[95] | 1 | /*
|
---|
| 2 | * jquant1.c
|
---|
| 3 | *
|
---|
| 4 | * Copyright (C) 1991-1996, Thomas G. Lane.
|
---|
| 5 | * This file is part of the Independent JPEG Group's software.
|
---|
| 6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
| 7 | *
|
---|
| 8 | * This file contains 1-pass color quantization (color mapping) routines.
|
---|
| 9 | * These routines provide mapping to a fixed color map using equally spaced
|
---|
| 10 | * color values. Optional Floyd-Steinberg or ordered dithering is available.
|
---|
| 11 | */
|
---|
| 12 |
|
---|
| 13 | #define JPEG_INTERNALS
|
---|
| 14 | #include "jinclude.h"
|
---|
| 15 | #include "jpeglib.h"
|
---|
| 16 |
|
---|
| 17 | #ifdef QUANT_1PASS_SUPPORTED
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | /*
|
---|
| 21 | * The main purpose of 1-pass quantization is to provide a fast, if not very
|
---|
| 22 | * high quality, colormapped output capability. A 2-pass quantizer usually
|
---|
| 23 | * gives better visual quality; however, for quantized grayscale output this
|
---|
| 24 | * quantizer is perfectly adequate. Dithering is highly recommended with this
|
---|
| 25 | * quantizer, though you can turn it off if you really want to.
|
---|
| 26 | *
|
---|
| 27 | * In 1-pass quantization the colormap must be chosen in advance of seeing the
|
---|
| 28 | * image. We use a map consisting of all combinations of Ncolors[i] color
|
---|
| 29 | * values for the i'th component. The Ncolors[] values are chosen so that
|
---|
| 30 | * their product, the total number of colors, is no more than that requested.
|
---|
| 31 | * (In most cases, the product will be somewhat less.)
|
---|
| 32 | *
|
---|
| 33 | * Since the colormap is orthogonal, the representative value for each color
|
---|
| 34 | * component can be determined without considering the other components;
|
---|
| 35 | * then these indexes can be combined into a colormap index by a standard
|
---|
| 36 | * N-dimensional-array-subscript calculation. Most of the arithmetic involved
|
---|
| 37 | * can be precalculated and stored in the lookup table colorindex[].
|
---|
| 38 | * colorindex[i][j] maps pixel value j in component i to the nearest
|
---|
| 39 | * representative value (grid plane) for that component; this index is
|
---|
| 40 | * multiplied by the array stride for component i, so that the
|
---|
| 41 | * index of the colormap entry closest to a given pixel value is just
|
---|
| 42 | * sum( colorindex[component-number][pixel-component-value] )
|
---|
| 43 | * Aside from being fast, this scheme allows for variable spacing between
|
---|
| 44 | * representative values with no additional lookup cost.
|
---|
| 45 | *
|
---|
| 46 | * If gamma correction has been applied in color conversion, it might be wise
|
---|
| 47 | * to adjust the color grid spacing so that the representative colors are
|
---|
| 48 | * equidistant in linear space. At this writing, gamma correction is not
|
---|
| 49 | * implemented by jdcolor, so nothing is done here.
|
---|
| 50 | */
|
---|
| 51 |
|
---|
| 52 |
|
---|
| 53 | /* Declarations for ordered dithering.
|
---|
| 54 | *
|
---|
| 55 | * We use a standard 16x16 ordered dither array. The basic concept of ordered
|
---|
| 56 | * dithering is described in many references, for instance Dale Schumacher's
|
---|
| 57 | * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
|
---|
| 58 | * In place of Schumacher's comparisons against a "threshold" value, we add a
|
---|
| 59 | * "dither" value to the input pixel and then round the result to the nearest
|
---|
| 60 | * output value. The dither value is equivalent to (0.5 - threshold) times
|
---|
| 61 | * the distance between output values. For ordered dithering, we assume that
|
---|
| 62 | * the output colors are equally spaced; if not, results will probably be
|
---|
| 63 | * worse, since the dither may be too much or too little at a given point.
|
---|
| 64 | *
|
---|
| 65 | * The normal calculation would be to form pixel value + dither, range-limit
|
---|
| 66 | * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
|
---|
| 67 | * We can skip the separate range-limiting step by extending the colorindex
|
---|
| 68 | * table in both directions.
|
---|
| 69 | */
|
---|
| 70 |
|
---|
| 71 | #define ODITHER_SIZE 16 /* dimension of dither matrix */
|
---|
| 72 | /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
|
---|
| 73 | #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
|
---|
| 74 | #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
|
---|
| 75 |
|
---|
| 76 | typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
|
---|
| 77 | typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
|
---|
| 78 |
|
---|
| 79 | static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
|
---|
| 80 | /* Bayer's order-4 dither array. Generated by the code given in
|
---|
| 81 | * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
|
---|
| 82 | * The values in this array must range from 0 to ODITHER_CELLS-1.
|
---|
| 83 | */
|
---|
| 84 | { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
|
---|
| 85 | { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
|
---|
| 86 | { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
|
---|
| 87 | { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
|
---|
| 88 | { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
|
---|
| 89 | { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
|
---|
| 90 | { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
|
---|
| 91 | { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
|
---|
| 92 | { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
|
---|
| 93 | { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
|
---|
| 94 | { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
|
---|
| 95 | { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
|
---|
| 96 | { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
|
---|
| 97 | { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
|
---|
| 98 | { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
|
---|
| 99 | { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
|
---|
| 100 | };
|
---|
| 101 |
|
---|
| 102 |
|
---|
| 103 | /* Declarations for Floyd-Steinberg dithering.
