents need written? */
|
---|
161 | boolean b_s_open; /* is backing-store data valid? */
|
---|
162 | jvirt_sarray_ptr next; /* link to next virtual sarray control block */
|
---|
163 | backing_store_info b_s_info; /* System-dependent control info */
|
---|
164 | };
|
---|
165 |
|
---|
166 | struct jvirt_barray_control {
|
---|
167 | JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
|
---|
168 | JDIMENSION rows_in_array; /* total virtual array height */
|
---|
169 | JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
|
---|
170 | JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
|
---|
171 | JDIMENSION rows_in_mem; /* height of memory buffer */
|
---|
172 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
|
---|
173 | JDIMENSION cur_start_row; /* first logical row # in the buffer */
|
---|
174 | JDIMENSION first_undef_row; /* row # of first uninitialized row */
|
---|
175 | boolean pre_zero; /* pre-zero mode requested? */
|
---|
176 | boolean dirty; /* do current buffer contents need written? */
|
---|
177 | boolean b_s_open; /* is backing-store data valid? */
|
---|
178 | jvirt_barray_ptr next; /* link to next virtual barray control block */
|
---|
179 | backing_store_info b_s_info; /* System-dependent control info */
|
---|
180 | };
|
---|
181 |
|
---|
182 |
|
---|
183 | #ifdef MEM_STATS /* optional extra stuff for statistics */
|
---|
184 |
|
---|
185 | LOCAL(void)
|
---|
186 | print_mem_stats (j_common_ptr cinfo, int pool_id)
|
---|
187 | {
|
---|
188 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
---|
189 | small_pool_ptr shdr_ptr;
|
---|
190 | large_pool_ptr lhdr_ptr;
|
---|
191 |
|
---|
192 | /* Since this is only a debugging stub, we can cheat a little by using
|
---|
193 | * fprintf directly rather than going through the trace message code.
|
---|
194 | * This is helpful because message parm array can't handle longs.
|
---|
195 | */
|
---|
196 | fprintf(stderr, "Freeing pool %d, total space = %ld\n",
|
---|
197 | pool_id, mem->total_space_allocated);
|
---|
198 |
|
---|
199 | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
|
---|
200 | lhdr_ptr = lhdr_ptr->hdr.next) {
|
---|
201 | fprintf(stderr, " Large chunk used %ld\n",
|
---|
202 | (long) lhdr_ptr->hdr.bytes_used);
|
---|
203 | }
|
---|
204 |
|
---|
205 | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
|
---|
206 | shdr_ptr = shdr_ptr->hdr.next) {
|
---|
207 | fprintf(stderr, " Small chunk used %ld free %ld\n",
|
---|
208 | (long) shdr_ptr->hdr.bytes_used,
|
---|
209 | (long) shdr_ptr->hdr.bytes_left);
|
---|
210 | }
|
---|
211 | }
|
---|
212 |
|
---|
213 | #endif /* MEM_STATS */
|
---|
214 |
|
---|
215 |
|
---|
216 | LOCAL(void)
|
---|
217 | out_of_memory (j_common_ptr cinfo, int which)
|
---|
218 | /* Report an out-of-memory error and stop execution */
|
---|
219 | /* If we compiled MEM_STATS support, report alloc requests before dying */
|
---|
220 | {
|
---|
221 | #ifdef MEM_STATS
|
---|
222 | cinfo->err->trace_level = 2; /* force self_destruct to report stats */
|
---|
223 | #endif
|
---|
224 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
|
---|
225 | }
|
---|
226 |
|
---|
227 |
|
---|
228 | /*
|
---|
229 | * Allocation of "small" objects.
|
---|
230 | *
|
---|
231 | * For these, we use pooled storage. When a new pool must be created,
|
---|
232 | * we try to get enough space for the current request plus a "slop" factor,
|
---|
233 | * where the slop will be the amount of leftover space in the new pool.
|
---|
234 | * The speed vs. space tradeoff is largely determined by the slop values.
|
---|
235 | * A different slop value is provided for each pool class (lifetime),
|
---|
236 | * and we also distinguish the first pool of a class from later ones.
|
---|
237 | * NOTE: the values given work fairly well on both 16- and 32-bit-int
|
---|
238 | * machines, but may be too small if longs are 64 bits or more.
