[95] | 1 | /*
|
---|
| 2 | * jutils.c
|
---|
| 3 | *
|
---|
| 4 | * Copyright (C) 1991-1996, Thomas G. Lane.
|
---|
| 5 | * This file is part of the Independent JPEG Group's software.
|
---|
| 6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
| 7 | *
|
---|
| 8 | * This file contains tables and miscellaneous utility routines needed
|
---|
| 9 | * for both compression and decompression.
|
---|
| 10 | * Note we prefix all global names with "j" to minimize conflicts with
|
---|
| 11 | * a surrounding application.
|
---|
| 12 | */
|
---|
| 13 |
|
---|
| 14 | #define JPEG_INTERNALS
|
---|
| 15 | #include "jinclude.h"
|
---|
| 16 | #include "jpeglib.h"
|
---|
| 17 |
|
---|
| 18 |
|
---|
| 19 | /*
|
---|
| 20 | * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
|
---|
| 21 | * of a DCT block read in natural order (left to right, top to bottom).
|
---|
| 22 | */
|
---|
| 23 |
|
---|
| 24 | #if 0 /* This table is not actually needed in v6a */
|
---|
| 25 |
|
---|
| 26 | const int jpeg_zigzag_order[DCTSIZE2] = {
|
---|
| 27 | 0, 1, 5, 6, 14, 15, 27, 28,
|
---|
| 28 | 2, 4, 7, 13, 16, 26, 29, 42,
|
---|
| 29 | 3, 8, 12, 17, 25, 30, 41, 43,
|
---|
| 30 | 9, 11, 18, 24, 31, 40, 44, 53,
|
---|
| 31 | 10, 19, 23, 32, 39, 45, 52, 54,
|
---|
| 32 | 20, 22, 33, 38, 46, 51, 55, 60,
|
---|
| 33 | 21, 34, 37, 47, 50, 56, 59, 61,
|
---|
| 34 | 35, 36, 48, 49, 57, 58, 62, 63
|
---|
| 35 | };
|
---|
| 36 |
|
---|
| 37 | #endif
|
---|
| 38 |
|
---|
| 39 | /*
|
---|
| 40 | * jpeg_natural_order[i] is the natural-order position of the i'th element
|
---|
| 41 | * of zigzag order.
|
---|
| 42 | *
|
---|
| 43 | * When reading corrupted data, the Huffman decoders could attempt
|
---|
| 44 | * to reference an entry beyond the end of this array (if the decoded
|
---|
| 45 | * zero run length reaches past the end of the block). To prevent
|
---|
| 46 | * wild stores without adding an inner-loop test, we put some extra
|
---|
| 47 | * "63"s after the real entries. This will cause the extra coefficient
|
---|
| 48 | * to be stored in location 63 of the block, not somewhere random.
|
---|
| 49 | * The worst case would be a run-length of 15, which means we need 16
|
---|
| 50 | * fake entries.
|
---|
| 51 | */
|
---|
| 52 |
|
---|
| 53 | const int jpeg_natural_order[DCTSIZE2+16] = {
|
---|
| 54 | 0, 1, 8, 16, 9, 2, 3, 10,
|
---|
| 55 | 17, 24, 32, 25, 18, 11, 4, 5,
|
---|
| 56 | 12, 19, 26, 33, 40, 48, 41, 34,
|
---|
| 57 | 27, 20, 13, 6, 7, 14, 21, 28,
|
---|
| 58 | 35, 42, 49, 56, 57, 50, 43, 36,
|
---|
| 59 | 29, 22, 15, 23, 30, 37, 44, 51,
|
---|
| 60 | 58, 59, 52, 45, 38, 31, 39, 46,
|
---|
| 61 | 53, 60, 61, 54, 47, 55, 62, 63,
|
---|
| 62 | 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
---|
| 63 | 63, 63, 63, 63, 63, 63, 63, 63
|
---|
| 64 | };
|
---|
| 65 |
|
---|
| 66 |
|
---|
| 67 | /*
|
---|
| 68 | * Arithmetic utilities
|
---|
| 69 | */
|
---|
| 70 |
|
---|
| 71 | GLOBAL(long)
|
---|
| 72 | jdiv_round_up (long a, long b)
|
---|
| 73 | /* Compute a/b rounded up to next integer, ie, ceil(a/b) */
|
---|
| 74 | /* Assumes a >= 0, b > 0 */
|
---|
| 75 | {
|
---|
| 76 | return (a + b - 1L) / b;
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 |
|
---|
| 80 | GLOBAL(long)
|
---|
| 81 | jround_up (long a, long b)
|
---|
| 82 | /* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
|
---|
| 83 | /* Assumes a >= 0, b > 0 */
|
---|
| 84 | {
|
---|
| 85 | a += b - 1L;
|
---|
| 86 | return a - (a % b);
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 |
|
---|
| 90 | /* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
|
---|
| 91 | * and coefficient-block arrays. This won't work on 80x86 because the arrays
|
---|
| 92 | * are FAR and we're assuming a small-pointer memory model. However, some
|
---|
| 93 | * DOS compilers provide far-pointer versions of memcpy() and memset() even
|
---|
| 94 | * in the small-model libraries. These will be used if USE_FMEM is defined.