|
---|
| 104 | *
|
---|
| 105 | * Errors are accumulated into the array fserrors[], at a resolution of
|
---|
| 106 | * 1/16th of a pixel count. The error at a given pixel is propagated
|
---|
| 107 | * to its not-yet-processed neighbors using the standard F-S fractions,
|
---|
| 108 | * ... (here) 7/16
|
---|
| 109 | * 3/16 5/16 1/16
|
---|
| 110 | * We work left-to-right on even rows, right-to-left on odd rows.
|
---|
| 111 | *
|
---|
| 112 | * We can get away with a single array (holding one row's worth of errors)
|
---|
| 113 | * by using it to store the current row's errors at pixel columns not yet
|
---|
| 114 | * processed, but the next row's errors at columns already processed. We
|
---|
| 115 | * need only a few extra variables to hold the errors immediately around the
|
---|
| 116 | * current column. (If we are lucky, those variables are in registers, but
|
---|
| 117 | * even if not, they're probably cheaper to access than array elements are.)
|
---|
| 118 | *
|
---|
| 119 | * The fserrors[] array is indexed [component#][position].
|
---|
| 120 | * We provide (#columns + 2) entries per component; the extra entry at each
|
---|
| 121 | * end saves us from special-casing the first and last pixels.
|
---|
| 122 | *
|
---|
| 123 | * Note: on a wide image, we might not have enough room in a PC's near data
|
---|
| 124 | * segment to hold the error array; so it is allocated with alloc_large.
|
---|
| 125 | */
|
---|
| 126 |
|
---|
| 127 | #if BITS_IN_JSAMPLE == 8
|
---|
| 128 | typedef INT16 FSERROR; /* 16 bits should be enough */
|
---|
| 129 | typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
---|
| 130 | #else
|
---|
| 131 | typedef INT32 FSERROR; /* may need more than 16 bits */
|
---|
| 132 | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
---|
| 133 | #endif
|
---|
| 134 |
|
---|
| 135 | typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
---|
| 136 |
|
---|
| 137 |
|
---|
| 138 | /* Private subobject */
|
---|
| 139 |
|
---|
| 140 | #define MAX_Q_COMPS 4 /* max components I can handle */
|
---|
| 141 |
|
---|
| 142 | typedef struct {
|
---|
| 143 | struct jpeg_color_quantizer pub; /* public fields */
|
---|
| 144 |
|
---|
| 145 | /* Initially allocated colormap is saved here */
|
---|
| 146 | JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
|
---|
| 147 | int sv_actual; /* number of entries in use */
|
---|
| 148 |
|
---|
| 149 | JSAMPARRAY colorindex; /* Precomputed mapping for speed */
|
---|
| 150 | /* colorindex[i][j] = index of color closest to pixel value j in component i,
|
---|
| 151 | * premultiplied as described above. Since colormap indexes must fit into
|
---|
| 152 | * JSAMPLEs, the entries of this array will too.
|
---|
| 153 | */
|
---|
| 154 | boolean is_padded; /* is the colorindex padded for odither? */
|
---|
| 155 |
|
---|
| 156 | int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
|
---|
| 157 |
|
---|
| 158 | /* Variables for ordered dithering */
|
---|
| 159 | int row_index; /* cur row's vertical index in dither matrix */
|
---|
| 160 | ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
|
---|
| 161 |
|
---|
| 162 | /* Variables for Floyd-Steinberg dithering */
|
---|
| 163 | FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
|
---|
| 164 | boolean on_odd_row; /* flag to remember which row we are on */
|
---|
| 165 | } my_cquantizer;
|
---|
| 166 |
|
---|
| 167 | typedef my_cquantizer * my_cquantize_ptr;
|
---|
| 168 |
|
---|
| 169 |
|
---|
| 170 | /*
|
---|
| 171 | * Policy-making subroutines for create_colormap and create_colorindex.
|
---|
| 172 | * These routines determine the colormap to be used. The rest of the module
|
---|
| 173 | * only assumes that the colormap is orthogonal.
|
---|
| 174 | *
|
---|
| 175 | * * select_ncolors decides how to divvy up the available colors
|
---|
| 176 | * among the components.
|
---|
| 177 | * * output_value defines the set of representative values for a component.
|
---|
| 178 | * * largest_input_value defines the mapping from input values to
|
---|
| 179 | * representative values for a component.
|
---|
| 180 | * Note that the latter two routines may impose different policies for
|
---|
| 181 | * different components, though this is not currently done.
|
---|
| 182 | */
|
---|
| 183 |
|
---|
| 184 |
|
---|
| 185 | LOCAL(int)
|
---|
| 186 | select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
|
---|
| 187 | /* Determine allocation of desired colors to components, */
|
---|
| 188 | /* and fill in Ncolors[] array to indicate choice. */
|
---|
| 189 | /* Return value is total number of colors (product of Ncolors[] values). */
|
---|
| 190 | {
|
---|
| 191 | int nc = cinfo->out_color_components; /* number of color components */
|
---|
| 192 | int max_colors = cinfo->desired_number_of_colors;
|
---|
| 193 | int total_colors, iroot, i, j;
|
---|
| 194 | boolean changed;
|
---|
| 195 | long temp;
|
---|
| 196 | static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
|
---|
| 197 |
|
---|
| 198 | /* We can allocate at least the nc'th root of max_colors per component. */
|
---|
| 199 | /* Compute floor(nc'th root of max_colors). */
|
---|
| 200 | iroot = 1;
|
---|
| 201 | do {
|
---|
| 202 | iroot++;
|
---|
| 203 | temp = iroot; /* set temp = iroot ** nc */
|
---|
| 204 | for (i = 1; i < nc; i++)
|
---|
| 205 | temp *= iroot;
|
---|
| 206 | } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
|
---|
| 207 | iroot--; /* now iroot = floor(root) */
|
---|
| 208 |
|
---|
| 209 | /* Must have at least 2 color values per component */
|
---|
| 210 | if (iroot < 2)
|
---|
| 211 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
|
---|
| 212 |
|
---|
| 213 | /* Initialize to iroot color values for each component */
|
---|
| 214 | total_colors = 1;
|
---|
| 215 | for (i = 0; i < nc; i++) {
|
---|
| 216 | Ncolors[i] = iroot;
|
---|
| 217 | total_colors *= iroot;
|
---|
| 218 | }
|
---|
| 219 | /* We may be able to increment the count for one or more components without
|
---|
| 220 | * exceeding max_colors, though we know not all can be incremented.
