source: liacs/MIR2010/SourceCode/cximage/ximadsp.cpp@ 180

Last change on this file since 180 was 95, checked in by Rick van der Zwet, 15 years ago

Bad boy, improper move of directory

File size: 104.4 KB
Line 
1// xImaDsp.cpp : DSP functions
2/* 07/08/2001 v1.00 - Davide Pizzolato - www.xdp.it
3 * CxImage version 6.0.0 02/Feb/2008
4 */
5
6#include "ximage.h"
7
8#include "ximaiter.h"
9
10#if CXIMAGE_SUPPORT_DSP
11
12////////////////////////////////////////////////////////////////////////////////
13/**
14 * Converts the image to B&W.
15 * The OptimalThreshold() function can be used for calculating the optimal threshold.
16 * \param level: the lightness threshold.
17 * \return true if everything is ok
18 */
19bool CxImage::Threshold(BYTE level)
20{
21 if (!pDib) return false;
22 if (head.biBitCount == 1) return true;
23
24 GrayScale();
25
26 CxImage tmp(head.biWidth,head.biHeight,1);
27 if (!tmp.IsValid()){
28 strcpy(info.szLastError,tmp.GetLastError());
29 return false;
30 }
31
32 for (long y=0;y<head.biHeight;y++){
33 info.nProgress = (long)(100*y/head.biHeight);
34 if (info.nEscape) break;
35 for (long x=0;x<head.biWidth;x++){
36 if (BlindGetPixelIndex(x,y)>level)
37 tmp.BlindSetPixelIndex(x,y,1);
38 else
39 tmp.BlindSetPixelIndex(x,y,0);
40 }
41 }
42 tmp.SetPaletteColor(0,0,0,0);
43 tmp.SetPaletteColor(1,255,255,255);
44 Transfer(tmp);
45 return true;
46}
47////////////////////////////////////////////////////////////////////////////////
48/**
49 * Converts the image to B&W, using a threshold mask
50 * \param pThresholdMask: the lightness threshold mask.
51 * the pThresholdMask image must be grayscale with same with and height of the current image
52 * \return true if everything is ok
53 */
54bool CxImage::Threshold(CxImage* pThresholdMask)
55{
56 if (!pDib) return false;
57 if (head.biBitCount == 1) return true;
58
59 if (!pThresholdMask) return false;
60
61 if (!pThresholdMask->IsValid() ||
62 !pThresholdMask->IsGrayScale() ||
63 pThresholdMask->GetWidth() != GetWidth() ||
64 pThresholdMask->GetHeight() != GetHeight()){
65 strcpy(info.szLastError,"invalid ThresholdMask");
66 return false;
67 }
68
69 GrayScale();
70
71 CxImage tmp(head.biWidth,head.biHeight,1);
72 if (!tmp.IsValid()){
73 strcpy(info.szLastError,tmp.GetLastError());
74 return false;
75 }
76
77 for (long y=0;y<head.biHeight;y++){
78 info.nProgress = (long)(100*y/head.biHeight);
79 if (info.nEscape) break;
80 for (long x=0;x<head.biWidth;x++){
81 if (BlindGetPixelIndex(x,y)>pThresholdMask->BlindGetPixelIndex(x,y))
82 tmp.BlindSetPixelIndex(x,y,1);
83 else
84 tmp.BlindSetPixelIndex(x,y,0);
85 }
86 }
87 tmp.SetPaletteColor(0,0,0,0);
88 tmp.SetPaletteColor(1,255,255,255);
89 Transfer(tmp);
90 return true;
91}
92////////////////////////////////////////////////////////////////////////////////
93/**
94 * Filters only the pixels with a lightness less (or more) than the threshold level,
95 * and preserves the colors for the unfiltered pixels.
96 * \param level = the lightness threshold.
97 * \param bDirection = false: filter dark pixels, true: filter light pixels
98 * \param nBkgndColor = filtered pixels are set to nBkgndColor color
99 * \param bSetAlpha = if true, sets also the alpha component for the filtered pixels, with nBkgndColor.rgbReserved
100 * \return true if everything is ok
101 * \author [DP], [wangsongtao]
102 */
103////////////////////////////////////////////////////////////////////////////////
104bool CxImage::Threshold2(BYTE level, bool bDirection, RGBQUAD nBkgndColor, bool bSetAlpha)
105{
106 if (!pDib) return false;
107 if (head.biBitCount == 1) return true;
108
109 CxImage tmp(*this, true, false, false);
110 if (!tmp.IsValid()){
111 strcpy(info.szLastError,tmp.GetLastError());
112 return false;
113 }
114
115 tmp.GrayScale();
116
117 long xmin,xmax,ymin,ymax;
118 if (pSelection){
119 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
120 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
121 } else {
122 xmin = ymin = 0;
123 xmax = head.biWidth; ymax=head.biHeight;
124 }
125
126 for(long y=ymin; y<ymax; y++){
127 info.nProgress = (long)(100*y/head.biHeight);
128 if (info.nEscape) break;
129 for(long x=xmin; x<xmax; x++){
130#if CXIMAGE_SUPPORT_SELECTION
131 if (BlindSelectionIsInside(x,y))
132#endif //CXIMAGE_SUPPORT_SELECTION
133 {
134 BYTE i = tmp.BlindGetPixelIndex(x,y);
135 if (!bDirection && i<level) BlindSetPixelColor(x,y,nBkgndColor,bSetAlpha);
136 if (bDirection && i>=level) BlindSetPixelColor(x,y,nBkgndColor,bSetAlpha);
137 }
138 }
139 }
140
141 return true;
142}
143////////////////////////////////////////////////////////////////////////////////
144/**
145 * Extract RGB channels from the image. Each channel is an 8 bit grayscale image.
146 * \param r,g,b: pointers to CxImage objects, to store the splited channels
147 * \return true if everything is ok
148 */
149bool CxImage::SplitRGB(CxImage* r,CxImage* g,CxImage* b)
150{
151 if (!pDib) return false;
152 if (r==NULL && g==NULL && b==NULL) return false;
153
154 CxImage tmpr(head.biWidth,head.biHeight,8);
155 CxImage tmpg(head.biWidth,head.biHeight,8);
156 CxImage tmpb(head.biWidth,head.biHeight,8);
157
158 RGBQUAD color;
159 for(long y=0; y<head.biHeight; y++){
160 for(long x=0; x<head.biWidth; x++){
161 color = BlindGetPixelColor(x,y);
162 if (r) tmpr.BlindSetPixelIndex(x,y,color.rgbRed);
163 if (g) tmpg.BlindSetPixelIndex(x,y,color.rgbGreen);
164 if (b) tmpb.BlindSetPixelIndex(x,y,color.rgbBlue);
165 }
166 }
167
168 if (r) tmpr.SetGrayPalette();
169 if (g) tmpg.SetGrayPalette();
170 if (b) tmpb.SetGrayPalette();
171
172 /*for(long j=0; j<256; j++){
173 BYTE i=(BYTE)j;
174 if (r) tmpr.SetPaletteColor(i,i,0,0);
175 if (g) tmpg.SetPaletteColor(i,0,i,0);
176 if (b) tmpb.SetPaletteColor(i,0,0,i);
177 }*/
178
179 if (r) r->Transfer(tmpr);
180 if (g) g->Transfer(tmpg);
181 if (b) b->Transfer(tmpb);
182
183 return true;
184}
185////////////////////////////////////////////////////////////////////////////////
186/**
187 * Extract CMYK channels from the image. Each channel is an 8 bit grayscale image.
188 * \param c,m,y,k: pointers to CxImage objects, to store the splited channels
189 * \return true if everything is ok
190 */
191bool CxImage::SplitCMYK(CxImage* c,CxImage* m,CxImage* y,CxImage* k)
192{
193 if (!pDib) return false;
194 if (c==NULL && m==NULL && y==NULL && k==NULL) return false;
195
196 CxImage tmpc(head.biWidth,head.biHeight,8);
197 CxImage tmpm(head.biWidth,head.biHeight,8);
198 CxImage tmpy(head.biWidth,head.biHeight,8);
199 CxImage tmpk(head.biWidth,head.biHeight,8);
200
201 RGBQUAD color;
202 for(long yy=0; yy<head.biHeight; yy++){
203 for(long xx=0; xx<head.biWidth; xx++){
204 color = BlindGetPixelColor(xx,yy);
205 if (c) tmpc.BlindSetPixelIndex(xx,yy,(BYTE)(255-color.rgbRed));
206 if (m) tmpm.BlindSetPixelIndex(xx,yy,(BYTE)(255-color.rgbGreen));
207 if (y) tmpy.BlindSetPixelIndex(xx,yy,(BYTE)(255-color.rgbBlue));
208 if (k) tmpk.BlindSetPixelIndex(xx,yy,(BYTE)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue));
209 }
210 }
211
212 if (c) tmpc.SetGrayPalette();
213 if (m) tmpm.SetGrayPalette();
214 if (y) tmpy.SetGrayPalette();
215 if (k) tmpk.SetGrayPalette();
216
217 if (c) c->Transfer(tmpc);
218 if (m) m->Transfer(tmpm);
219 if (y) y->Transfer(tmpy);
220 if (k) k->Transfer(tmpk);
221
222 return true;
223}
224////////////////////////////////////////////////////////////////////////////////
225/**
226 * Extract YUV channels from the image. Each channel is an 8 bit grayscale image.