|
---|
239 | */
|
---|
240 |
|
---|
241 | static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
|
---|
242 | {
|
---|
243 | 1600, /* first PERMANENT pool */
|
---|
244 | 16000 /* first IMAGE pool */
|
---|
245 | };
|
---|
246 |
|
---|
247 | static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
|
---|
248 | {
|
---|
249 | 0, /* additional PERMANENT pools */
|
---|
250 | 5000 /* additional IMAGE pools */
|
---|
251 | };
|
---|
252 |
|
---|
253 | #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
|
---|
254 |
|
---|
255 |
|
---|
256 | METHODDEF(void *)
|
---|
257 | alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
|
---|
258 | /* Allocate a "small" object */
|
---|
259 | {
|
---|
260 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
---|
261 | small_pool_ptr hdr_ptr, prev_hdr_ptr;
|
---|
262 | char * data_ptr;
|
---|
263 | size_t odd_bytes, min_request, slop;
|
---|
264 |
|
---|
265 | /* Check for unsatisfiable request (do now to ensure no overflow below) */
|
---|
266 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
|
---|
267 | out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
|
---|
268 |
|
---|
269 | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
|
---|
270 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
|
---|
271 | if (odd_bytes > 0)
|
---|
272 | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
|
---|
273 |
|
---|
274 | /* See if space is available in any existing pool */
|
---|
275 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
|
---|
276 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
---|
277 | prev_hdr_ptr = NULL;
|
---|
278 | hdr_ptr = mem->small_list[pool_id];
|
---|
279 | while (hdr_ptr != NULL) {
|
---|
280 | if (hdr_ptr->hdr.bytes_left >= sizeofobject)
|
---|
281 | break; /* found pool with enough space */
|
---|
282 | prev_hdr_ptr = hdr_ptr;
|
---|
283 | hdr_ptr = hdr_ptr->hdr.next;
|
---|
284 | }
|
---|
285 |
|
---|
286 | /* Time to make a new pool? */
|
---|
287 | if (hdr_ptr == NULL) {
|
---|
288 | /* min_request is what we need now, slop is what will be leftover */
|
---|
289 | min_request = sizeofobject + SIZEOF(small_pool_hdr);
|
---|
290 | if (prev_hdr_ptr == NULL) /* first pool in class? */
|
---|
291 | slop = first_pool_slop[pool_id];
|
---|
292 | else
|
---|
293 | slop = extra_pool_slop[pool_id];
|
---|
294 | /* Don't ask for more than MAX_ALLOC_CHUNK */
|
---|
295 | if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
|
---|
296 | slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
|
---|
297 | /* Try to get space, if fail reduce slop and try again */
|
---|
298 | for (;;) {
|
---|
299 | hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
|
---|
300 | if (hdr_ptr != NULL)
|
---|
301 | break;
|
---|
302 | slop /= 2;
|
---|
303 | if (slop < MIN_SLOP) /* give up when it gets real small */
|
---|
304 | out_of_memory(cinfo, 2); /* jpeg_get_small failed */
|
---|
305 | }
|
---|
306 | mem->total_space_allocated += min_request + slop;
|
---|
307 | /* Success, initialize the new pool header and add to end of list */
|
---|
308 | hdr_ptr->hdr.next = NULL;
|
---|
309 | hdr_ptr->hdr.bytes_used = 0;
|
---|
310 | hdr_ptr->hdr.bytes_left = sizeofobject + slop;
|
---|
311 | if (prev_hdr_ptr == NULL) /* first pool in class? */
|
---|
312 | mem->small_list[pool_id] = hdr_ptr;
|
---|
313 | else
|
---|
314 | prev_hdr_ptr->hdr.next = hdr_ptr;
|
---|
315 | }
|
---|
316 |
|
---|
317 | /* OK, allocate the object from the current pool */
|
---|
318 | data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
|
---|
319 | data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
|
---|
320 | hdr_ptr->hdr.bytes_used += sizeofobject;
|
---|
321 | hdr_ptr->hdr.bytes_left -= sizeofobject;
|
---|
322 |
|
---|
323 | return (void *) data_ptr;
|
---|
324 | }
|
---|
325 |
|
---|
326 |
|
---|
327 | /*
|
---|
328 | * Allocation of "large" objects.
|
---|
329 | *
|
---|
330 | * The external semantics of these are the same as "small" objects,
|
---|
331 | * except that FAR pointers are used on 80x86. However the pool
|
---|
332 | * management heuristics are quite different. We assume that each
|
---|
333 | * request is large enough that it may as well be passed directly to
|
---|
334 | * jpeg_get_large; the pool management just links everything together
|
---|
335 | * so that we can free it all on demand.
|
---|
336 | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
|
---|
337 | * structures. The routines that create these structures (see below)
|
---|
338 | * deliberately bunch rows together to ensure a large request size.
|
---|
339 | */
|
---|
340 |
|
---|
341 | METHODDEF(void FAR *)
|
---|
342 | alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
|
---|
343 | /* Allocate a "large" object */
|
---|
344 | {
|
---|
345 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
---|
346 | large_pool_ptr hdr_ptr;
|
---|
347 | size_t odd_bytes;
|
---|
348 |
|
---|
349 | /* Check for unsatisfiable request (do now to ensure no overflow below) */
|
---|
350 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
|
---|
351 | out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
|
---|
352 |
|
---|
353 | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
|
---|
354 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
|
---|
355 | if (odd_bytes > 0)
|
---|
356 | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
|
---|
357 |
|
---|
358 | /* Always make a new pool */
|
---|
359 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
|
---|
360 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
---|
361 |
|
---|
362 | hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
|
---|
363 | SIZEOF(large_pool_hdr));
|
---|
364 | if (hdr_ptr == NULL)
|
---|
365 | out_of_memory(cinfo, 4); /* jpeg_get_large failed */
|
---|
366 | mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
|
---|
367 |
|
---|
368 | /* Success, initialize the new pool header and add to list */
|
---|
369 | hdr_ptr->hdr.next = mem->large_list[pool_id];
|
---|
370 | /* We maintain space counts in each pool header for statistical purposes,
|
---|
371 | * even though they are not needed for allocation.
|
---|
372 | */
|
---|
373 | hdr_ptr->hdr.bytes_used = sizeofobject;
|
---|
374 | hdr_ptr->hdr.bytes_left = 0;
|
---|
375 | mem->large_list[pool_id] = hdr_ptr;
|
---|
376 |
|
---|
377 | return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
|
---|
378 | }
|
---|
379 |
|
---|
380 |
|
---|
381 | /*
|
---|
382 | * Creation of 2-D sample arrays.
|
---|
383 | * The pointers are in near heap, the samples themselves in FAR heap.
|
---|
384 | *
|
---|
385 | * To minimize allocation overhead and to allow I/O of large contiguous
|
---|
386 | * blocks, we allocate the sample rows in groups of as many rows as possible
|
---|
387 | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
|
---|
388 | * NB: the virtual array control routines, later in this file, know about
|
---|
389 | * this chunking of rows. The rowsperchunk value is left in the mem manager
|
---|
390 | * object so that it can be saved away if this sarray is the workspace for
|
---|
391 | * a virtual array.