|
---|
| 221 | * Sometimes, the first component can be incremented more than once!
|
---|
| 222 | * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
|
---|
| 223 | * In RGB colorspace, try to increment G first, then R, then B.
|
---|
| 224 | */
|
---|
| 225 | do {
|
---|
| 226 | changed = FALSE;
|
---|
| 227 | for (i = 0; i < nc; i++) {
|
---|
| 228 | j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
|
---|
| 229 | /* calculate new total_colors if Ncolors[j] is incremented */
|
---|
| 230 | temp = total_colors / Ncolors[j];
|
---|
| 231 | temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
|
---|
| 232 | if (temp > (long) max_colors)
|
---|
| 233 | break; /* won't fit, done with this pass */
|
---|
| 234 | Ncolors[j]++; /* OK, apply the increment */
|
---|
| 235 | total_colors = (int) temp;
|
---|
| 236 | changed = TRUE;
|
---|
| 237 | }
|
---|
| 238 | } while (changed);
|
---|
| 239 |
|
---|
| 240 | return total_colors;
|
---|
| 241 | }
|
---|
| 242 |
|
---|
| 243 |
|
---|
| 244 | LOCAL(int)
|
---|
| 245 | output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
---|
| 246 | /* Return j'th output value, where j will range from 0 to maxj */
|
---|
| 247 | /* The output values must fall in 0..MAXJSAMPLE in increasing order */
|
---|
| 248 | {
|
---|
| 249 | /* We always provide values 0 and MAXJSAMPLE for each component;
|
---|
| 250 | * any additional values are equally spaced between these limits.
|
---|
| 251 | * (Forcing the upper and lower values to the limits ensures that
|
---|
| 252 | * dithering can't produce a color outside the selected gamut.)
|
---|
| 253 | */
|
---|
| 254 | return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
|
---|
| 255 | }
|
---|
| 256 |
|
---|
| 257 |
|
---|
| 258 | LOCAL(int)
|
---|
| 259 | largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
---|
| 260 | /* Return largest input value that should map to j'th output value */
|
---|
| 261 | /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
|
---|
| 262 | {
|
---|
| 263 | /* Breakpoints are halfway between values returned by output_value */
|
---|
| 264 | return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 |
|
---|
| 268 | /*
|
---|
| 269 | * Create the colormap.
|
---|
| 270 | */
|
---|
| 271 |
|
---|
| 272 | LOCAL(void)
|
---|
| 273 | create_colormap (j_decompress_ptr cinfo)
|
---|
| 274 | {
|
---|
| 275 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
| 276 | JSAMPARRAY colormap; /* Created colormap */
|
---|
| 277 | int total_colors; /* Number of distinct output colors */
|
---|
| 278 | int i,j,k, nci, blksize, blkdist, ptr, val;
|
---|
| 279 |
|
---|
| 280 | /* Select number of colors for each component */
|
---|
| 281 | total_colors = select_ncolors(cinfo, cquantize->Ncolors);
|
---|
| 282 |
|
---|
| 283 | /* Report selected color counts */
|
---|
| 284 | if (cinfo->out_color_components == 3)
|
---|
| 285 | TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
|
---|
| 286 | total_colors, cquantize->Ncolors[0],
|
---|
| 287 | cquantize->Ncolors[1], cquantize->Ncolors[2]);
|
---|
| 288 | else
|
---|
| 289 | TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
|
---|
| 290 |
|
---|
| 291 | /* Allocate and fill in the colormap. */
|
---|
| 292 | /* The colors are ordered in the map in standard row-major order, */
|
---|
| 293 | /* i.e. rightmost (highest-indexed) color changes most rapidly. */
|
---|
| 294 |
|
---|
| 295 | colormap = (*cinfo->mem->alloc_sarray)
|
---|
| 296 | ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 297 | (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
|
---|
| 298 |
|
---|
| 299 | /* blksize is number of adjacent repeated entries for a component */
|
---|
| 300 | /* blkdist is distance between groups of identical entries for a component */
|
---|
| 301 | blkdist = total_colors;
|
---|
| 302 |
|
---|
| 303 | for (i = 0; i < cinfo->out_color_components; i++) {
|
---|
| 304 | /* fill in colormap entries for i'th color component */
|
---|
| 305 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
---|
| 306 | blksize = blkdist / nci;
|
---|
| 307 | for (j = 0; j < nci; j++) {
|
---|
| 308 | /* Compute j'th output value (out of nci) for component */
|
---|
| 309 | val = output_value(cinfo, i, j, nci-1);
|
---|
| 310 | /* Fill in all colormap entries that have this value of this component */
|
---|
| 311 | for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
|
---|
| 312 | /* fill in blksize entries beginning at ptr */
|
---|
| 313 | for (k = 0; k < blksize; k++)
|
---|
| 314 | colormap[i][ptr+k] = (JSAMPLE) val;
|
---|
| 315 | }
|
---|
| 316 | }
|
---|
| 317 | blkdist = blksize; /* blksize of this color is blkdist of next */
|
---|
| 318 | }
|
---|
| 319 |
|
---|
| 320 | /* Save the colormap in private storage,
|
---|
| 321 | * where it will survive color quantization mode changes.