227 * \param y,u,v: pointers to CxImage objects, to store the splited channels
228 * \return true if everything is ok
229 */
230bool CxImage::SplitYUV(CxImage* y,CxImage* u,CxImage* v)
231{
232 if (!pDib) return false;
233 if (y==NULL && u==NULL && v==NULL) return false;
234
235 CxImage tmpy(head.biWidth,head.biHeight,8);
236 CxImage tmpu(head.biWidth,head.biHeight,8);
237 CxImage tmpv(head.biWidth,head.biHeight,8);
238
239 RGBQUAD color;
240 for(long yy=0; yy<head.biHeight; yy++){
241 for(long x=0; x<head.biWidth; x++){
242 color = RGBtoYUV(BlindGetPixelColor(x,yy));
243 if (y) tmpy.BlindSetPixelIndex(x,yy,color.rgbRed);
244 if (u) tmpu.BlindSetPixelIndex(x,yy,color.rgbGreen);
245 if (v) tmpv.BlindSetPixelIndex(x,yy,color.rgbBlue);
246 }
247 }
248
249 if (y) tmpy.SetGrayPalette();
250 if (u) tmpu.SetGrayPalette();
251 if (v) tmpv.SetGrayPalette();
252
253 if (y) y->Transfer(tmpy);
254 if (u) u->Transfer(tmpu);
255 if (v) v->Transfer(tmpv);
256
257 return true;
258}
259////////////////////////////////////////////////////////////////////////////////
260/**
261 * Extract YIQ channels from the image. Each channel is an 8 bit grayscale image.
262 * \param y,i,q: pointers to CxImage objects, to store the splited channels
263 * \return true if everything is ok
264 */
265bool CxImage::SplitYIQ(CxImage* y,CxImage* i,CxImage* q)
266{
267 if (!pDib) return false;
268 if (y==NULL && i==NULL && q==NULL) return false;
269
270 CxImage tmpy(head.biWidth,head.biHeight,8);
271 CxImage tmpi(head.biWidth,head.biHeight,8);
272 CxImage tmpq(head.biWidth,head.biHeight,8);
273
274 RGBQUAD color;
275 for(long yy=0; yy<head.biHeight; yy++){
276 for(long x=0; x<head.biWidth; x++){
277 color = RGBtoYIQ(BlindGetPixelColor(x,yy));
278 if (y) tmpy.BlindSetPixelIndex(x,yy,color.rgbRed);
279 if (i) tmpi.BlindSetPixelIndex(x,yy,color.rgbGreen);
280 if (q) tmpq.BlindSetPixelIndex(x,yy,color.rgbBlue);
281 }
282 }
283
284 if (y) tmpy.SetGrayPalette();
285 if (i) tmpi.SetGrayPalette();
286 if (q) tmpq.SetGrayPalette();
287
288 if (y) y->Transfer(tmpy);
289 if (i) i->Transfer(tmpi);
290 if (q) q->Transfer(tmpq);
291
292 return true;
293}
294////////////////////////////////////////////////////////////////////////////////
295/**
296 * Extract XYZ channels from the image. Each channel is an 8 bit grayscale image.
297 * \param x,y,z: pointers to CxImage objects, to store the splited channels
298 * \return true if everything is ok
299 */
300bool CxImage::SplitXYZ(CxImage* x,CxImage* y,CxImage* z)
301{
302 if (!pDib) return false;
303 if (x==NULL && y==NULL && z==NULL) return false;
304
305 CxImage tmpx(head.biWidth,head.biHeight,8);
306 CxImage tmpy(head.biWidth,head.biHeight,8);
307 CxImage tmpz(head.biWidth,head.biHeight,8);
308
309 RGBQUAD color;
310 for(long yy=0; yy<head.biHeight; yy++){
311 for(long xx=0; xx<head.biWidth; xx++){
312 color = RGBtoXYZ(BlindGetPixelColor(xx,yy));
313 if (x) tmpx.BlindSetPixelIndex(xx,yy,color.rgbRed);
314 if (y) tmpy.BlindSetPixelIndex(xx,yy,color.rgbGreen);
315 if (z) tmpz.BlindSetPixelIndex(xx,yy,color.rgbBlue);
316 }
317 }
318
319 if (x) tmpx.SetGrayPalette();
320 if (y) tmpy.SetGrayPalette();
321 if (z) tmpz.SetGrayPalette();
322
323 if (x) x->Transfer(tmpx);
324 if (y) y->Transfer(tmpy);
325 if (z) z->Transfer(tmpz);
326
327 return true;
328}
329////////////////////////////////////////////////////////////////////////////////
330/**
331 * Extract HSL channels from the image. Each channel is an 8 bit grayscale image.
332 * \param h,s,l: pointers to CxImage objects, to store the splited channels
333 * \return true if everything is ok
334 */
335bool CxImage::SplitHSL(CxImage* h,CxImage* s,CxImage* l)
336{
337 if (!pDib) return false;
338 if (h==NULL && s==NULL && l==NULL) return false;
339
340 CxImage tmph(head.biWidth,head.biHeight,8);
341 CxImage tmps(head.biWidth,head.biHeight,8);
342 CxImage tmpl(head.biWidth,head.biHeight,8);
343
344 RGBQUAD color;
345 for(long y=0; y<head.biHeight; y++){
346 for(long x=0; x<head.biWidth; x++){
347 color = RGBtoHSL(BlindGetPixelColor(x,y));
348 if (h) tmph.BlindSetPixelIndex(x,y,color.rgbRed);
349 if (s) tmps.BlindSetPixelIndex(x,y,color.rgbGreen);
350 if (l) tmpl.BlindSetPixelIndex(x,y,color.rgbBlue);
351 }
352 }
353
354 if (h) tmph.SetGrayPalette();
355 if (s) tmps.SetGrayPalette();
356 if (l) tmpl.SetGrayPalette();
357
358 /* pseudo-color generator for hue channel (visual debug)
359 if (h) for(long j=0; j<256; j++){
360 BYTE i=(BYTE)j;
361 RGBQUAD hsl={120,240,i,0};
362 tmph.SetPaletteColor(i,HSLtoRGB(hsl));
363 }*/
364
365 if (h) h->Transfer(tmph);
366 if (s) s->Transfer(tmps);
367 if (l) l->Transfer(tmpl);
368
369 return true;
370}
371////////////////////////////////////////////////////////////////////////////////
372#define HSLMAX 255 /* H,L, and S vary over 0-HSLMAX */
373#define RGBMAX 255 /* R,G, and B vary over 0-RGBMAX */
374 /* HSLMAX BEST IF DIVISIBLE BY 6 */
375 /* RGBMAX, HSLMAX must each fit in a BYTE. */
376/* Hue is undefined if Saturation is 0 (grey-scale) */
377/* This value determines where the Hue scrollbar is */
378/* initially set for achromatic colors */
379#define HSLUNDEFINED (HSLMAX*2/3)
380////////////////////////////////////////////////////////////////////////////////
381RGBQUAD CxImage::RGBtoHSL(RGBQUAD lRGBColor)
382{
383 BYTE R,G,B; /* input RGB values */
384 BYTE H,L,S; /* output HSL values */
385 BYTE cMax,cMin; /* max and min RGB values */
386 WORD Rdelta,Gdelta,Bdelta; /* intermediate value: % of spread from max*/
387
388 R = lRGBColor.rgbRed; /* get R, G, and B out of DWORD */
389 G = lRGBColor.rgbGreen;
390 B = lRGBColor.rgbBlue;
391
392 cMax = max( max(R,G), B); /* calculate lightness */
393 cMin = min( min(R,G), B);
394 L = (BYTE)((((cMax+cMin)*HSLMAX)+RGBMAX)/(2*RGBMAX));
395
396 if (cMax==cMin){ /* r=g=b --> achromatic case */
397 S = 0; /* saturation */
398 H = HSLUNDEFINED; /* hue */
399 } else { /* chromatic case */
400 if (L <= (HSLMAX/2)) /* saturation */
401 S = (BYTE)((((cMax-cMin)*HSLMAX)+((cMax+cMin)/2))/(cMax+cMin));
402 else
403 S = (BYTE)((((cMax-cMin)*HSLMAX)+((2*RGBMAX-cMax-cMin)/2))/(2*RGBMAX-cMax-cMin));