|
---|
392 | */
|
---|
393 |
|
---|
394 | METHODDEF(JSAMPARRAY)
|
---|
395 | alloc_sarray (j_common_ptr cinfo, int pool_id,
|
---|
396 | JDIMENSION samplesperrow, JDIMENSION numrows)
|
---|
397 | /* Allocate a 2-D sample array */
|
---|
398 | {
|
---|
399 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
---|
400 | JSAMPARRAY result;
|
---|
401 | JSAMPROW workspace;
|
---|
402 | JDIMENSION rowsperchunk, currow, i;
|
---|
403 | long ltemp;
|
---|
404 |
|
---|
405 | /* Calculate max # of rows allowed in one allocation chunk */
|
---|
406 | ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
|
---|
407 | ((long) samplesperrow * SIZEOF(JSAMPLE));
|
---|
408 | if (ltemp <= 0)
|
---|
409 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
---|
410 | if (ltemp < (long) numrows)
|
---|
411 | rowsperchunk = (JDIMENSION) ltemp;
|
---|
412 | else
|
---|
413 | rowsperchunk = numrows;
|
---|
414 | mem->last_rowsperchunk = rowsperchunk;
|
---|
415 |
|
---|
416 | /* Get space for row pointers (small object) */
|
---|
417 | result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
|
---|
418 | (size_t) (numrows * SIZEOF(JSAMPROW)));
|
---|
419 |
|
---|
420 | /* Get the rows themselves (large objects) */
|
---|
421 | currow = 0;
|
---|
422 | while (currow < numrows) {
|
---|
423 | rowsperchunk = MIN(rowsperchunk, numrows - currow);
|
---|
424 | workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
|
---|
425 | (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
|
---|
426 | * SIZEOF(JSAMPLE)));
|
---|
427 | for (i = rowsperchunk; i > 0; i--) {
|
---|
428 | result[currow++] = workspace;
|
---|
429 | workspace += samplesperrow;
|
---|
430 | }
|
---|
431 | }
|
---|
432 |
|
---|
433 | return result;
|
---|
434 | }
|
---|
435 |
|
---|
436 |
|
---|
437 | /*
|
---|
438 | * Creation of 2-D coefficient-block arrays.
|
---|
439 | * This is essentially the same as the code for sample arrays, above.
|
---|
440 | */
|
---|
441 |
|
---|
442 | METHODDEF(JBLOCKARRAY)
|
---|
443 | alloc_barray (j_common_ptr cinfo, int pool_id,
|
---|
444 | JDIMENSION blocksperrow, JDIMENSION numrows)
|
---|
445 | /* Allocate a 2-D coefficient-block array */
|
---|
446 | {
|
---|
447 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
---|
448 | JBLOCKARRAY result;
|
---|
449 | JBLOCKROW workspace;
|
---|
450 | JDIMENSION rowsperchunk, currow, i;
|
---|
451 | long ltemp;
|
---|
452 |
|
---|
453 | /* Calculate max # of rows allowed in one allocation chunk */
|
---|
454 | ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
|
---|
455 | ((long) blocksperrow * SIZEOF(JBLOCK));
|
---|
456 | if (ltemp <= 0)
|
---|
457 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
---|
458 | if (ltemp < (long) numrows)
|
---|
459 | rowsperchunk = (JDIMENSION) ltemp;
|
---|
460 | else
|
---|
461 | rowsperchunk = numrows;
|
---|
462 | mem->last_rowsperchunk = rowsperchunk;
|
---|
463 |
|
---|
464 | /* Get space for row pointers (small object) */
|
---|
465 | result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
|
---|
466 | (size_t) (numrows * SIZEOF(JBLOCKROW)));
|
---|
467 |
|
---|
468 | /* Get the rows themselves (large objects) */
|
---|
469 | currow = 0;
|
---|
470 | while (currow < numrows) {
|
---|
471 | rowsperchunk = MIN(rowsperchunk, numrows - currow);
|
---|
472 | workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
|
---|
473 | (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
|
---|
474 | * SIZEOF(JBLOCK)));
|
---|
475 | for (i = rowsperchunk; i > 0; i--) {
|
---|
476 | result[currow++] = workspace;
|
---|
477 | workspace += blocksperrow;
|
---|
478 | }
|
---|
479 | }
|
---|
480 |
|
---|
481 | return result;
|
---|
482 | }
|
---|
483 |
|
---|
484 |
|
---|
485 | /*
|
---|
486 | * About virtual array management:
|
---|
487 | *
|
---|
488 | * The above "normal" array routines are only used to allocate strip buffers
|
---|
489 | * (as wide as the image, but just a few rows high). Full-image-sized buffers
|
---|
490 | * are handled as "virtual" arrays. The array is still accessed a strip at a
|
---|
491 | * time, but the memory manager must save the whole array for repeated
|
---|
492 | * accesses. The intended implementation is that there is a strip buffer in
|
---|
493 | * memory (as high as is possible given the desired memory limit), plus a
|
---|
494 | * backing file that holds the rest of the array.
|
---|
495 | *
|
---|
496 | * The request_virt_array routines are told the total size of the image and
|
---|
497 | * the maximum number of rows that will be accessed at once. The in-memory
|
---|
498 | * buffer must be at least as large as the maxaccess value.
|
---|
499 | *
|
---|
500 | * The request routines create control blocks but not the in-memory buffers.
|
---|
501 | * That is postponed until realize_virt_arrays is called. At that time the
|
---|
502 | * total amount of space needed is known (approximately, anyway), so free
|
---|
503 | * memory can be divided up fairly.
|
---|
504 | *
|
---|
505 | * The access_virt_array routines are responsible for making a specific strip
|
---|
506 | * area accessible (after reading or writing the backing file, if necessary).
|
---|
507 | * Note that the access routines are told whether the caller intends to modify
|
---|
508 | * the accessed strip; during a read-only pass this saves having to rewrite
|
---|
509 | * data to disk. The access routines are also responsible for pre-zeroing
|
---|
510 | * any newly accessed rows, if pre-zeroing was requested.
|
---|
511 | *
|
---|
512 | * In current usage, the access requests are usually for nonoverlapping
|
---|
513 | * strips; that is, successive access start_row numbers differ by exactly
|
---|
514 | * num_rows = maxaccess. This means we can get good performance with simple
|
---|
515 | * buffer dump/reload logic, by making the in-memory buffer be a multiple
|
---|
516 | * of the access height; then there will never be accesses across bufferload
|
---|
517 | * boundaries. The code will still work with overlapping access requests,
|
---|
518 | * but it doesn't handle bufferload overlaps very efficiently.