|
---|
| 322 | */
|
---|
| 323 | cquantize->sv_colormap = colormap;
|
---|
| 324 | cquantize->sv_actual = total_colors;
|
---|
| 325 | }
|
---|
| 326 |
|
---|
| 327 |
|
---|
| 328 | /*
|
---|
| 329 | * Create the color index table.
|
---|
| 330 | */
|
---|
| 331 |
|
---|
| 332 | LOCAL(void)
|
---|
| 333 | create_colorindex (j_decompress_ptr cinfo)
|
---|
| 334 | {
|
---|
| 335 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
| 336 | JSAMPROW indexptr;
|
---|
| 337 | int i,j,k, nci, blksize, val, pad;
|
---|
| 338 |
|
---|
| 339 | /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
|
---|
| 340 | * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
|
---|
| 341 | * This is not necessary in the other dithering modes. However, we
|
---|
| 342 | * flag whether it was done in case user changes dithering mode.
|
---|
| 343 | */
|
---|
| 344 | if (cinfo->dither_mode == JDITHER_ORDERED) {
|
---|
| 345 | pad = MAXJSAMPLE*2;
|
---|
| 346 | cquantize->is_padded = TRUE;
|
---|
| 347 | } else {
|
---|
| 348 | pad = 0;
|
---|
| 349 | cquantize->is_padded = FALSE;
|
---|
| 350 | }
|
---|
| 351 |
|
---|
| 352 | cquantize->colorindex = (*cinfo->mem->alloc_sarray)
|
---|
| 353 | ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 354 | (JDIMENSION) (MAXJSAMPLE+1 + pad),
|
---|
| 355 | (JDIMENSION) cinfo->out_color_components);
|
---|
| 356 |
|
---|
| 357 | /* blksize is number of adjacent repeated entries for a component */
|
---|
| 358 | blksize = cquantize->sv_actual;
|
---|
| 359 |
|
---|
| 360 | for (i = 0; i < cinfo->out_color_components; i++) {
|
---|
| 361 | /* fill in colorindex entries for i'th color component */
|
---|
| 362 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
---|
| 363 | blksize = blksize / nci;
|
---|
| 364 |
|
---|
| 365 | /* adjust colorindex pointers to provide padding at negative indexes. */
|
---|
| 366 | if (pad)
|
---|
| 367 | cquantize->colorindex[i] += MAXJSAMPLE;
|
---|
| 368 |
|
---|
| 369 | /* in loop, val = index of current output value, */
|
---|
| 370 | /* and k = largest j that maps to current val */
|
---|
| 371 | indexptr = cquantize->colorindex[i];
|
---|
| 372 | val = 0;
|
---|
| 373 | k = largest_input_value(cinfo, i, 0, nci-1);
|
---|
| 374 | for (j = 0; j <= MAXJSAMPLE; j++) {
|
---|
| 375 | while (j > k) /* advance val if past boundary */
|
---|
| 376 | k = largest_input_value(cinfo, i, ++val, nci-1);
|
---|
| 377 | /* premultiply so that no multiplication needed in main processing */
|
---|
| 378 | indexptr[j] = (JSAMPLE) (val * blksize);
|
---|
| 379 | }
|
---|
| 380 | /* Pad at both ends if necessary */
|
---|
| 381 | if (pad)
|
---|
| 382 | for (j = 1; j <= MAXJSAMPLE; j++) {
|
---|
| 383 | indexptr[-j] = indexptr[0];
|
---|
| 384 | indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
|
---|
| 385 | }
|
---|
| 386 | }
|
---|
| 387 | }
|
---|
| 388 |
|
---|
| 389 |
|
---|
| 390 | /*
|
---|
| 391 | * Create an ordered-dither array for a component having ncolors
|
---|
| 392 | * distinct output values.
|
---|
| 393 | */
|
---|
| 394 |
|
---|
| 395 | LOCAL(ODITHER_MATRIX_PTR)
|
---|
| 396 | make_odither_array (j_decompress_ptr cinfo, int ncolors)
|
---|
| 397 | {
|
---|
| 398 | ODITHER_MATRIX_PTR odither;
|
---|
| 399 | int j,k;
|
---|
| 400 | INT32 num,den;
|
---|
| 401 |
|
---|
| 402 | odither = (ODITHER_MATRIX_PTR)
|
---|
| 403 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 404 | SIZEOF(ODITHER_MATRIX));
|
---|
| 405 | /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
|
---|
| 406 | * Hence the dither value for the matrix cell with fill order f
|
---|
| 407 | * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
|
---|
| 408 | * On 16-bit-int machine, be careful to avoid overflow.
|
---|
| 409 | */
|
---|
| 410 | den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
|
---|
| 411 | for (j = 0; j < ODITHER_SIZE; j++) {
|
---|
| 412 | for (k = 0; k < ODITHER_SIZE; k++) {
|
---|
| 413 | num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
|
---|
| 414 | * MAXJSAMPLE;
|
---|
| 415 | /* Ensure round towards zero despite C's lack of consistency
|
---|
| 416 | * about rounding negative values in integer division...
|
---|
| 417 | */
|
---|
| 418 | odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
|
---|
| 419 | }
|
---|
| 420 | }
|
---|
| 421 | return odither;
|
---|
| 422 | }
|
---|
| 423 |
|
---|
| 424 |
|
---|
| 425 | /*
|
---|
| 426 | * Create the ordered-dither tables.
|
---|
| 427 | * Components having the same number of representative colors may
|
---|
| 428 | * share a dither table.