404 /* hue */
405 Rdelta = (WORD)((((cMax-R)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
406 Gdelta = (WORD)((((cMax-G)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
407 Bdelta = (WORD)((((cMax-B)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
408
409 if (R == cMax)
410 H = (BYTE)(Bdelta - Gdelta);
411 else if (G == cMax)
412 H = (BYTE)((HSLMAX/3) + Rdelta - Bdelta);
413 else /* B == cMax */
414 H = (BYTE)(((2*HSLMAX)/3) + Gdelta - Rdelta);
415
416// if (H < 0) H += HSLMAX; //always false
417 if (H > HSLMAX) H -= HSLMAX;
418 }
419 RGBQUAD hsl={L,S,H,0};
420 return hsl;
421}
422////////////////////////////////////////////////////////////////////////////////
423float CxImage::HueToRGB(float n1,float n2, float hue)
424{
425 //<F. Livraghi> fixed implementation for HSL2RGB routine
426 float rValue;
427
428 if (hue > 360)
429 hue = hue - 360;
430 else if (hue < 0)
431 hue = hue + 360;
432
433 if (hue < 60)
434 rValue = n1 + (n2-n1)*hue/60.0f;
435 else if (hue < 180)
436 rValue = n2;
437 else if (hue < 240)
438 rValue = n1+(n2-n1)*(240-hue)/60;
439 else
440 rValue = n1;
441
442 return rValue;
443}
444////////////////////////////////////////////////////////////////////////////////
445RGBQUAD CxImage::HSLtoRGB(COLORREF cHSLColor)
446{
447 return HSLtoRGB(RGBtoRGBQUAD(cHSLColor));
448}
449////////////////////////////////////////////////////////////////////////////////
450RGBQUAD CxImage::HSLtoRGB(RGBQUAD lHSLColor)
451{
452 //<F. Livraghi> fixed implementation for HSL2RGB routine
453 float h,s,l;
454 float m1,m2;
455 BYTE r,g,b;
456
457 h = (float)lHSLColor.rgbRed * 360.0f/255.0f;
458 s = (float)lHSLColor.rgbGreen/255.0f;
459 l = (float)lHSLColor.rgbBlue/255.0f;
460
461 if (l <= 0.5) m2 = l * (1+s);
462 else m2 = l + s - l*s;
463
464 m1 = 2 * l - m2;
465
466 if (s == 0) {
467 r=g=b=(BYTE)(l*255.0f);
468 } else {
469 r = (BYTE)(HueToRGB(m1,m2,h+120) * 255.0f);
470 g = (BYTE)(HueToRGB(m1,m2,h) * 255.0f);
471 b = (BYTE)(HueToRGB(m1,m2,h-120) * 255.0f);
472 }
473
474 RGBQUAD rgb = {b,g,r,0};
475 return rgb;
476}
477////////////////////////////////////////////////////////////////////////////////
478RGBQUAD CxImage::YUVtoRGB(RGBQUAD lYUVColor)
479{
480 int U,V,R,G,B;
481 float Y = lYUVColor.rgbRed;
482 U = lYUVColor.rgbGreen - 128;
483 V = lYUVColor.rgbBlue - 128;
484
485// R = (int)(1.164 * Y + 2.018 * U);
486// G = (int)(1.164 * Y - 0.813 * V - 0.391 * U);
487// B = (int)(1.164 * Y + 1.596 * V);
488 R = (int)( Y + 1.403f * V);
489 G = (int)( Y - 0.344f * U - 0.714f * V);
490 B = (int)( Y + 1.770f * U);
491
492 R= min(255,max(0,R));
493 G= min(255,max(0,G));
494 B= min(255,max(0,B));
495 RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0};
496 return rgb;
497}
498////////////////////////////////////////////////////////////////////////////////
499RGBQUAD CxImage::RGBtoYUV(RGBQUAD lRGBColor)
500{
501 int Y,U,V,R,G,B;
502 R = lRGBColor.rgbRed;
503 G = lRGBColor.rgbGreen;
504 B = lRGBColor.rgbBlue;
505
506// Y = (int)( 0.257 * R + 0.504 * G + 0.098 * B);
507// U = (int)( 0.439 * R - 0.368 * G - 0.071 * B + 128);
508// V = (int)(-0.148 * R - 0.291 * G + 0.439 * B + 128);
509 Y = (int)(0.299f * R + 0.587f * G + 0.114f * B);
510 U = (int)((B-Y) * 0.565f + 128);
511 V = (int)((R-Y) * 0.713f + 128);
512
513 Y= min(255,max(0,Y));
514 U= min(255,max(0,U));
515 V= min(255,max(0,V));
516 RGBQUAD yuv={(BYTE)V,(BYTE)U,(BYTE)Y,0};
517 return yuv;
518}
519////////////////////////////////////////////////////////////////////////////////
520RGBQUAD CxImage::YIQtoRGB(RGBQUAD lYIQColor)
521{
522 int I,Q,R,G,B;
523 float Y = lYIQColor.rgbRed;
524 I = lYIQColor.rgbGreen - 128;
525 Q = lYIQColor.rgbBlue - 128;
526
527 R = (int)( Y + 0.956f * I + 0.621f * Q);
528 G = (int)( Y - 0.273f * I - 0.647f * Q);
529 B = (int)( Y - 1.104f * I + 1.701f * Q);
530
531 R= min(255,max(0,R));
532 G= min(255,max(0,G));
533 B= min(255,max(0,B));
534 RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0};
535 return rgb;
536}
537////////////////////////////////////////////////////////////////////////////////
538RGBQUAD CxImage::RGBtoYIQ(RGBQUAD lRGBColor)
539{
540 int Y,I,Q,R,G,B;
541 R = lRGBColor.rgbRed;
542 G = lRGBColor.rgbGreen;
543 B = lRGBColor.rgbBlue;
544
545 Y = (int)( 0.2992f * R + 0.5868f * G + 0.1140f * B);
546 I = (int)( 0.5960f * R - 0.2742f * G - 0.3219f * B + 128);
547 Q = (int)( 0.2109f * R - 0.5229f * G + 0.3120f * B + 128);
548
549 Y= min(255,max(0,Y));
550 I= min(255,max(0,I));
551 Q= min(255,max(0,Q));
552 RGBQUAD yiq={(BYTE)Q,(BYTE)I,(BYTE)Y,0};
553 return yiq;
554}
555////////////////////////////////////////////////////////////////////////////////
556RGBQUAD CxImage::XYZtoRGB(RGBQUAD lXYZColor)
557{
558 int X,Y,Z,R,G,B;
559 X = lXYZColor.rgbRed;
560 Y = lXYZColor.rgbGreen;
561 Z = lXYZColor.rgbBlue;
562 double k=1.088751;
563
564 R = (int)( 3.240479f * X - 1.537150f * Y - 0.498535f * Z * k);
565 G = (int)( -0.969256f * X + 1.875992f * Y + 0.041556f * Z * k);
566 B = (int)( 0.055648f * X - 0.204043f * Y + 1.057311f * Z * k);
567
568 R= min(255,max(0,R));
569 G= min(255,max(0,G));
570 B= min(255,max(0,B));
571 RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0};
572 return rgb;
573}
574////////////////////////////////////////////////////////////////////////////////
575RGBQUAD CxImage::RGBtoXYZ(RGBQUAD lRGBColor)
576{
577 int X,Y,Z,R,G,B;
578 R = lRGBColor.rgbRed;
579 G = lRGBColor.rgbGreen;
580 B = lRGBColor.rgbBlue;
581
582 X = (int)( 0.412453f * R + 0.357580f * G + 0.180423f * B);
583 Y = (int)( 0.212671f * R + 0.715160f * G + 0.072169f * B);
584 Z = (int)((0.019334f * R + 0.119193f * G + 0.950227f * B)*0.918483657f);
585
586 //X= min(255,max(0,X));
587 //Y= min(255,max(0,Y));
588 //Z= min(255,max(0,Z));
589 RGBQUAD xyz={(BYTE)Z,(BYTE)Y,(BYTE)X,0};
590 return xyz;
591}
592////////////////////////////////////////////////////////////////////////////////
593/**
594 * Generates a "rainbow" palette with saturated colors
595 * \param correction: 1 generates a single hue spectrum. 0.75 is nice for scientific applications.