|
---|
519 | */
|
---|
520 |
|
---|
521 |
|
---|
522 | METHODDEF(jvirt_sarray_ptr)
|
---|
523 | request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
|
---|
524 | JDIMENSION samplesperrow, JDIMENSION numrows,
|
---|
525 | JDIMENSION maxaccess)
|
---|
526 | /* Request a virtual 2-D sample array */
|
---|
527 | {
|
---|
528 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
---|
529 | jvirt_sarray_ptr result;
|
---|
530 |
|
---|
531 | /* Only IMAGE-lifetime virtual arrays are currently supported */
|
---|
532 | if (pool_id != JPOOL_IMAGE)
|
---|
533 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
---|
534 |
|
---|
535 | /* get control block */
|
---|
536 | result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
|
---|
537 | SIZEOF(struct jvirt_sarray_control));
|
---|
538 |
|
---|
539 | result->mem_buffer = NULL; /* marks array not yet realized */
|
---|
540 | result->rows_in_array = numrows;
|
---|
541 | result->samplesperrow = samplesperrow;
|
---|
542 | result->maxaccess = maxaccess;
|
---|
543 | result->pre_zero = pre_zero;
|
---|
544 | result->b_s_open = FALSE; /* no associated backing-store object */
|
---|
545 | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
|
---|
546 | mem->virt_sarray_list = result;
|
---|
547 |
|
---|
548 | return result;
|
---|
549 | }
|
---|
550 |
|
---|
551 |
|
---|
552 | METHODDEF(jvirt_barray_ptr)
|
---|
553 | request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
|
---|
554 | JDIMENSION blocksperrow, JDIMENSION numrows,
|
---|
555 | JDIMENSION maxaccess)
|
---|
556 | /* Request a virtual 2-D coefficient-block array */
|
---|
557 | {
|
---|
558 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
---|
559 | jvirt_barray_ptr result;
|
---|
560 |
|
---|
561 | /* Only IMAGE-lifetime virtual arrays are currently supported */
|
---|
562 | if (pool_id != JPOOL_IMAGE)
|
---|
563 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
---|
564 |
|
---|
565 | /* get control block */
|
---|
566 | result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
|
---|
567 | SIZEOF(struct jvirt_barray_control));
|
---|
568 |
|
---|
569 | result->mem_buffer = NULL; /* marks array not yet realized */
|
---|
570 | result->rows_in_array = numrows;
|
---|
571 | result->blocksperrow = blocksperrow;
|
---|
572 | result->maxaccess = maxaccess;
|
---|
573 | result->pre_zero = pre_zero;
|
---|
574 | result->b_s_open = FALSE; /* no associated backing-store object */
|
---|
575 | result->next = mem->virt_barray_list; /* add to list of virtual arrays */
|
---|
576 | mem->virt_barray_list = result;
|
---|
577 |
|
---|
578 | return result;
|
---|
579 | }
|
---|
580 |
|
---|
581 |
|
---|
582 | METHODDEF(void)
|
---|
583 | realize_virt_arrays (j_common_ptr cinfo)
|
---|
584 | /* Allocate the in-memory buffers for any unrealized virtual arrays */
|
---|
585 | {
|
---|
586 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
---|
587 | long space_per_minheight, maximum_space, avail_mem;
|
---|
588 | long minheights, max_minheights;
|
---|
589 | jvirt_sarray_ptr sptr;
|
---|
590 | jvirt_barray_ptr bptr;
|
---|
591 |
|
---|
592 | /* Compute the minimum space needed (maxaccess rows in each buffer)
|
---|
593 | * and the maximum space needed (full image height in each buffer).
|
---|
594 | * These may be of use to the system-dependent jpeg_mem_available routine.
|
---|
595 | */
|
---|
596 | space_per_minheight = 0;
|
---|
597 | maximum_space = 0;
|
---|
598 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
|
---|
599 | if (sptr->mem_buffer == NULL) { /* if not realized yet */
|
---|
600 | space_per_minheight += (long) sptr->maxaccess *
|
---|
601 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
|
---|
602 | maximum_space += (long) sptr->rows_in_array *
|
---|
603 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
|
---|
604 | }
|
---|
605 | }
|
---|
606 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
|
---|
607 | if (bptr->mem_buffer == NULL) { /* if not realized yet */
|
---|
608 | space_per_minheight += (long) bptr->maxaccess *
|
---|
609 | (long) bptr->blocksperrow * SIZEOF(JBLOCK);
|
---|
610 | maximum_space += (long) bptr->rows_in_array *
|
---|
611 | (long) bptr->blocksperrow * SIZEOF(JBLOCK);
|
---|
612 | }
|
---|
613 | }
|
---|
614 |
|
---|
615 | if (space_per_minheight <= 0)
|
---|
616 | return; /* no unrealized arrays, no work */
|
---|
617 |
|
---|
618 | /* Determine amount of memory to actually use; this is system-dependent. */
|
---|
619 | avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
|
---|
620 | mem->total_space_allocated);
|
---|
621 |
|
---|
622 | /* If the maximum space needed is available, make all the buffers full
|
---|
623 | * height; otherwise parcel it out with the same number of minheights
|
---|
624 | * in each buffer.
|
---|
625 | */
|
---|
626 | if (avail_mem >= maximum_space)
|
---|
627 | max_minheights = 1000000000L;
|
---|
628 | else {
|
---|
629 | max_minheights = avail_mem / space_per_minheight;
|
---|
630 | /* If there doesn't seem to be enough space, try to get the minimum
|
---|
631 | * anyway. This allows a "stub" implementation of jpeg_mem_available().