|
---|
| 429 | */
|
---|
| 430 |
|
---|
| 431 | LOCAL(void)
|
---|
| 432 | create_odither_tables (j_decompress_ptr cinfo)
|
---|
| 433 | {
|
---|
| 434 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
| 435 | ODITHER_MATRIX_PTR odither;
|
---|
| 436 | int i, j, nci;
|
---|
| 437 |
|
---|
| 438 | for (i = 0; i < cinfo->out_color_components; i++) {
|
---|
| 439 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
---|
| 440 | odither = NULL; /* search for matching prior component */
|
---|
| 441 | for (j = 0; j < i; j++) {
|
---|
| 442 | if (nci == cquantize->Ncolors[j]) {
|
---|
| 443 | odither = cquantize->odither[j];
|
---|
| 444 | break;
|
---|
| 445 | }
|
---|
| 446 | }
|
---|
| 447 | if (odither == NULL) /* need a new table? */
|
---|
| 448 | odither = make_odither_array(cinfo, nci);
|
---|
| 449 | cquantize->odither[i] = odither;
|
---|
| 450 | }
|
---|
| 451 | }
|
---|
| 452 |
|
---|
| 453 |
|
---|
| 454 | /*
|
---|
| 455 | * Map some rows of pixels to the output colormapped representation.
|
---|
| 456 | */
|
---|
| 457 |
|
---|
| 458 | METHODDEF(void)
|
---|
| 459 | color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
---|
| 460 | JSAMPARRAY output_buf, int num_rows)
|
---|
| 461 | /* General case, no dithering */
|
---|
| 462 | {
|
---|
| 463 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
| 464 | JSAMPARRAY colorindex = cquantize->colorindex;
|
---|
| 465 | register int pixcode, ci;
|
---|
| 466 | register JSAMPROW ptrin, ptrout;
|
---|
| 467 | int row;
|
---|
| 468 | JDIMENSION col;
|
---|
| 469 | JDIMENSION width = cinfo->output_width;
|
---|
| 470 | register int nc = cinfo->out_color_components;
|
---|
| 471 |
|
---|
| 472 | for (row = 0; row < num_rows; row++) {
|
---|
| 473 | ptrin = input_buf[row];
|
---|
| 474 | ptrout = output_buf[row];
|
---|
| 475 | for (col = width; col > 0; col--) {
|
---|
| 476 | pixcode = 0;
|
---|
| 477 | for (ci = 0; ci < nc; ci++) {
|
---|
| 478 | pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
|
---|
| 479 | }
|
---|
| 480 | *ptrout++ = (JSAMPLE) pixcode;
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 | }
|
---|
| 484 |
|
---|
| 485 |
|
---|
| 486 | METHODDEF(void)
|
---|
| 487 | color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
---|
| 488 | JSAMPARRAY output_buf, int num_rows)
|
---|
| 489 | /* Fast path for out_color_components==3, no dithering */
|
---|
| 490 | {
|
---|
| 491 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
| 492 | register int pixcode;
|
---|
| 493 | register JSAMPROW ptrin, ptrout;
|
---|
| 494 | JSAMPROW colorindex0 = cquantize->colorindex[0];
|
---|
| 495 | JSAMPROW colorindex1 = cquantize->colorindex[1];
|
---|
| 496 | JSAMPROW colorindex2 = cquantize->colorindex[2];
|
---|
| 497 | int row;
|
---|
| 498 | JDIMENSION col;
|
---|
| 499 | JDIMENSION width = cinfo->output_width;
|
---|
| 500 |
|
---|
| 501 | for (row = 0; row < num_rows; row++) {
|
---|
| 502 | ptrin = input_buf[row];
|
---|
| 503 | ptrout = output_buf[row];
|
---|
| 504 | for (col = width; col > 0; col--) {
|
---|
| 505 | pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
|
---|
| 506 | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
|
---|
| 507 | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
|
---|
| 508 | *ptrout++ = (JSAMPLE) pixcode;
|
---|
| 509 | }
|
---|
| 510 | }
|
---|
| 511 | }
|
---|
| 512 |
|
---|
| 513 |
|
---|
| 514 | METHODDEF(void)
|
---|
| 515 | quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
---|
| 516 | JSAMPARRAY output_buf, int num_rows)
|
---|
| 517 | /* General case, with ordered dithering */
|
---|
| 518 | {
|
---|
| 519 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
| 520 | register JSAMPROW input_ptr;
|
---|
| 521 | register JSAMPROW output_ptr;
|
---|
| 522 | JSAMPROW colorindex_ci;
|
---|
| 523 | int * dither; /* points to active row of dither matrix */
|
---|
| 524 | int row_index, col_index; /* current indexes into dither matrix */
|
---|
| 525 | int nc = cinfo->out_color_components;
|
---|
| 526 | int ci;
|
---|
| 527 | int row;
|
---|
| 528 | JDIMENSION col;
|
---|
| 529 | JDIMENSION width = cinfo->output_width;
|
---|
| 530 |
|
---|
| 531 | for (row = 0; row < num_rows; row++) {
|
---|
| 532 | /* Initialize output values to 0 so can process components separately */
|
---|
| 533 | jzero_far((void FAR *) output_buf[row],
|
---|
| 534 | (size_t) (width * SIZEOF(JSAMPLE)));
|
---|
| 535 | row_index = cquantize->row_index;
|
---|
| 536 | for (ci = 0; ci < nc; ci++) {
|
---|
| 537 | input_ptr = input_buf[row] + ci;
|
---|
| 538 | output_ptr = output_buf[row];
|
---|
| 539 | colorindex_ci = cquantize->colorindex[ci];
|
---|
| 540 | dither = cquantize->odither[ci][row_index];
|
---|
| 541 | col_index = 0;
|
---|
| 542 |
|
---|
| 543 | for (col = width; col > 0; col--) {
|
---|
| 544 | /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
|
---|
| 545 | * select output value, accumulate into output code for this pixel.