|
---|
| 95 | * Otherwise, the routines below do it the hard way. (The performance cost
|
---|
| 96 | * is not all that great, because these routines aren't very heavily used.)
|
---|
| 97 | */
|
---|
| 98 |
|
---|
| 99 | #ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */
|
---|
| 100 | #define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
|
---|
| 101 | #define FMEMZERO(target,size) MEMZERO(target,size)
|
---|
| 102 | #else /* 80x86 case, define if we can */
|
---|
| 103 | #ifdef USE_FMEM
|
---|
| 104 | #define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
|
---|
| 105 | #define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
|
---|
| 106 | #endif
|
---|
| 107 | #endif
|
---|
| 108 |
|
---|
| 109 |
|
---|
| 110 | GLOBAL(void)
|
---|
| 111 | jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
|
---|
| 112 | JSAMPARRAY output_array, int dest_row,
|
---|
| 113 | int num_rows, JDIMENSION num_cols)
|
---|
| 114 | /* Copy some rows of samples from one place to another.
|
---|
| 115 | * num_rows rows are copied from input_array[source_row++]
|
---|
| 116 | * to output_array[dest_row++]; these areas may overlap for duplication.
|
---|
| 117 | * The source and destination arrays must be at least as wide as num_cols.
|
---|
| 118 | */
|
---|
| 119 | {
|
---|
| 120 | register JSAMPROW inptr, outptr;
|
---|
| 121 | #ifdef FMEMCOPY
|
---|
| 122 | register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
|
---|
| 123 | #else
|
---|
| 124 | register JDIMENSION count;
|
---|
| 125 | #endif
|
---|
| 126 | register int row;
|
---|
| 127 |
|
---|
| 128 | input_array += source_row;
|
---|
| 129 | output_array += dest_row;
|
---|
| 130 |
|
---|
| 131 | for (row = num_rows; row > 0; row--) {
|
---|
| 132 | inptr = *input_array++;
|
---|
| 133 | outptr = *output_array++;
|
---|
| 134 | #ifdef FMEMCOPY
|
---|
| 135 | FMEMCOPY(outptr, inptr, count);
|
---|
| 136 | #else
|
---|
| 137 | for (count = num_cols; count > 0; count--)
|
---|
| 138 | *outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
|
---|
| 139 | #endif
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 |
|
---|
| 144 | GLOBAL(void)
|
---|
| 145 | jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
|
---|
| 146 | JDIMENSION num_blocks)
|
---|
| 147 | /* Copy a row of coefficient blocks from one place to another. */
|
---|
| 148 | {
|
---|
| 149 | #ifdef FMEMCOPY
|
---|
| 150 | FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
|
---|
| 151 | #else
|
---|
| 152 | register JCOEFPTR inptr, outptr;
|
---|
| 153 | register long count;
|
---|
| 154 |
|
---|
| 155 | inptr = (JCOEFPTR) input_row;
|
---|
| 156 | outptr = (JCOEFPTR) output_row;
|
---|
| 157 | for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
|
---|
| 158 | *outptr++ = *inptr++;
|
---|
| 159 | }
|
---|
| 160 | #endif
|
---|
| 161 | }
|
---|
| 162 |
|
---|
| 163 |
|
---|
| 164 | GLOBAL(void)
|
---|
| 165 | jzero_far (void FAR * target, size_t bytestozero)
|
---|
| 166 | /* Zero out a chunk of FAR memory. */
|
---|
| 167 | /* This might be sample-array data, block-array data, or alloc_large data. */
|
---|
| 168 | {
|
---|
| 169 | #ifdef FMEMZERO
|
---|
| 170 | FMEMZERO(target, bytestozero);
|
---|
| 171 | #else
|
---|
| 172 | register char FAR * ptr = (char FAR *) target;
|
---|
| 173 | register size_t count;
|
---|
| 174 |
|
---|
| 175 | for (count = bytestozero; count > 0; count--) {
|
---|
| 176 | *ptr++ = 0;
|
---|
| 177 | }
|
---|
| 178 | #endif
|
---|
| 179 | }
|
---|