|
---|
632 | */
|
---|
633 | if (max_minheights <= 0)
|
---|
634 | max_minheights = 1;
|
---|
635 | }
|
---|
636 |
|
---|
637 | /* Allocate the in-memory buffers and initialize backing store as needed. */
|
---|
638 |
|
---|
639 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
|
---|
640 | if (sptr->mem_buffer == NULL) { /* if not realized yet */
|
---|
641 | minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
|
---|
642 | if (minheights <= max_minheights) {
|
---|
643 | /* This buffer fits in memory */
|
---|
644 | sptr->rows_in_mem = sptr->rows_in_array;
|
---|
645 | } else {
|
---|
646 | /* It doesn't fit in memory, create backing store. */
|
---|
647 | sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
|
---|
648 | jpeg_open_backing_store(cinfo, & sptr->b_s_info,
|
---|
649 | (long) sptr->rows_in_array *
|
---|
650 | (long) sptr->samplesperrow *
|
---|
651 | (long) SIZEOF(JSAMPLE));
|
---|
652 | sptr->b_s_open = TRUE;
|
---|
653 | }
|
---|
654 | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
|
---|
655 | sptr->samplesperrow, sptr->rows_in_mem);
|
---|
656 | sptr->rowsperchunk = mem->last_rowsperchunk;
|
---|
657 | sptr->cur_start_row = 0;
|
---|
658 | sptr->first_undef_row = 0;
|
---|
659 | sptr->dirty = FALSE;
|
---|
660 | }
|
---|
661 | }
|
---|
662 |
|
---|
663 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
|
---|
664 | if (bptr->mem_buffer == NULL) { /* if not realized yet */
|
---|
665 | minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
|
---|
666 | if (minheights <= max_minheights) {
|
---|
667 | /* This buffer fits in memory */
|
---|
668 | bptr->rows_in_mem = bptr->rows_in_array;
|
---|
669 | } else {
|
---|
670 | /* It doesn't fit in memory, create backing store. */
|
---|
671 | bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
|
---|
672 | jpeg_open_backing_store(cinfo, & bptr->b_s_info,
|
---|
673 | (long) bptr->rows_in_array *
|
---|
674 | (long) bptr->blocksperrow *
|
---|
675 | (long) SIZEOF(JBLOCK));
|
---|
676 | bptr->b_s_open = TRUE;
|
---|
677 | }
|
---|
678 | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
|
---|
679 | bptr->blocksperrow, bptr->rows_in_mem);
|
---|
680 | bptr->rowsperchunk = mem->last_rowsperchunk;
|
---|
681 | bptr->cur_start_row = 0;
|
---|
682 | bptr->first_undef_row = 0;
|
---|
683 | bptr->dirty = FALSE;
|
---|
684 | }
|
---|
685 | }
|
---|
686 | }
|
---|
687 |
|
---|
688 |
|
---|
689 | LOCAL(void)
|
---|
690 | do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
|
---|
691 | /* Do backing store read or write of a virtual sample array */
|
---|
692 | {
|
---|
693 | long bytesperrow, file_offset, byte_count, rows, thisrow, i;
|
---|
694 |
|
---|
695 | bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
|
---|
696 | file_offset = ptr->cur_start_row * bytesperrow;
|
---|
697 | /* Loop to read or write each allocation chunk in mem_buffer */
|
---|
698 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
|
---|
699 | /* One chunk, but check for short chunk at end of buffer */
|
---|
700 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
|
---|
701 | /* Transfer no more than is currently defined */
|
---|
702 | thisrow = (long) ptr->cur_start_row + i;
|
---|
703 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
|
---|
704 | /* Transfer no more than fits in file */
|
---|
705 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
|
---|
706 | if (rows <= 0) /* this chunk might be past end of file! */
|
---|
707 | break;
|
---|
708 | byte_count = rows * bytesperrow;
|
---|
709 | if (writing)
|
---|
710 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
|
---|
711 | (void FAR *) ptr->mem_buffer[i],
|
---|
712 | file_offset, byte_count);
|
---|
713 | else
|
---|
714 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
|
---|
715 | (void FAR *) ptr->mem_buffer[i],
|
---|
716 | file_offset, byte_count);
|
---|
717 | file_offset += byte_count;
|
---|
718 | }
|
---|
719 | }
|
---|
720 |
|
---|
721 |
|
---|
722 | LOCAL(void)
|
---|
723 | do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
|
---|
724 | /* Do backing store read or write of a virtual coefficient-block array */
|
---|
725 | {
|
---|
726 | long bytesperrow, file_offset, byte_count, rows, thisrow, i;
|
---|
727 |
|
---|
728 | bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
|
---|
729 | file_offset = ptr->cur_start_row * bytesperrow;
|
---|
730 | /* Loop to read or write each allocation chunk in mem_buffer */
|
---|
731 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
|
---|
732 | /* One chunk, but check for short chunk at end of buffer */
|
---|
733 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
|
---|
734 | /* Transfer no more than is currently defined */
|
---|
735 | thisrow = (long) ptr->cur_start_row + i;
|
---|
736 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
|
---|
737 | /* Transfer no more than fits in file */
|
---|
738 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
|
---|
739 | if (rows <= 0) /* this chunk might be past end of file! */
|
---|
740 | break;
|
---|
741 | byte_count = rows * bytesperrow;
|
---|
742 | if (writing)
|
---|
743 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
|
---|
744 | (void FAR *) ptr->mem_buffer[i],
|
---|
745 | file_offset, byte_count);
|
---|
746 | else
|
---|
747 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
|
---|
748 | (void FAR *) ptr->mem_buffer[i],
|
---|
749 | file_offset, byte_count);
|
---|
750 | file_offset += byte_count;
|
---|
751 | }
|
---|
752 | }
|
---|
753 |
|
---|
754 |
|
---|
755 | METHODDEF(JSAMPARRAY)
|
---|
756 | access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
|
---|
757 | JDIMENSION start_row, JDIMENSION num_rows,
|
---|
758 | boolean writable)
|
---|
759 | /* Access the part of a virtual sample array starting at start_row */
|
---|
760 | /* and extending for num_rows rows. writable is true if */
|
---|
761 | /* caller intends to modify the accessed area. */
|
---|
762 | {
|
---|
763 | JDIMENSION end_row = start_row + num_rows;
|
---|
764 | JDIMENSION undef_row;
|
---|
765 |
|
---|
766 | /* debugging check */
|
---|
767 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
|
---|
768 | ptr->mem_buffer == NULL)
|
---|
769 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
---|
770 |
|
---|
771 | /* Make the desired part of the virtual array accessible */
|
---|
772 | if (start_row < ptr->cur_start_row ||
|
---|
773 | end_row > ptr->cur_start_row+ptr->rows_in_mem) {
|
---|
774 | if (! ptr->b_s_open)
|
---|
775 | ERREXIT(cinfo, JERR_VIRTUAL_BUG);
|
---|
776 | /* Flush old buffer contents if necessary */
|
---|
777 | if (ptr->dirty) {
|
---|
778 | do_sarray_io(cinfo, ptr, TRUE);
|
---|
779 | ptr->dirty = FALSE;
|
---|
780 | }
|
---|
781 | /* Decide what part of virtual array to access.