596 */
597void CxImage::HuePalette(float correction)
598{
599 if (head.biClrUsed==0) return;
600
601 for(DWORD j=0; j<head.biClrUsed; j++){
602 BYTE i=(BYTE)(j*correction*(255/(head.biClrUsed-1)));
603 RGBQUAD hsl={120,240,i,0};
604 SetPaletteColor((BYTE)j,HSLtoRGB(hsl));
605 }
606}
607////////////////////////////////////////////////////////////////////////////////
608/**
609 * Replaces the original hue and saturation values.
610 * \param hue: hue
611 * \param sat: saturation
612 * \param blend: can be from 0 (no effect) to 1 (full effect)
613 * \return true if everything is ok
614 */
615bool CxImage::Colorize(BYTE hue, BYTE sat, float blend)
616{
617 if (!pDib) return false;
618
619 if (blend < 0.0f) blend = 0.0f;
620 if (blend > 1.0f) blend = 1.0f;
621 int a0 = (int)(256*blend);
622 int a1 = 256 - a0;
623
624 bool bFullBlend = false;
625 if (blend > 0.999f) bFullBlend = true;
626
627 RGBQUAD color,hsl;
628 if (head.biClrUsed==0){
629
630 long xmin,xmax,ymin,ymax;
631 if (pSelection){
632 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
633 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
634 } else {
635 xmin = ymin = 0;
636 xmax = head.biWidth; ymax=head.biHeight;
637 }
638
639 for(long y=ymin; y<ymax; y++){
640 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
641 if (info.nEscape) break;
642 for(long x=xmin; x<xmax; x++){
643#if CXIMAGE_SUPPORT_SELECTION
644 if (BlindSelectionIsInside(x,y))
645#endif //CXIMAGE_SUPPORT_SELECTION
646 {
647 if (bFullBlend){
648 color = RGBtoHSL(BlindGetPixelColor(x,y));
649 color.rgbRed=hue;
650 color.rgbGreen=sat;
651 BlindSetPixelColor(x,y,HSLtoRGB(color));
652 } else {
653 color = BlindGetPixelColor(x,y);
654 hsl.rgbRed=hue;
655 hsl.rgbGreen=sat;
656 hsl.rgbBlue = (BYTE)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue);
657 hsl = HSLtoRGB(hsl);
658 //BlendPixelColor(x,y,hsl,blend);
659 //color.rgbRed = (BYTE)(hsl.rgbRed * blend + color.rgbRed * (1.0f - blend));
660 //color.rgbBlue = (BYTE)(hsl.rgbBlue * blend + color.rgbBlue * (1.0f - blend));
661 //color.rgbGreen = (BYTE)(hsl.rgbGreen * blend + color.rgbGreen * (1.0f - blend));
662 color.rgbRed = (BYTE)((hsl.rgbRed * a0 + color.rgbRed * a1)>>8);
663 color.rgbBlue = (BYTE)((hsl.rgbBlue * a0 + color.rgbBlue * a1)>>8);
664 color.rgbGreen = (BYTE)((hsl.rgbGreen * a0 + color.rgbGreen * a1)>>8);
665 BlindSetPixelColor(x,y,color);
666 }
667 }
668 }
669 }
670 } else {
671 for(DWORD j=0; j<head.biClrUsed; j++){
672 if (bFullBlend){
673 color = RGBtoHSL(GetPaletteColor((BYTE)j));
674 color.rgbRed=hue;
675 color.rgbGreen=sat;
676 SetPaletteColor((BYTE)j,HSLtoRGB(color));
677 } else {
678 color = GetPaletteColor((BYTE)j);
679 hsl.rgbRed=hue;
680 hsl.rgbGreen=sat;
681 hsl.rgbBlue = (BYTE)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue);
682 hsl = HSLtoRGB(hsl);
683 color.rgbRed = (BYTE)(hsl.rgbRed * blend + color.rgbRed * (1.0f - blend));
684 color.rgbBlue = (BYTE)(hsl.rgbBlue * blend + color.rgbBlue * (1.0f - blend));
685 color.rgbGreen = (BYTE)(hsl.rgbGreen * blend + color.rgbGreen * (1.0f - blend));
686 SetPaletteColor((BYTE)j,color);
687 }
688 }
689 }
690
691 return true;
692}
693////////////////////////////////////////////////////////////////////////////////
694/**
695 * Changes the brightness and the contrast of the image.
696 * \param brightness: can be from -255 to 255, if brightness is negative, the image becomes dark.
697 * \param contrast: can be from -100 to 100, the neutral value is 0.
698 * \return true if everything is ok
699 */
700bool CxImage::Light(long brightness, long contrast)
701{
702 if (!pDib) return false;
703 float c=(100 + contrast)/100.0f;
704 brightness+=128;
705
706 BYTE cTable[256]; //<nipper>
707 for (int i=0;i<256;i++) {
708 cTable[i] = (BYTE)max(0,min(255,(int)((i-128)*c + brightness + 0.5f)));
709 }
710
711 return Lut(cTable);
712}
713////////////////////////////////////////////////////////////////////////////////
714/**
715 * \return mean lightness of the image. Useful with Threshold() and Light()
716 */
717float CxImage::Mean()
718{
719 if (!pDib) return 0;
720
721 CxImage tmp(*this,true);
722 if (!tmp.IsValid()){
723 strcpy(info.szLastError,tmp.GetLastError());
724 return false;
725 }
726
727 tmp.GrayScale();
728 float sum=0;
729
730 long xmin,xmax,ymin,ymax;
731 if (pSelection){
732 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
733 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
734 } else {
735 xmin = ymin = 0;
736 xmax = head.biWidth; ymax=head.biHeight;
737 }
738 if (xmin==xmax || ymin==ymax) return (float)0.0;
739
740 BYTE *iSrc=tmp.info.pImage;
741 iSrc += tmp.info.dwEffWidth*ymin; // necessary for selections <Admir Hodzic>
742
743 for(long y=ymin; y<ymax; y++){
744 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin)); //<zhanghk><Anatoly Ivasyuk>
745 for(long x=xmin; x<xmax; x++){
746 sum+=iSrc[x];
747 }
748 iSrc+=tmp.info.dwEffWidth;
749 }
750 return sum/(xmax-xmin)/(ymax-ymin);
751}
752////////////////////////////////////////////////////////////////////////////////
753/**
754 * 2D linear filter
755 * \param kernel: convolving matrix, in row format.
756 * \param Ksize: size of the kernel.
757 * \param Kfactor: normalization constant.
758 * \param Koffset: bias.
