1 | /*
|
---|
2 | * jutils.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1991-1996, Thomas G. Lane.
|
---|
5 | * This file is part of the Independent JPEG Group's software.
|
---|
6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
7 | *
|
---|
8 | * This file contains tables and miscellaneous utility routines needed
|
---|
9 | * for both compression and decompression.
|
---|
10 | * Note we prefix all global names with "j" to minimize conflicts with
|
---|
11 | * a surrounding application.
|
---|
12 | */
|
---|
13 |
|
---|
14 | #define JPEG_INTERNALS
|
---|
15 | #include "jinclude.h"
|
---|
16 | #include "jpeglib.h"
|
---|
17 |
|
---|
18 |
|
---|
19 | /*
|
---|
20 | * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
|
---|
21 | * of a DCT block read in natural order (left to right, top to bottom).
|
---|
22 | */
|
---|
23 |
|
---|
24 | #if 0 /* This table is not actually needed in v6a */
|
---|
25 |
|
---|
26 | const int jpeg_zigzag_order[DCTSIZE2] = {
|
---|
27 | 0, 1, 5, 6, 14, 15, 27, 28,
|
---|
28 | 2, 4, 7, 13, 16, 26, 29, 42,
|
---|
29 | 3, 8, 12, 17, 25, 30, 41, 43,
|
---|
30 | 9, 11, 18, 24, 31, 40, 44, 53,
|
---|
31 | 10, 19, 23, 32, 39, 45, 52, 54,
|
---|
32 | 20, 22, 33, 38, 46, 51, 55, 60,
|
---|
33 | 21, 34, 37, 47, 50, 56, 59, 61,
|
---|
34 | 35, 36, 48, 49, 57, 58, 62, 63
|
---|
35 | };
|
---|
36 |
|
---|
37 | #endif
|
---|
38 |
|
---|
39 | /*
|
---|
40 | * jpeg_natural_order[i] is the natural-order position of the i'th element
|
---|
41 | * of zigzag order.
|
---|
42 | *
|
---|
43 | * When reading corrupted data, the Huffman decoders could attempt
|
---|
44 | * to reference an entry beyond the end of this array (if the decoded
|
---|
45 | * zero run length reaches past the end of the block). To prevent
|
---|
46 | * wild stores without adding an inner-loop test, we put some extra
|
---|
47 | * "63"s after the real entries. This will cause the extra coefficient
|
---|
48 | * to be stored in location 63 of the block, not somewhere random.
|
---|
49 | * The worst case would be a run-length of 15, which means we need 16
|
---|
50 | * fake entries.
|
---|
51 | */
|
---|
52 |
|
---|
53 | const int jpeg_natural_order[DCTSIZE2+16] = {
|
---|
54 | 0, 1, 8, 16, 9, 2, 3, 10,
|
---|
55 | 17, 24, 32, 25, 18, 11, 4, 5,
|
---|
56 | 12, 19, 26, 33, 40, 48, 41, 34,
|
---|
57 | 27, 20, 13, 6, 7, 14, 21, 28,
|
---|
58 | 35, 42, 49, 56, 57, 50, 43, 36,
|
---|
59 | 29, 22, 15, 23, 30, 37, 44, 51,
|
---|
60 | 58, 59, 52, 45, 38, 31, 39, 46,
|
---|
61 | 53, 60, 61, 54, 47, 55, 62, 63,
|
---|
62 | 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
---|
63 | 63, 63, 63, 63, 63, 63, 63, 63
|
---|
64 | };
|
---|
65 |
|
---|
66 |
|
---|
67 | /*
|
---|
68 | * Arithmetic utilities
|
---|
69 | */
|
---|
70 |
|
---|
71 | GLOBAL(long)
|
---|
72 | jdiv_round_up (long a, long b)
|
---|
73 | /* Compute a/b rounded up to next integer, ie, ceil(a/b) */
|
---|
74 | /* Assumes a >= 0, b > 0 */
|
---|
75 | {
|
---|
76 | return (a + b - 1L) / b;
|
---|
77 | }
|
---|
78 |
|
---|
79 |
|
---|
80 | GLOBAL(long)
|
---|
81 | jround_up (long a, long b)
|
---|
82 | /* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
|
---|
83 | /* Assumes a >= 0, b > 0 */
|
---|
84 | {
|
---|
85 | a += b - 1L;
|
---|
86 | return a - (a % b);
|
---|
87 | }
|
---|
88 |
|
---|
89 |
|
---|
90 | /* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
|
---|
91 | * and coefficient-block arrays. This won't work on 80x86 because the arrays
|
---|
92 | * are FAR and we're assuming a small-pointer memory model. However, some
|
---|
93 | * DOS compilers provide far-pointer versions of memcpy() and memset() even
|
---|
94 | * in the small-model libraries. These will be used if USE_FMEM is defined.