|
---|
| 546 | * Range-limiting need not be done explicitly, as we have extended
|
---|
| 547 | * the colorindex table to produce the right answers for out-of-range
|
---|
| 548 | * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
|
---|
| 549 | * required amount of padding.
|
---|
| 550 | */
|
---|
| 551 | *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
|
---|
| 552 | input_ptr += nc;
|
---|
| 553 | output_ptr++;
|
---|
| 554 | col_index = (col_index + 1) & ODITHER_MASK;
|
---|
| 555 | }
|
---|
| 556 | }
|
---|
| 557 | /* Advance row index for next row */
|
---|
| 558 | row_index = (row_index + 1) & ODITHER_MASK;
|
---|
| 559 | cquantize->row_index = row_index;
|
---|
| 560 | }
|
---|
| 561 | }
|
---|
| 562 |
|
---|
| 563 |
|
---|
| 564 | METHODDEF(void)
|
---|
| 565 | quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
---|
| 566 | JSAMPARRAY output_buf, int num_rows)
|
---|
| 567 | /* Fast path for out_color_components==3, with ordered dithering */
|
---|
| 568 | {
|
---|
| 569 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
| 570 | register int pixcode;
|
---|
| 571 | register JSAMPROW input_ptr;
|
---|
| 572 | register JSAMPROW output_ptr;
|
---|
| 573 | JSAMPROW colorindex0 = cquantize->colorindex[0];
|
---|
| 574 | JSAMPROW colorindex1 = cquantize->colorindex[1];
|
---|
| 575 | JSAMPROW colorindex2 = cquantize->colorindex[2];
|
---|
| 576 | int * dither0; /* points to active row of dither matrix */
|
---|
| 577 | int * dither1;
|
---|
| 578 | int * dither2;
|
---|
| 579 | int row_index, col_index; /* current indexes into dither matrix */
|
---|
| 580 | int row;
|
---|
| 581 | JDIMENSION col;
|
---|
| 582 | JDIMENSION width = cinfo->output_width;
|
---|
| 583 |
|
---|
| 584 | for (row = 0; row < num_rows; row++) {
|
---|
| 585 | row_index = cquantize->row_index;
|
---|
| 586 | input_ptr = input_buf[row];
|
---|
| 587 | output_ptr = output_buf[row];
|
---|
| 588 | dither0 = cquantize->odither[0][row_index];
|
---|
| 589 | dither1 = cquantize->odither[1][row_index];
|
---|
| 590 | dither2 = cquantize->odither[2][row_index];
|
---|
| 591 | col_index = 0;
|
---|
| 592 |
|
---|
| 593 | for (col = width; col > 0; col--) {
|
---|
| 594 | pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
|
---|
| 595 | dither0[col_index]]);
|
---|
| 596 | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
|
---|
| 597 | dither1[col_index]]);
|
---|
| 598 | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
|
---|
| 599 | dither2[col_index]]);
|
---|
| 600 | *output_ptr++ = (JSAMPLE) pixcode;
|
---|
| 601 | col_index = (col_index + 1) & ODITHER_MASK;
|
---|
| 602 | }
|
---|
| 603 | row_index = (row_index + 1) & ODITHER_MASK;
|
---|
| 604 | cquantize->row_index = row_index;
|
---|
| 605 | }
|
---|
| 606 | }
|
---|
| 607 |
|
---|
| 608 |
|
---|
| 609 | METHODDEF(void)
|
---|
| 610 | quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
---|
| 611 | JSAMPARRAY output_buf, int num_rows)
|
---|
| 612 | /* General case, with Floyd-Steinberg dithering */
|
---|
| 613 | {
|
---|
| 614 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
| 615 | register LOCFSERROR cur; /* current error or pixel value */
|
---|
| 616 | LOCFSERROR belowerr; /* error for pixel below cur */
|
---|
| 617 | LOCFSERROR bpreverr; /* error for below/prev col */
|
---|
| 618 | LOCFSERROR bnexterr; /* error for below/next col */
|
---|
| 619 | LOCFSERROR delta;
|
---|
| 620 | register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
---|
| 621 | register JSAMPROW input_ptr;
|
---|
| 622 | register JSAMPROW output_ptr;
|
---|
| 623 | JSAMPROW colorindex_ci;
|
---|
| 624 | JSAMPROW colormap_ci;
|
---|
| 625 | int pixcode;
|
---|
| 626 | int nc = cinfo->out_color_components;
|
---|
| 627 | int dir; /* 1 for left-to-right, -1 for right-to-left */
|
---|
| 628 | int dirnc; /* dir * nc */
|
---|
| 629 | int ci;
|
---|
| 630 | int row;
|
---|
| 631 | JDIMENSION col;
|
---|
| 632 | JDIMENSION width = cinfo->output_width;
|
---|
| 633 | JSAMPLE *range_limit = cinfo->sample_range_limit;
|
---|
| 634 | SHIFT_TEMPS
|
---|
| 635 |
|
---|
| 636 | for (row = 0; row < num_rows; row++) {
|
---|
| 637 | /* Initialize output values to 0 so can process components separately */
|
---|
| 638 | jzero_far((void FAR *) output_buf[row],
|
---|
| 639 | (size_t) (width * SIZEOF(JSAMPLE)));
|
---|
| 640 | for (ci = 0; ci < nc; ci++) {
|
---|
| 641 | input_ptr = input_buf[row] + ci;
|
---|
| 642 | output_ptr = output_buf[row];
|
---|
| 643 | if (cquantize->on_odd_row) {
|
---|
| 644 | /* work right to left in this row */
|
---|
| 645 | input_ptr += (width-1) * nc; /* so point to rightmost pixel */
|
---|
| 646 | output_ptr += width-1;
|
---|
| 647 | dir = -1;
|
---|
| 648 | dirnc = -nc;
|
---|
| 649 | errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
|
---|
| 650 | } else {
|
---|
| 651 | /* work left to right in this row */
|
---|
| 652 | dir = 1;
|
---|
| 653 | dirnc = nc;
|
---|
| 654 | errorptr = cquantize->fserrors[ci]; /* => entry before first column */
|
---|
| 655 | }
|
---|
| 656 | colorindex_ci = cquantize->colorindex[ci];
|
---|
| 657 | colormap_ci = cquantize->sv_colormap[ci];
|
---|
| 658 | /* Preset error values: no error propagated to first pixel from left */
|
---|
| 659 | cur = 0;
|
---|
| 660 | /* and no error propagated to row below yet */
|
---|
| 661 | belowerr = bpreverr = 0;
|
---|
| 662 |
|
---|
| 663 | for (col = width; col > 0; col--) {
|
---|
| 664 | /* cur holds the error propagated from the previous pixel on the
|
---|
| 665 | * current line. Add the error propagated from the previous line
|
---|
| 666 | * to form the complete error correction term for this pixel, and
|
---|
| 667 | * round the error term (which is expressed * 16) to an integer.