759 * \verbatim Example: the "soften" filter uses this kernel:
760 1 1 1
761 1 8 1
762 1 1 1
763 the function needs: kernel={1,1,1,1,8,1,1,1,1}; Ksize=3; Kfactor=16; Koffset=0; \endverbatim
764 * \return true if everything is ok
765 */
766bool CxImage::Filter(long* kernel, long Ksize, long Kfactor, long Koffset)
767{
768 if (!pDib) return false;
769
770 long k2 = Ksize/2;
771 long kmax= Ksize-k2;
772 long r,g,b,i;
773 long ksumcur,ksumtot;
774 RGBQUAD c;
775
776 CxImage tmp(*this);
777 if (!tmp.IsValid()){
778 strcpy(info.szLastError,tmp.GetLastError());
779 return false;
780 }
781
782 long xmin,xmax,ymin,ymax;
783 if (pSelection){
784 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
785 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
786 } else {
787 xmin = ymin = 0;
788 xmax = head.biWidth; ymax=head.biHeight;
789 }
790
791 ksumtot = 0;
792 for(long j=-k2;j<kmax;j++){
793 for(long k=-k2;k<kmax;k++){
794 ksumtot += kernel[(j+k2)+Ksize*(k+k2)];
795 }
796 }
797
798 if ((head.biBitCount==8) && IsGrayScale())
799 {
800 unsigned char* cPtr;
801 unsigned char* cPtr2;
802 int iCount;
803 int iY, iY2, iY1;
804 cPtr = info.pImage;
805 cPtr2 = (unsigned char *)tmp.info.pImage;
806 for(long y=ymin; y<ymax; y++){
807 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
808 if (info.nEscape) break;
809 iY1 = y*info.dwEffWidth+xmin;
810 for(long x=xmin; x<xmax; x++, iY1++){
811#if CXIMAGE_SUPPORT_SELECTION
812 if (BlindSelectionIsInside(x,y))
813#endif //CXIMAGE_SUPPORT_SELECTION
814 {
815 b=ksumcur=0;
816 iCount = 0;
817 iY2 = ((y-k2)*info.dwEffWidth);
818 for(long j=-k2;j<kmax;j++, iY2+=info.dwEffWidth)
819 {
820 if (0>(y+j) || (y+j)>=head.biHeight) continue;
821 iY = iY2+x;
822 for(long k=-k2;k<kmax;k++, iCount++)
823 {
824 if (0>(x+k) || (x+k)>=head.biWidth) continue;
825 i=kernel[iCount];
826 b += cPtr[iY+k] * i;
827 ksumcur += i;
828 }
829 }
830 if (Kfactor==0 || ksumcur==0){
831 cPtr2[iY1] = (BYTE)min(255, max(0,(int)(b + Koffset)));
832 } else if (ksumtot == ksumcur) {
833 cPtr2[iY1] = (BYTE)min(255, max(0,(int)(b/Kfactor + Koffset)));
834 } else {
835 cPtr2[iY1] = (BYTE)min(255, max(0,(int)((b*ksumtot)/(ksumcur*Kfactor) + Koffset)));
836 }
837 }
838 }
839 }
840 }
841 else
842 {
843 for(long y=ymin; y<ymax; y++){
844 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
845 if (info.nEscape) break;
846 for(long x=xmin; x<xmax; x++){
847 #if CXIMAGE_SUPPORT_SELECTION
848 if (BlindSelectionIsInside(x,y))
849 #endif //CXIMAGE_SUPPORT_SELECTION
850 {
851 r=b=g=ksumcur=0;
852 for(long j=-k2;j<kmax;j++){
853 for(long k=-k2;k<kmax;k++){
854 if (!IsInside(x+j,y+k)) continue;
855 c = BlindGetPixelColor(x+j,y+k);
856 i = kernel[(j+k2)+Ksize*(k+k2)];
857 r += c.rgbRed * i;
858 g += c.rgbGreen * i;
859 b += c.rgbBlue * i;
860 ksumcur += i;
861 }
862 }
863 if (Kfactor==0 || ksumcur==0){
864 c.rgbRed = (BYTE)min(255, max(0,(int)(r + Koffset)));
865 c.rgbGreen = (BYTE)min(255, max(0,(int)(g + Koffset)));
866 c.rgbBlue = (BYTE)min(255, max(0,(int)(b + Koffset)));
867 } else if (ksumtot == ksumcur) {
868 c.rgbRed = (BYTE)min(255, max(0,(int)(r/Kfactor + Koffset)));
869 c.rgbGreen = (BYTE)min(255, max(0,(int)(g/Kfactor + Koffset)));
870 c.rgbBlue = (BYTE)min(255, max(0,(int)(b/Kfactor + Koffset)));
871 } else {
872 c.rgbRed = (BYTE)min(255, max(0,(int)((r*ksumtot)/(ksumcur*Kfactor) + Koffset)));
873 c.rgbGreen = (BYTE)min(255, max(0,(int)((g*ksumtot)/(ksumcur*Kfactor) + Koffset)));
874 c.rgbBlue = (BYTE)min(255, max(0,(int)((b*ksumtot)/(ksumcur*Kfactor) + Koffset)));
875 }
876 tmp.BlindSetPixelColor(x,y,c);
877 }
878 }
879 }
880 }
881 Transfer(tmp);
882 return true;
883}
884////////////////////////////////////////////////////////////////////////////////
885/**
886 * Enhance the dark areas of the image
887 * \param Ksize: size of the kernel.
888 * \return true if everything is ok
889 */
890bool CxImage::Erode(long Ksize)
891{
892 if (!pDib) return false;
893
894 long k2 = Ksize/2;
895 long kmax= Ksize-k2;
896 BYTE r,g,b;
897 RGBQUAD c;
898
899 CxImage tmp(*this);
900 if (!tmp.IsValid()){
901 strcpy(info.szLastError,tmp.GetLastError());
902 return false;
903 }
904
905 long xmin,xmax,ymin,ymax;
906 if (pSelection){
907 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
908 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
909 } else {
910 xmin = ymin = 0;
911 xmax = head.biWidth; ymax=head.biHeight;
912 }
913
914 for(long y=ymin; y<ymax; y++){
915 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
916 if (info.nEscape) break;
917 for(long x=xmin; x<xmax; x++){
918#if CXIMAGE_SUPPORT_SELECTION
919 if (BlindSelectionIsInside(x,y))
920#endif //CXIMAGE_SUPPORT_SELECTION
921 {
922 r=b=g=255;
923 for(long j=-k2;j<kmax;j++){
924 for(long k=-k2;k<kmax;k++){
925 if (!IsInside(x+j,y+k)) continue;
926 c = BlindGetPixelColor(x+j,y+k);
927 if (c.rgbRed < r) r=c.rgbRed;
928 if (c.rgbGreen < g) g=c.rgbGreen;
929 if (c.rgbBlue < b) b=c.rgbBlue;
930 }
931 }
932 c.rgbRed = r;
933 c.rgbGreen = g;
934 c.rgbBlue = b;
935 tmp.BlindSetPixelColor(x,y,c);
936 }
937 }
938 }
939 Transfer(tmp);
940 return true;
941}
942////////////////////////////////////////////////////////////////////////////////
943/**
944 * Enhance the light areas of the image
945 * \param Ksize: size of the kernel.
946 * \return true if everything is ok
947 */
948bool CxImage::Dilate(long Ksize)
949{
950 if (!pDib) return false;
951
952 long k2 = Ksize/2;
953 long kmax= Ksize-k2;
954 BYTE r,g,b;
955 RGBQUAD c;
956
957 CxImage tmp(*this);
958 if (!tmp.IsValid()){
959 strcpy(info.szLastError,tmp.GetLastError());
960 return false;
961 }
962
963 long xmin,xmax,ymin,ymax;
964 if (pSelection){
965 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
966 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
967 } else {
968 xmin = ymin = 0;
969 xmax = head.biWidth; ymax=head.biHeight;
970 }
971
972 for(long y=ymin; y<ymax; y++){
973 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
974 if (info.nEscape) break;
975 for(long x=xmin; x<xmax; x++){
976#if CXIMAGE_SUPPORT_SELECTION
977 if (BlindSelectionIsInside(x,y))
978#endif //CXIMAGE_SUPPORT_SELECTION
979 {
980 r=b=g=0;
981 for(long j=-k2;j<kmax;j++){
982 for(long k=-k2;k<kmax;k++){
983 if (!IsInside(x+j,y+k)) continue;
984 c = BlindGetPixelColor(x+j,y+k);
985 if (c.rgbRed > r) r=c.rgbRed;
986 if (c.rgbGreen > g) g=c.rgbGreen;
987 if (c.rgbBlue > b) b=c.rgbBlue;
988 }
989 }
990 c.rgbRed = r;
991 c.rgbGreen = g;
992 c.rgbBlue = b;
993 tmp.BlindSetPixelColor(x,y,c);
994 }
995 }
996 }
997 Transfer(tmp);
998 return true;
999}
1000////////////////////////////////////////////////////////////////////////////////
1001/**
1002 * Enhance the variations between adjacent pixels.
1003 * Similar results can be achieved using Filter(),
1004 * but the algorithms are different both in Edge() and in Contour().
1005 * \param Ksize: size of the kernel.