|
---|
782 | * Algorithm: if target address > current window, assume forward scan,
|
---|
783 | * load starting at target address. If target address < current window,
|
---|
784 | * assume backward scan, load so that target area is top of window.
|
---|
785 | * Note that when switching from forward write to forward read, will have
|
---|
786 | * start_row = 0, so the limiting case applies and we load from 0 anyway.
|
---|
787 | */
|
---|
788 | if (start_row > ptr->cur_start_row) {
|
---|
789 | ptr->cur_start_row = start_row;
|
---|
790 | } else {
|
---|
791 | /* use long arithmetic here to avoid overflow & unsigned problems */
|
---|
792 | long ltemp;
|
---|
793 |
|
---|
794 | ltemp = (long) end_row - (long) ptr->rows_in_mem;
|
---|
795 | if (ltemp < 0)
|
---|
796 | ltemp = 0; /* don't fall off front end of file */
|
---|
797 | ptr->cur_start_row = (JDIMENSION) ltemp;
|
---|
798 | }
|
---|
799 | /* Read in the selected part of the array.
|
---|
800 | * During the initial write pass, we will do no actual read
|
---|
801 | * because the selected part is all undefined.
|
---|
802 | */
|
---|
803 | do_sarray_io(cinfo, ptr, FALSE);
|
---|
804 | }
|
---|
805 | /* Ensure the accessed part of the array is defined; prezero if needed.
|
---|
806 | * To improve locality of access, we only prezero the part of the array
|
---|
807 | * that the caller is about to access, not the entire in-memory array.
|
---|
808 | */
|
---|
809 | if (ptr->first_undef_row < end_row) {
|
---|
810 | if (ptr->first_undef_row < start_row) {
|
---|
811 | if (writable) /* writer skipped over a section of array */
|
---|
812 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
---|
813 | undef_row = start_row; /* but reader is allowed to read ahead */
|
---|
814 | } else {
|
---|
815 | undef_row = ptr->first_undef_row;
|
---|
816 | }
|
---|
817 | if (writable)
|
---|
818 | ptr->first_undef_row = end_row;
|
---|
819 | if (ptr->pre_zero) {
|
---|
820 | size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
|
---|
821 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
|
---|
822 | end_row -= ptr->cur_start_row;
|
---|
823 | while (undef_row < end_row) {
|
---|
824 | jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
|
---|
825 | undef_row++;
|
---|
826 | }
|
---|
827 | } else {
|
---|
828 | if (! writable) /* reader looking at undefined data */
|
---|
829 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
---|
830 | }
|
---|
831 | }
|
---|
832 | /* Flag the buffer dirty if caller will write in it */
|
---|
833 | if (writable)
|
---|
834 | ptr->dirty = TRUE;
|
---|
835 | /* Return address of proper part of the buffer */
|
---|
836 | return ptr->mem_buffer + (start_row - ptr->cur_start_row);
|
---|
837 | }
|
---|
838 |
|
---|
839 |
|
---|
840 | METHODDEF(JBLOCKARRAY)
|
---|
841 | access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
|
---|
842 | JDIMENSION start_row, JDIMENSION num_rows,
|
---|
843 | boolean writable)
|
---|
844 | /* Access the part of a virtual block array starting at start_row */
|
---|
845 | /* and extending for num_rows rows. writable is true if */
|
---|
846 | /* caller intends to modify the accessed area. */
|
---|
847 | {
|
---|
848 | JDIMENSION end_row = start_row + num_rows;
|
---|
849 | JDIMENSION undef_row;
|
---|
850 |
|
---|
851 | /* debugging check */
|
---|
852 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
|
---|
853 | ptr->mem_buffer == NULL)
|
---|
854 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
---|
855 |
|
---|
856 | /* Make the desired part of the virtual array accessible */
|
---|
857 | if (start_row < ptr->cur_start_row ||
|
---|
858 | end_row > ptr->cur_start_row+ptr->rows_in_mem) {
|
---|
859 | if (! ptr->b_s_open)
|
---|
860 | ERREXIT(cinfo, JERR_VIRTUAL_BUG);
|
---|
861 | /* Flush old buffer contents if necessary */
|
---|
862 | if (ptr->dirty) {
|
---|
863 | do_barray_io(cinfo, ptr, TRUE);
|
---|
864 | ptr->dirty = FALSE;
|
---|
865 | }
|
---|
866 | /* Decide what part of virtual array to access.
|
---|
867 | * Algorithm: if target address > current window, assume forward scan,
|
---|
868 | * load starting at target address. If target address < current window,
|
---|
869 | * assume backward scan, load so that target area is top of window.
|
---|
870 | * Note that when switching from forward write to forward read, will have
|
---|
871 | * start_row = 0, so the limiting case applies and we load from 0 anyway.