|
---|
| 668 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
---|
| 669 | * for either sign of the error value.
|
---|
| 670 | * Note: errorptr points to *previous* column's array entry.
|
---|
| 671 | */
|
---|
| 672 | cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
|
---|
| 673 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
---|
| 674 | * The maximum error is +- MAXJSAMPLE; this sets the required size
|
---|
| 675 | * of the range_limit array.
|
---|
| 676 | */
|
---|
| 677 | cur += GETJSAMPLE(*input_ptr);
|
---|
| 678 | cur = GETJSAMPLE(range_limit[cur]);
|
---|
| 679 | /* Select output value, accumulate into output code for this pixel */
|
---|
| 680 | pixcode = GETJSAMPLE(colorindex_ci[cur]);
|
---|
| 681 | *output_ptr += (JSAMPLE) pixcode;
|
---|
| 682 | /* Compute actual representation error at this pixel */
|
---|
| 683 | /* Note: we can do this even though we don't have the final */
|
---|
| 684 | /* pixel code, because the colormap is orthogonal. */
|
---|
| 685 | cur -= GETJSAMPLE(colormap_ci[pixcode]);
|
---|
| 686 | /* Compute error fractions to be propagated to adjacent pixels.
|
---|
| 687 | * Add these into the running sums, and simultaneously shift the
|
---|
| 688 | * next-line error sums left by 1 column.
|
---|
| 689 | */
|
---|
| 690 | bnexterr = cur;
|
---|
| 691 | delta = cur * 2;
|
---|
| 692 | cur += delta; /* form error * 3 */
|
---|
| 693 | errorptr[0] = (FSERROR) (bpreverr + cur);
|
---|
| 694 | cur += delta; /* form error * 5 */
|
---|
| 695 | bpreverr = belowerr + cur;
|
---|
| 696 | belowerr = bnexterr;
|
---|
| 697 | cur += delta; /* form error * 7 */
|
---|
| 698 | /* At this point cur contains the 7/16 error value to be propagated
|
---|
| 699 | * to the next pixel on the current line, and all the errors for the
|
---|
| 700 | * next line have been shifted over. We are therefore ready to move on.
|
---|
| 701 | */
|
---|
| 702 | input_ptr += dirnc; /* advance input ptr to next column */
|
---|
| 703 | output_ptr += dir; /* advance output ptr to next column */
|
---|
| 704 | errorptr += dir; /* advance errorptr to current column */
|
---|
| 705 | }
|
---|
| 706 | /* Post-loop cleanup: we must unload the final error value into the
|
---|
| 707 | * final fserrors[] entry. Note we need not unload belowerr because
|
---|
| 708 | * it is for the dummy column before or after the actual array.
|
---|
| 709 | */
|
---|
| 710 | errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
|
---|
| 711 | }
|
---|
| 712 | cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
|
---|
| 713 | }
|
---|
| 714 | }
|
---|
| 715 |
|
---|
| 716 |
|
---|
| 717 | /*
|
---|
| 718 | * Allocate workspace for Floyd-Steinberg errors.
|
---|
| 719 | */
|
---|
| 720 |
|
---|
| 721 | LOCAL(void)
|
---|
| 722 | alloc_fs_workspace (j_decompress_ptr cinfo)
|
---|
| 723 | {
|
---|
| 724 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
| 725 | size_t arraysize;
|
---|
| 726 | int i;
|
---|
| 727 |
|
---|
| 728 | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
---|
| 729 | for (i = 0; i < cinfo->out_color_components; i++) {
|
---|
| 730 | cquantize->fserrors[i] = (FSERRPTR)
|
---|
| 731 | (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
---|
| 732 | }
|
---|
| 733 | }
|
---|
| 734 |
|
---|
| 735 |
|
---|
| 736 | /*
|
---|
| 737 | * Initialize for one-pass color quantization.