1006 * \return true if everything is ok
1007 */
1008bool CxImage::Edge(long Ksize)
1009{
1010 if (!pDib) return false;
1011
1012 long k2 = Ksize/2;
1013 long kmax= Ksize-k2;
1014 BYTE r,g,b,rr,gg,bb;
1015 RGBQUAD c;
1016
1017 CxImage tmp(*this);
1018 if (!tmp.IsValid()){
1019 strcpy(info.szLastError,tmp.GetLastError());
1020 return false;
1021 }
1022
1023 long xmin,xmax,ymin,ymax;
1024 if (pSelection){
1025 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
1026 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
1027 } else {
1028 xmin = ymin = 0;
1029 xmax = head.biWidth; ymax=head.biHeight;
1030 }
1031
1032 for(long y=ymin; y<ymax; y++){
1033 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
1034 if (info.nEscape) break;
1035 for(long x=xmin; x<xmax; x++){
1036#if CXIMAGE_SUPPORT_SELECTION
1037 if (BlindSelectionIsInside(x,y))
1038#endif //CXIMAGE_SUPPORT_SELECTION
1039 {
1040 r=b=g=0;
1041 rr=bb=gg=255;
1042 for(long j=-k2;j<kmax;j++){
1043 for(long k=-k2;k<kmax;k++){
1044 if (!IsInside(x+j,y+k)) continue;
1045 c = BlindGetPixelColor(x+j,y+k);
1046 if (c.rgbRed > r) r=c.rgbRed;
1047 if (c.rgbGreen > g) g=c.rgbGreen;
1048 if (c.rgbBlue > b) b=c.rgbBlue;
1049
1050 if (c.rgbRed < rr) rr=c.rgbRed;
1051 if (c.rgbGreen < gg) gg=c.rgbGreen;
1052 if (c.rgbBlue < bb) bb=c.rgbBlue;
1053 }
1054 }
1055 c.rgbRed = (BYTE)(255-abs(r-rr));
1056 c.rgbGreen = (BYTE)(255-abs(g-gg));
1057 c.rgbBlue = (BYTE)(255-abs(b-bb));
1058 tmp.BlindSetPixelColor(x,y,c);
1059 }
1060 }
1061 }
1062 Transfer(tmp);
1063 return true;
1064}
1065////////////////////////////////////////////////////////////////////////////////
1066/**
1067 * Blends two images
1068 * \param imgsrc2: image to be mixed with this
1069 * \param op: blending method; see ImageOpType
1070 * \param lXOffset, lYOffset: image displacement
1071 * \param bMixAlpha: if true and imgsrc2 has a valid alpha layer, it will be mixed in the destination image.
1072 * \return true if everything is ok
1073 *
1074 * thanks to Mwolski
1075 */
1076//
1077void CxImage::Mix(CxImage & imgsrc2, ImageOpType op, long lXOffset, long lYOffset, bool bMixAlpha)
1078{
1079 long lWide = min(GetWidth(),imgsrc2.GetWidth()-lXOffset);
1080 long lHeight = min(GetHeight(),imgsrc2.GetHeight()-lYOffset);
1081
1082 bool bEditAlpha = imgsrc2.AlphaIsValid() & bMixAlpha;
1083
1084 if (bEditAlpha && AlphaIsValid()==false){
1085 AlphaCreate();
1086 }
1087
1088 RGBQUAD rgbBackgrnd1 = GetTransColor();
1089 RGBQUAD rgb1, rgb2, rgbDest;
1090
1091 for(long lY=0;lY<lHeight;lY++)
1092 {
1093 info.nProgress = (long)(100*lY/head.biHeight);
1094 if (info.nEscape) break;
1095
1096 for(long lX=0;lX<lWide;lX++)
1097 {
1098#if CXIMAGE_SUPPORT_SELECTION
1099 if (SelectionIsInside(lX,lY) && imgsrc2.SelectionIsInside(lX+lXOffset,lY+lYOffset))
1100#endif //CXIMAGE_SUPPORT_SELECTION
1101 {
1102 rgb1 = GetPixelColor(lX,lY);
1103 rgb2 = imgsrc2.GetPixelColor(lX+lXOffset,lY+lYOffset);
1104 switch(op)
1105 {
1106 case OpAvg:
1107 rgbDest.rgbBlue = (BYTE)((rgb1.rgbBlue+rgb2.rgbBlue)/2);
1108 rgbDest.rgbGreen = (BYTE)((rgb1.rgbGreen+rgb2.rgbGreen)/2);
1109 rgbDest.rgbRed = (BYTE)((rgb1.rgbRed+rgb2.rgbRed)/2);
1110 if (bEditAlpha) rgbDest.rgbReserved = (BYTE)((rgb1.rgbReserved+rgb2.rgbReserved)/2);
1111 break;
1112 case OpAdd:
1113 rgbDest.rgbBlue = (BYTE)max(0,min(255,rgb1.rgbBlue+rgb2.rgbBlue));
1114 rgbDest.rgbGreen = (BYTE)max(0,min(255,rgb1.rgbGreen+rgb2.rgbGreen));
1115 rgbDest.rgbRed = (BYTE)max(0,min(255,rgb1.rgbRed+rgb2.rgbRed));
1116 if (bEditAlpha) rgbDest.rgbReserved = (BYTE)max(0,min(255,rgb1.rgbReserved+rgb2.rgbReserved));
1117 break;
1118 case OpSub:
1119 rgbDest.rgbBlue = (BYTE)max(0,min(255,rgb1.rgbBlue-rgb2.rgbBlue));
1120 rgbDest.rgbGreen = (BYTE)max(0,min(255,rgb1.rgbGreen-rgb2.rgbGreen));
1121 rgbDest.rgbRed = (BYTE)max(0,min(255,rgb1.rgbRed-rgb2.rgbRed));
1122 if (bEditAlpha) rgbDest.rgbReserved = (BYTE)max(0,min(255,rgb1.rgbReserved-rgb2.rgbReserved));
1123 break;
1124 case OpAnd:
1125 rgbDest.rgbBlue = (BYTE)(rgb1.rgbBlue&rgb2.rgbBlue);
1126 rgbDest.rgbGreen = (BYTE)(rgb1.rgbGreen&rgb2.rgbGreen);
1127 rgbDest.rgbRed = (BYTE)(rgb1.rgbRed&rgb2.rgbRed);
1128 if (bEditAlpha) rgbDest.rgbReserved = (BYTE)(rgb1.rgbReserved&rgb2.rgbReserved);
1129 break;
1130 case OpXor:
1131 rgbDest.rgbBlue = (BYTE)(rgb1.rgbBlue^rgb2.rgbBlue);
1132 rgbDest.rgbGreen = (BYTE)(rgb1.rgbGreen^rgb2.rgbGreen);
1133 rgbDest.rgbRed = (BYTE)(rgb1.rgbRed^rgb2.rgbRed);
1134 if (bEditAlpha) rgbDest.rgbReserved = (BYTE)(rgb1.rgbReserved^rgb2.rgbReserved);
1135 break;
1136 case OpOr:
1137 rgbDest.rgbBlue = (BYTE)(rgb1.rgbBlue|rgb2.rgbBlue);
1138 rgbDest.rgbGreen = (BYTE)(rgb1.rgbGreen|rgb2.rgbGreen);
1139 rgbDest.rgbRed = (BYTE)(rgb1.rgbRed|rgb2.rgbRed);
1140 if (bEditAlpha) rgbDest.rgbReserved = (BYTE)(rgb1.rgbReserved|rgb2.rgbReserved);
1141 break;
1142 case OpMask:
1143 if(rgb2.rgbBlue==0 && rgb2.rgbGreen==0 && rgb2.rgbRed==0)
1144 rgbDest = rgbBackgrnd1;
1145 else
1146 rgbDest = rgb1;
1147 break;
1148 case OpSrcCopy:
1149 if(IsTransparent(lX,lY))
1150 rgbDest = rgb2;
1151 else // copy straight over
1152 rgbDest = rgb1;
1153 break;
1154 case OpDstCopy:
1155 if(imgsrc2.IsTransparent(lX+lXOffset,lY+lYOffset))
1156 rgbDest = rgb1;
1157 else // copy straight over
1158 rgbDest = rgb2;
1159 break;
1160 case OpScreen:
1161 {
1162 BYTE a,a1;
1163
1164 if (imgsrc2.IsTransparent(lX+lXOffset,lY+lYOffset)){
1165 a=0;
1166 } else if (imgsrc2.AlphaIsValid()){
1167 a=imgsrc2.AlphaGet(lX+lXOffset,lY+lYOffset);
1168 a =(BYTE)((a*imgsrc2.info.nAlphaMax)/255);
1169 } else {
1170 a=255;
1171 }
1172
1173 if (a==0){ //transparent
1174 rgbDest = rgb1;
1175 } else if (a==255){ //opaque
1176 rgbDest = rgb2;
1177 } else { //blend
1178 a1 = (BYTE)~a;
1179 rgbDest.rgbBlue = (BYTE)((rgb1.rgbBlue*a1+rgb2.rgbBlue*a)/255);