|
---|
872 | */
|
---|
873 | if (start_row > ptr->cur_start_row) {
|
---|
874 | ptr->cur_start_row = start_row;
|
---|
875 | } else {
|
---|
876 | /* use long arithmetic here to avoid overflow & unsigned problems */
|
---|
877 | long ltemp;
|
---|
878 |
|
---|
879 | ltemp = (long) end_row - (long) ptr->rows_in_mem;
|
---|
880 | if (ltemp < 0)
|
---|
881 | ltemp = 0; /* don't fall off front end of file */
|
---|
882 | ptr->cur_start_row = (JDIMENSION) ltemp;
|
---|
883 | }
|
---|
884 | /* Read in the selected part of the array.
|
---|
885 | * During the initial write pass, we will do no actual read
|
---|
886 | * because the selected part is all undefined.
|
---|
887 | */
|
---|
888 | do_barray_io(cinfo, ptr, FALSE);
|
---|
889 | }
|
---|
890 | /* Ensure the accessed part of the array is defined; prezero if needed.
|
---|
891 | * To improve locality of access, we only prezero the part of the array
|
---|
892 | * that the caller is about to access, not the entire in-memory array.
|
---|
893 | */
|
---|
894 | if (ptr->first_undef_row < end_row) {
|
---|
895 | if (ptr->first_undef_row < start_row) {
|
---|
896 | if (writable) /* writer skipped over a section of array */
|
---|
897 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
---|
898 | undef_row = start_row; /* but reader is allowed to read ahead */
|
---|
899 | } else {
|
---|
900 | undef_row = ptr->first_undef_row;
|
---|
901 | }
|
---|
902 | if (writable)
|
---|
903 | ptr->first_undef_row = end_row;
|
---|
904 | if (ptr->pre_zero) {
|
---|
905 | size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
|
---|
906 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
|
---|
907 | end_row -= ptr->cur_start_row;
|
---|
908 | while (undef_row < end_row) {
|
---|
909 | jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
|
---|
910 | undef_row++;
|
---|
911 | }
|
---|
912 | } else {
|
---|
913 | if (! writable) /* reader looking at undefined data */
|
---|
914 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
---|
915 | }
|
---|
916 | }
|
---|
917 | /* Flag the buffer dirty if caller will write in it */
|
---|
918 | if (writable)
|
---|
919 | ptr->dirty = TRUE;
|
---|
920 | /* Return address of proper part of the buffer */
|
---|
921 | return ptr->mem_buffer + (start_row - ptr->cur_start_row);
|
---|
922 | }
|
---|
923 |
|
---|
924 |
|
---|
925 | /*
|
---|
926 | * Release all objects belonging to a specified pool.
|
---|
927 | */
|
---|
928 |
|
---|
929 | METHODDEF(void)
|
---|
930 | free_pool (j_common_ptr cinfo, int pool_id)
|
---|
931 | {
|
---|
932 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
---|
933 | small_pool_ptr shdr_ptr;
|
---|
934 | large_pool_ptr lhdr_ptr;
|
---|
935 | size_t space_freed;
|
---|
936 |
|
---|
937 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
|
---|
938 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
---|
939 |
|
---|
940 | #ifdef MEM_STATS
|
---|
941 | if (cinfo->err->trace_level > 1)
|
---|
942 | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
|
---|
943 | #endif
|
---|
944 |
|
---|
945 | /* If freeing IMAGE pool, close any virtual arrays first */
|
---|
946 | if (pool_id == JPOOL_IMAGE) {
|
---|
947 | jvirt_sarray_ptr sptr;
|
---|
948 | jvirt_barray_ptr bptr;
|
---|
949 |
|
---|
950 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
|
---|
951 | if (sptr->b_s_open) { /* there may be no backing store */
|
---|
952 | sptr->b_s_open = FALSE; /* prevent recursive close if error */
|
---|
953 | (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
|
---|
954 | }
|
---|
955 | }
|
---|
956 | mem->virt_sarray_list = NULL;
|
---|
957 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
|
---|
958 | if (bptr->b_s_open) { /* there may be no backing store */
|
---|
959 | bptr->b_s_open = FALSE; /* prevent recursive close if error */
|
---|
960 | (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
|
---|
961 | }
|
---|
962 | }
|
---|
963 | mem->virt_barray_list = NULL;
|
---|
964 | }
|
---|
965 |
|
---|
966 | /* Release large objects */
|
---|
967 | lhdr_ptr = mem->large_list[pool_id];
|
---|
968 | mem->large_list[pool_id] = NULL;
|
---|
969 |
|
---|
970 | while (lhdr_ptr != NULL) {
|
---|
971 | large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
|
---|
972 | space_freed = lhdr_ptr->hdr.bytes_used +
|
---|
973 | lhdr_ptr->hdr.bytes_left +
|
---|
974 | SIZEOF(large_pool_hdr);
|
---|
975 | jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
|
---|
976 | mem->total_space_allocated -= space_freed;
|
---|
977 | lhdr_ptr = next_lhdr_ptr;
|
---|
978 | }
|
---|
979 |
|
---|
980 | /* Release small objects */
|
---|
981 | shdr_ptr = mem->small_list[pool_id];
|
---|
982 | mem->small_list[pool_id] = NULL;
|
---|
983 |
|
---|
984 | while (shdr_ptr != NULL) {
|
---|
985 | small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
|
---|
986 | space_freed = shdr_ptr->hdr.bytes_used +
|
---|
987 | shdr_ptr->hdr.bytes_left +
|
---|
988 | SIZEOF(small_pool_hdr);
|
---|
989 | jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
|
---|
990 | mem->total_space_allocated -= space_freed;
|
---|
991 | shdr_ptr = next_shdr_ptr;
|
---|
992 | }
|
---|
993 | }
|
---|
994 |
|
---|
995 |
|
---|
996 | /*
|
---|
997 | * Close up shop entirely.