|
---|
| 738 | */
|
---|
| 739 |
|
---|
| 740 | METHODDEF(void)
|
---|
| 741 | start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
---|
| 742 | {
|
---|
| 743 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
| 744 | size_t arraysize;
|
---|
| 745 | int i;
|
---|
| 746 |
|
---|
| 747 | /* Install my colormap. */
|
---|
| 748 | cinfo->colormap = cquantize->sv_colormap;
|
---|
| 749 | cinfo->actual_number_of_colors = cquantize->sv_actual;
|
---|
| 750 |
|
---|
| 751 | /* Initialize for desired dithering mode. */
|
---|
| 752 | switch (cinfo->dither_mode) {
|
---|
| 753 | case JDITHER_NONE:
|
---|
| 754 | if (cinfo->out_color_components == 3)
|
---|
| 755 | cquantize->pub.color_quantize = color_quantize3;
|
---|
| 756 | else
|
---|
| 757 | cquantize->pub.color_quantize = color_quantize;
|
---|
| 758 | break;
|
---|
| 759 | case JDITHER_ORDERED:
|
---|
| 760 | if (cinfo->out_color_components == 3)
|
---|
| 761 | cquantize->pub.color_quantize = quantize3_ord_dither;
|
---|
| 762 | else
|
---|
| 763 | cquantize->pub.color_quantize = quantize_ord_dither;
|
---|
| 764 | cquantize->row_index = 0; /* initialize state for ordered dither */
|
---|
| 765 | /* If user changed to ordered dither from another mode,
|
---|
| 766 | * we must recreate the color index table with padding.
|
---|
| 767 | * This will cost extra space, but probably isn't very likely.
|
---|
| 768 | */
|
---|
| 769 | if (! cquantize->is_padded)
|
---|
| 770 | create_colorindex(cinfo);
|
---|
| 771 | /* Create ordered-dither tables if we didn't already. */
|
---|
| 772 | if (cquantize->odither[0] == NULL)
|
---|
| 773 | create_odither_tables(cinfo);
|
---|
| 774 | break;
|
---|
| 775 | case JDITHER_FS:
|
---|
| 776 | cquantize->pub.color_quantize = quantize_fs_dither;
|
---|
| 777 | cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
|
---|
| 778 | /* Allocate Floyd-Steinberg workspace if didn't already. */
|
---|
| 779 | if (cquantize->fserrors[0] == NULL)
|
---|
| 780 | alloc_fs_workspace(cinfo);
|
---|
| 781 | /* Initialize the propagated errors to zero. */
|
---|
| 782 | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
---|
| 783 | for (i = 0; i < cinfo->out_color_components; i++)
|
---|
| 784 | jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
|
---|
| 785 | break;
|
---|
| 786 | default:
|
---|
| 787 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
| 788 | break;
|
---|
| 789 | }
|
---|
| 790 | }
|
---|
| 791 |
|
---|
| 792 |
|
---|
| 793 | /*
|
---|
| 794 | * Finish up at the end of the pass.
|
---|
| 795 | */
|
---|
| 796 |
|
---|
| 797 | METHODDEF(void)
|
---|
| 798 | finish_pass_1_quant (j_decompress_ptr cinfo)
|
---|
| 799 | {
|
---|
| 800 | /* no work in 1-pass case */
|
---|
| 801 | }
|
---|
| 802 |
|
---|
| 803 |
|
---|
| 804 | /*
|
---|
| 805 | * Switch to a new external colormap between output passes.
|
---|
| 806 | * Shouldn't get to this module!
|
---|
| 807 | */
|
---|
| 808 |
|
---|
| 809 | METHODDEF(void)
|
---|
| 810 | new_color_map_1_quant (j_decompress_ptr cinfo)
|
---|
| 811 | {
|
---|
| 812 | ERREXIT(cinfo, JERR_MODE_CHANGE);
|
---|
| 813 | }
|
---|
| 814 |
|
---|
| 815 |
|
---|
| 816 | /*
|
---|
| 817 | * Module initialization routine for 1-pass color quantization.
|
---|
| 818 | */
|
---|
| 819 |
|
---|
| 820 | GLOBAL(void)
|
---|
| 821 | jinit_1pass_quantizer (j_decompress_ptr cinfo)
|
---|
| 822 | {
|
---|
| 823 | my_cquantize_ptr cquantize;
|
---|
| 824 |
|
---|
| 825 | cquantize = (my_cquantize_ptr)
|
---|
| 826 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 827 | SIZEOF(my_cquantizer));
|
---|
| 828 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
|
---|
| 829 | cquantize->pub.start_pass = start_pass_1_quant;
|
---|
| 830 | cquantize->pub.finish_pass = finish_pass_1_quant;
|
---|
| 831 | cquantize->pub.new_color_map = new_color_map_1_quant;
|
---|
| 832 | cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
|
---|
| 833 | cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
|
---|
| 834 |
|
---|
| 835 | /* Make sure my internal arrays won't overflow */
|
---|
| 836 | if (cinfo->out_color_components > MAX_Q_COMPS)
|
---|
| 837 | ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
|
---|
| 838 | /* Make sure colormap indexes can be represented by JSAMPLEs */
|
---|
| 839 | if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
|
---|
| 840 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
|
---|
| 841 |
|
---|
| 842 | /* Create the colormap and color index table. */
|
---|
| 843 | create_colormap(cinfo);
|
---|
| 844 | create_colorindex(cinfo);
|
---|
| 845 |
|
---|
| 846 | /* Allocate Floyd-Steinberg workspace now if requested.
|
---|
| 847 | * We do this now since it is FAR storage and may affect the memory
|
---|
| 848 | * manager's space calculations. If the user changes to FS dither
|
---|
| 849 | * mode in a later pass, we will allocate the space then, and will
|
---|
| 850 | * possibly overrun the max_memory_to_use setting.
|
---|
| 851 | */
|
---|
| 852 | if (cinfo->dither_mode == JDITHER_FS)
|
---|
| 853 | alloc_fs_workspace(cinfo);
|
---|
| 854 | }
|
---|
| 855 |
|
---|
| 856 | #endif /* QUANT_1PASS_SUPPORTED */
|
---|