1180 rgbDest.rgbGreen = (BYTE)((rgb1.rgbGreen*a1+rgb2.rgbGreen*a)/255);
1181 rgbDest.rgbRed = (BYTE)((rgb1.rgbRed*a1+rgb2.rgbRed*a)/255);
1182 }
1183
1184 if (bEditAlpha) rgbDest.rgbReserved = (BYTE)((rgb1.rgbReserved*a)/255);
1185 }
1186 break;
1187 case OpSrcBlend:
1188 if(IsTransparent(lX,lY))
1189 rgbDest = rgb2;
1190 else
1191 {
1192 long lBDiff = abs(rgb1.rgbBlue - rgbBackgrnd1.rgbBlue);
1193 long lGDiff = abs(rgb1.rgbGreen - rgbBackgrnd1.rgbGreen);
1194 long lRDiff = abs(rgb1.rgbRed - rgbBackgrnd1.rgbRed);
1195
1196 double lAverage = (lBDiff+lGDiff+lRDiff)/3;
1197 double lThresh = 16;
1198 double dLarge = lAverage/lThresh;
1199 double dSmall = (lThresh-lAverage)/lThresh;
1200 double dSmallAmt = dSmall*((double)rgb2.rgbBlue);
1201
1202 if( lAverage < lThresh+1){
1203 rgbDest.rgbBlue = (BYTE)max(0,min(255,(int)(dLarge*((double)rgb1.rgbBlue) +
1204 dSmallAmt)));
1205 rgbDest.rgbGreen = (BYTE)max(0,min(255,(int)(dLarge*((double)rgb1.rgbGreen) +
1206 dSmallAmt)));
1207 rgbDest.rgbRed = (BYTE)max(0,min(255,(int)(dLarge*((double)rgb1.rgbRed) +
1208 dSmallAmt)));
1209 }
1210 else
1211 rgbDest = rgb1;
1212 }
1213 break;
1214 default:
1215 return;
1216 }
1217 SetPixelColor(lX,lY,rgbDest,bEditAlpha);
1218 }
1219 }
1220 }
1221}
1222////////////////////////////////////////////////////////////////////////////////
1223// thanks to Kenneth Ballard
1224void CxImage::MixFrom(CxImage & imagesrc2, long lXOffset, long lYOffset)
1225{
1226 long width = imagesrc2.GetWidth();
1227 long height = imagesrc2.GetHeight();
1228
1229 int x, y;
1230
1231 if (imagesrc2.IsTransparent()) {
1232 for(x = 0; x < width; x++) {
1233 for(y = 0; y < height; y++) {
1234 if(!imagesrc2.IsTransparent(x,y)){
1235 SetPixelColor(x + lXOffset, y + lYOffset, imagesrc2.BlindGetPixelColor(x, y));
1236 }
1237 }
1238 }
1239 } else { //no transparency so just set it <Matt>
1240 for(x = 0; x < width; x++) {
1241 for(y = 0; y < height; y++) {
1242 SetPixelColor(x + lXOffset, y + lYOffset, imagesrc2.BlindGetPixelColor(x, y));
1243 }
1244 }
1245 }
1246}
1247////////////////////////////////////////////////////////////////////////////////
1248/**
1249 * Adjusts separately the red, green, and blue values in the image.
1250 * \param r, g, b: can be from -255 to +255.
1251 * \return true if everything is ok
1252 */
1253bool CxImage::ShiftRGB(long r, long g, long b)
1254{
1255 if (!pDib) return false;
1256 RGBQUAD color;
1257 if (head.biClrUsed==0){
1258
1259 long xmin,xmax,ymin,ymax;
1260 if (pSelection){
1261 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
1262 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
1263 } else {
1264 xmin = ymin = 0;
1265 xmax = head.biWidth; ymax=head.biHeight;
1266 }
1267
1268 for(long y=ymin; y<ymax; y++){
1269 for(long x=xmin; x<xmax; x++){
1270#if CXIMAGE_SUPPORT_SELECTION
1271 if (BlindSelectionIsInside(x,y))
1272#endif //CXIMAGE_SUPPORT_SELECTION
1273 {
1274 color = BlindGetPixelColor(x,y);
1275 color.rgbRed = (BYTE)max(0,min(255,(int)(color.rgbRed + r)));
1276 color.rgbGreen = (BYTE)max(0,min(255,(int)(color.rgbGreen + g)));
1277 color.rgbBlue = (BYTE)max(0,min(255,(int)(color.rgbBlue + b)));
1278 BlindSetPixelColor(x,y,color);
1279 }
1280 }
1281 }
1282 } else {
1283 for(DWORD j=0; j<head.biClrUsed; j++){
1284 color = GetPaletteColor((BYTE)j);
1285 color.rgbRed = (BYTE)max(0,min(255,(int)(color.rgbRed + r)));
1286 color.rgbGreen = (BYTE)max(0,min(255,(int)(color.rgbGreen + g)));
1287 color.rgbBlue = (BYTE)max(0,min(255,(int)(color.rgbBlue + b)));
1288 SetPaletteColor((BYTE)j,color);
1289 }
1290 }
1291 return true;
1292}
1293////////////////////////////////////////////////////////////////////////////////
1294/**
1295 * Adjusts the color balance of the image
1296 * \param gamma can be from 0.1 to 5.
1297 * \return true if everything is ok
1298 * \sa GammaRGB
1299 */
1300bool CxImage::Gamma(float gamma)
1301{
1302 if (!pDib) return false;
1303
1304 if (gamma <= 0.0f) return false;
1305
1306 double dinvgamma = 1/gamma;
1307 double dMax = pow(255.0, dinvgamma) / 255.0;
1308
1309 BYTE cTable[256]; //<nipper>
1310 for (int i=0;i<256;i++) {
1311 cTable[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax)));
1312 }
1313
1314 return Lut(cTable);
1315}
1316////////////////////////////////////////////////////////////////////////////////
1317/**
1318 * Adjusts the color balance indipendent for each color channel
1319 * \param gammaR, gammaG, gammaB can be from 0.1 to 5.
1320 * \return true if everything is ok
1321 * \sa Gamma
1322 */
1323bool CxImage::GammaRGB(float gammaR, float gammaG, float gammaB)
1324{
1325 if (!pDib) return false;
1326
1327 if (gammaR <= 0.0f) return false;
1328 if (gammaG <= 0.0f) return false;
1329 if (gammaB <= 0.0f) return false;
1330
1331 double dinvgamma, dMax;
1332 int i;
1333
1334 dinvgamma = 1/gammaR;
1335 dMax = pow(255.0, dinvgamma) / 255.0;
1336 BYTE cTableR[256];
1337 for (i=0;i<256;i++) {
1338 cTableR[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax)));
1339 }
1340
1341 dinvgamma = 1/gammaG;
1342 dMax = pow(255.0, dinvgamma) / 255.0;
1343 BYTE cTableG[256];
1344 for (i=0;i<256;i++) {
1345 cTableG[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax)));
1346 }
1347
1348 dinvgamma = 1/gammaB;
1349 dMax = pow(255.0, dinvgamma) / 255.0;
1350 BYTE cTableB[256];
1351 for (i=0;i<256;i++) {
1352 cTableB[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax)));
1353 }
1354
1355 return Lut(cTableR, cTableG, cTableB);
1356}
1357////////////////////////////////////////////////////////////////////////////////
1358
1359//#if !defined (_WIN32_WCE)
1360/**
1361 * Adjusts the intensity of each pixel to the median intensity of its surrounding pixels.
1362 * \param Ksize: size of the kernel.