|
---|
998 | * Note that this cannot be called unless cinfo->mem is non-NULL.
|
---|
999 | */
|
---|
1000 |
|
---|
1001 | METHODDEF(void)
|
---|
1002 | self_destruct (j_common_ptr cinfo)
|
---|
1003 | {
|
---|
1004 | int pool;
|
---|
1005 |
|
---|
1006 | /* Close all backing store, release all memory.
|
---|
1007 | * Releasing pools in reverse order might help avoid fragmentation
|
---|
1008 | * with some (brain-damaged) malloc libraries.
|
---|
1009 | */
|
---|
1010 | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
|
---|
1011 | free_pool(cinfo, pool);
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | /* Release the memory manager control block too. */
|
---|
1015 | jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
|
---|
1016 | cinfo->mem = NULL; /* ensures I will be called only once */
|
---|
1017 |
|
---|
1018 | jpeg_mem_term(cinfo); /* system-dependent cleanup */
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 |
|
---|
1022 | /*
|
---|
1023 | * Memory manager initialization.
|
---|
1024 | * When this is called, only the error manager pointer is valid in cinfo!
|
---|
1025 | */
|
---|
1026 |
|
---|
1027 | GLOBAL(void)
|
---|
1028 | jinit_memory_mgr (j_common_ptr cinfo)
|
---|
1029 | {
|
---|
1030 | my_mem_ptr mem;
|
---|
1031 | long max_to_use;
|
---|
1032 | int pool;
|
---|
1033 | size_t test_mac;
|
---|
1034 |
|
---|
1035 | cinfo->mem = NULL; /* for safety if init fails */
|
---|
1036 |
|
---|
1037 | /* Check for configuration errors.
|
---|
1038 | * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
|
---|
1039 | * doesn't reflect any real hardware alignment requirement.
|
---|
1040 | * The test is a little tricky: for X>0, X and X-1 have no one-bits
|
---|
1041 | * in common if and only if X is a power of 2, ie has only one one-bit.
|
---|
1042 | * Some compilers may give an "unreachable code" warning here; ignore it.
|
---|
1043 | */
|
---|
1044 | if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
|
---|
1045 | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
|
---|
1046 | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
|
---|
1047 | * a multiple of SIZEOF(ALIGN_TYPE).
|
---|
1048 | * Again, an "unreachable code" warning may be ignored here.
|
---|
1049 | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
|
---|
1050 | */
|
---|
1051 | test_mac = (size_t) MAX_ALLOC_CHUNK;
|
---|
1052 | if ((long) test_mac != MAX_ALLOC_CHUNK ||
|
---|
1053 | (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
|
---|
1054 | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
|
---|
1055 |
|
---|
1056 | max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
|
---|
1057 |
|
---|
1058 | /* Attempt to allocate memory manager's control block */
|
---|
1059 | mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
|
---|
1060 |
|
---|
1061 | if (mem == NULL) {
|
---|
1062 | jpeg_mem_term(cinfo); /* system-dependent cleanup */
|
---|
1063 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
|
---|
1064 | }
|
---|
1065 |
|
---|
1066 | /* OK, fill in the method pointers */
|
---|
1067 | mem->pub.alloc_small = alloc_small;
|
---|
1068 | mem->pub.alloc_large = alloc_large;
|
---|
1069 | mem->pub.alloc_sarray = alloc_sarray;
|
---|
1070 | mem->pub.alloc_barray = alloc_barray;
|
---|
1071 | mem->pub.request_virt_sarray = request_virt_sarray;
|
---|
1072 | mem->pub.request_virt_barray = request_virt_barray;
|
---|
1073 | mem->pub.realize_virt_arrays = realize_virt_arrays;
|
---|
1074 | mem->pub.access_virt_sarray = access_virt_sarray;
|
---|
1075 | mem->pub.access_virt_barray = access_virt_barray;
|
---|
1076 | mem->pub.free_pool = free_pool;
|
---|
1077 | mem->pub.self_destruct = self_destruct;
|
---|
1078 |
|
---|
1079 | /* Make MAX_ALLOC_CHUNK accessible to other modules */
|
---|
1080 | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
|
---|
1081 |
|
---|
1082 | /* Initialize working state */
|
---|
1083 | mem->pub.max_memory_to_use = max_to_use;
|
---|
1084 |
|
---|
1085 | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
|
---|
1086 | mem->small_list[pool] = NULL;
|
---|
1087 | mem->large_list[pool] = NULL;
|
---|
1088 | }
|
---|
1089 | mem->virt_sarray_list = NULL;
|
---|
1090 | mem->virt_barray_list = NULL;
|
---|
1091 |
|
---|
1092 | mem->total_space_allocated = SIZEOF(my_memory_mgr);
|
---|
1093 |
|
---|
1094 | /* Declare ourselves open for business */
|
---|
1095 | cinfo->mem = & mem->pub;
|
---|
1096 |
|
---|
1097 | /* Check for an environment variable JPEGMEM; if found, override the
|
---|
1098 | * default max_memory setting from jpeg_mem_init. Note that the
|
---|
1099 | * surrounding application may again override this value.
|
---|
1100 | * If your system doesn't support getenv(), define NO_GETENV to disable
|
---|
1101 | * this feature.
|
---|
1102 | */
|
---|
1103 | #ifndef NO_GETENV
|
---|
1104 | { char * memenv;
|
---|
1105 |
|
---|
1106 | if ((memenv = getenv("JPEGMEM")) != NULL) {
|
---|
1107 | char ch = 'x';
|
---|
1108 |
|
---|
1109 | if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
|
---|
1110 | if (ch == 'm' || ch == 'M')
|
---|
1111 | max_to_use *= 1000L;
|
---|
1112 | mem->pub.max_memory_to_use = max_to_use * 1000L;
|
---|
1113 | }
|
---|
1114 | }
|
---|
1115 | }
|
---|
1116 | #endif
|
---|
1117 |
|
---|
1118 | }
|
---|