|
---|
95 | * Otherwise, the routines below do it the hard way. (The performance cost
|
---|
96 | * is not all that great, because these routines aren't very heavily used.)
|
---|
97 | */
|
---|
98 |
|
---|
99 | #ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */
|
---|
100 | #define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
|
---|
101 | #define FMEMZERO(target,size) MEMZERO(target,size)
|
---|
102 | #else /* 80x86 case, define if we can */
|
---|
103 | #ifdef USE_FMEM
|
---|
104 | #define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
|
---|
105 | #define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
|
---|
106 | #endif
|
---|
107 | #endif
|
---|
108 |
|
---|
109 |
|
---|
110 | GLOBAL(void)
|
---|
111 | jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
|
---|
112 | JSAMPARRAY output_array, int dest_row,
|
---|
113 | int num_rows, JDIMENSION num_cols)
|
---|
114 | /* Copy some rows of samples from one place to another.
|
---|
115 | * num_rows rows are copied from input_array[source_row++]
|
---|
116 | * to output_array[dest_row++]; these areas may overlap for duplication.
|
---|
117 | * The source and destination arrays must be at least as wide as num_cols.
|
---|
118 | */
|
---|
119 | {
|
---|
120 | register JSAMPROW inptr, outptr;
|
---|
121 | #ifdef FMEMCOPY
|
---|
122 | register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
|
---|
123 | #else
|
---|
124 | register JDIMENSION count;
|
---|
125 | #endif
|
---|
126 | register int row;
|
---|
127 |
|
---|
128 | input_array += source_row;
|
---|
129 | output_array += dest_row;
|
---|
130 |
|
---|
131 | for (row = num_rows; row > 0; row--) {
|
---|
132 | inptr = *input_array++;
|
---|
133 | outptr = *output_array++;
|
---|
134 | #ifdef FMEMCOPY
|
---|
135 | FMEMCOPY(outptr, inptr, count);
|
---|
136 | #else
|
---|
137 | for (count = num_cols; count > 0; count--)
|
---|
138 | *outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
|
---|
139 | #endif
|
---|
140 | }
|
---|
141 | }
|
---|
142 |
|
---|
143 |
|
---|
144 | GLOBAL(void)
|
---|
145 | jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
|
---|
146 | JDIMENSION num_blocks)
|
---|
147 | /* Copy a row of coefficient blocks from one place to another. */
|
---|
148 | {
|
---|
149 | #ifdef FMEMCOPY
|
---|
150 | FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
|
---|
151 | #else
|
---|
152 | register JCOEFPTR inptr, outptr;
|
---|
153 | register long count;
|
---|
154 |
|
---|
155 | inptr = (JCOEFPTR) input_row;
|
---|
156 | outptr = (JCOEFPTR) output_row;
|
---|
157 | for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
|
---|
158 | *outptr++ = *inptr++;
|
---|
159 | }
|
---|
160 | #endif
|
---|
161 | }
|
---|
162 |
|
---|
163 |
|
---|
164 | GLOBAL(void)
|
---|
165 | jzero_far (void FAR * target, size_t bytestozero)
|
---|
166 | /* Zero out a chunk of FAR memory. */
|
---|
167 | /* This might be sample-array data, block-array data, or alloc_large data. */
|
---|
168 | {
|
---|
169 | #ifdef FMEMZERO
|
---|
170 | FMEMZERO(target, bytestozero);
|
---|
171 | #else
|
---|
172 | register char FAR * ptr = (char FAR *) target;
|
---|
173 | register size_t count;
|
---|
174 |
|
---|
175 | for (count = bytestozero; count > 0; count--) {
|
---|
176 | *ptr++ = 0;
|
---|
177 | }
|
---|
178 | #endif
|
---|
179 | }
|
---|