1363 * \return true if everything is ok
1364 */
1365bool CxImage::Median(long Ksize)
1366{
1367 if (!pDib) return false;
1368
1369 long k2 = Ksize/2;
1370 long kmax= Ksize-k2;
1371 long i,j,k;
1372
1373 RGBQUAD* kernel = (RGBQUAD*)malloc(Ksize*Ksize*sizeof(RGBQUAD));
1374
1375 CxImage tmp(*this);
1376 if (!tmp.IsValid()){
1377 strcpy(info.szLastError,tmp.GetLastError());
1378 return false;
1379 }
1380
1381 long xmin,xmax,ymin,ymax;
1382 if (pSelection){
1383 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
1384 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
1385 } else {
1386 xmin = ymin = 0;
1387 xmax = head.biWidth; ymax=head.biHeight;
1388 }
1389
1390 for(long y=ymin; y<ymax; y++){
1391 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
1392 if (info.nEscape) break;
1393 for(long x=xmin; x<xmax; x++){
1394#if CXIMAGE_SUPPORT_SELECTION
1395 if (BlindSelectionIsInside(x,y))
1396#endif //CXIMAGE_SUPPORT_SELECTION
1397 {
1398 for(j=-k2, i=0;j<kmax;j++)
1399 for(k=-k2;k<kmax;k++)
1400 if (IsInside(x+j,y+k))
1401 kernel[i++]=BlindGetPixelColor(x+j,y+k);
1402
1403 qsort(kernel, i, sizeof(RGBQUAD), CompareColors);
1404 tmp.SetPixelColor(x,y,kernel[i/2]);
1405 }
1406 }
1407 }
1408 free(kernel);
1409 Transfer(tmp);
1410 return true;
1411}
1412//#endif //_WIN32_WCE
1413////////////////////////////////////////////////////////////////////////////////
1414/**
1415 * Adds an uniform noise to the image
1416 * \param level: can be from 0 (no noise) to 255 (lot of noise).
1417 * \return true if everything is ok
1418 */
1419bool CxImage::Noise(long level)
1420{
1421 if (!pDib) return false;
1422 RGBQUAD color;
1423
1424 long xmin,xmax,ymin,ymax,n;
1425 if (pSelection){
1426 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
1427 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
1428 } else {
1429 xmin = ymin = 0;
1430 xmax = head.biWidth; ymax=head.biHeight;
1431 }
1432
1433 for(long y=ymin; y<ymax; y++){
1434 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin)); //<zhanghk><Anatoly Ivasyuk>
1435 for(long x=xmin; x<xmax; x++){
1436#if CXIMAGE_SUPPORT_SELECTION
1437 if (BlindSelectionIsInside(x,y))
1438#endif //CXIMAGE_SUPPORT_SELECTION
1439 {
1440 color = BlindGetPixelColor(x,y);
1441 n=(long)((rand()/(float)RAND_MAX - 0.5)*level);
1442 color.rgbRed = (BYTE)max(0,min(255,(int)(color.rgbRed + n)));
1443 n=(long)((rand()/(float)RAND_MAX - 0.5)*level);
1444 color.rgbGreen = (BYTE)max(0,min(255,(int)(color.rgbGreen + n)));
1445 n=(long)((rand()/(float)RAND_MAX - 0.5)*level);
1446 color.rgbBlue = (BYTE)max(0,min(255,(int)(color.rgbBlue + n)));
1447 BlindSetPixelColor(x,y,color);
1448 }
1449 }
1450 }
1451 return true;
1452}
1453////////////////////////////////////////////////////////////////////////////////
1454/**
1455 * Computes the bidimensional FFT or DFT of the image.
1456 * - The images are processed as grayscale
1457 * - If the dimensions of the image are a power of, 2 the FFT is performed automatically.
1458 * - If dstReal and/or dstImag are NULL, the resulting images replaces the original(s).
1459 * - Note: with 8 bits there is a HUGE loss in the dynamics. The function tries
1460 * to keep an acceptable SNR, but 8bit = 48dB...
1461 *
1462 * \param srcReal, srcImag: source images: One can be NULL, but not both
1463 * \param dstReal, dstImag: destination images. Can be NULL.
1464 * \param direction: 1 = forward, -1 = inverse.
1465 * \param bForceFFT: if true, the images are resampled to make the dimensions a power of 2.
1466 * \param bMagnitude: if true, the real part returns the magnitude, the imaginary part returns the phase
1467 * \return true if everything is ok
1468 */
1469bool CxImage::FFT2(CxImage* srcReal, CxImage* srcImag, CxImage* dstReal, CxImage* dstImag,
1470 long direction, bool bForceFFT, bool bMagnitude)
1471{
1472 //check if there is something to convert
1473 if (srcReal==NULL && srcImag==NULL) return false;
1474
1475 long w,h;
1476 //get width and height
1477 if (srcReal) {
1478 w=srcReal->GetWidth();
1479 h=srcReal->GetHeight();
1480 } else {
1481 w=srcImag->GetWidth();
1482 h=srcImag->GetHeight();
1483 }
1484
1485 bool bXpow2 = IsPowerof2(w);
1486 bool bYpow2 = IsPowerof2(h);
1487 //if bForceFFT, width AND height must be powers of 2
1488 if (bForceFFT && !(bXpow2 && bYpow2)) {
1489 long i;
1490
1491 i=0;
1492 while((1<<i)<w) i++;
1493 w=1<<i;
1494 bXpow2=true;
1495
1496 i=0;
1497 while((1<<i)<h) i++;
1498 h=1<<i;
1499 bYpow2=true;
1500 }
1501
1502 // I/O images for FFT
1503 CxImage *tmpReal,*tmpImag;
1504
1505 // select output
1506 tmpReal = (dstReal) ? dstReal : srcReal;
1507 tmpImag = (dstImag) ? dstImag : srcImag;
1508
1509 // src!=dst -> copy the image
1510 if (srcReal && dstReal) tmpReal->Copy(*srcReal,true,false,false);
1511 if (srcImag && dstImag) tmpImag->Copy(*srcImag,true,false,false);
1512
1513 // dst&&src are empty -> create new one, else turn to GrayScale
1514 if (srcReal==0 && dstReal==0){
1515 tmpReal = new CxImage(w,h,8);
1516 tmpReal->Clear(0);
1517 tmpReal->SetGrayPalette();
1518 } else {
1519 if (!tmpReal->IsGrayScale()) tmpReal->GrayScale();
1520 }
1521 if (srcImag==0 && dstImag==0){
1522 tmpImag = new CxImage(w,h,8);
1523 tmpImag->Clear(0);
1524 tmpImag->SetGrayPalette();
1525 } else {
1526 if (!tmpImag->IsGrayScale()) tmpImag->GrayScale();
1527 }
1528
1529 if (!(tmpReal->IsValid() && tmpImag->IsValid())){
1530 if (srcReal==0 && dstReal==0) delete tmpReal;
1531 if (srcImag==0 && dstImag==0) delete tmpImag;
1532 return false;
1533 }
1534
1535 //resample for FFT, if necessary
1536 tmpReal->Resample(w,h,0);
1537 tmpImag->Resample(w,h,0);
1538
1539 //ok, here we have 2 (w x h), grayscale images ready for a FFT
1540
1541 double* real;
1542 double* imag;
1543 long j,k,m;
1544
1545 _complex **grid;
1546 //double mean = tmpReal->Mean();
1547 /* Allocate memory for the grid */
1548 grid = (_complex **)malloc(w * sizeof(_complex));
1549 for (k=0;k<w;k++) {
1550 grid[k] = (_complex *)malloc(h * sizeof(_complex));
1551 }
1552 for (j=0;j<h;j++) {
1553 for (k=0;k<w;k++) {
1554 grid[k][j].x = tmpReal->GetPixelIndex(k,j)-128;
1555 grid[k][j].y = tmpImag->GetPixelIndex(k,j)-128;
1556 }
1557 }
1558
1559 //DFT buffers
1560 double *real2,*imag2;
1561 real2 = (double*)malloc(max(w,h) * sizeof(double));
1562 imag2 = (double*)malloc(max(w,h) * sizeof(double));
1563
1564 /* Transform the rows */
1565 real = (double *)malloc(w * sizeof(double));
1566 imag = (double *)malloc(w * sizeof(double));
1567
1568 m=0;
1569 while((1<<m)<w) m++;
1570
1571 for (j=0;j<h;j++) {
1572 for (k=0;k<w;k++) {
1573 real[k] = grid[k][j].x;
1574 imag[k] = grid[k][j].y;
1575 }
1576
1577 if (bXpow2) FFT(direction,m,real,imag);
1578 else DFT(direction,w,real,imag,real2,imag2);
1579
1580 for (k=0;k<w;k++) {
1581 grid[k][j].x = real[k];
1582 grid[k][j].y = imag[k];
1583 }
1584 }
1585 free(real);
1586 free(imag);
1587
1588 /* Transform the columns */
1589 real = (double *)malloc(h * sizeof(double));
1590 imag = (double *)malloc(h * sizeof(double));
1591
1592 m=0;
1593 while((1<<m)<h) m++;
1594
1595 for (k=0;k<w;k++) {
1596 for (j=0;j<h;j++) {
1597 real[j] = grid[k][j].x;
1598 imag[j] = grid[k][j].y;
1599 }
1600
1601 if (bYpow2) FFT(direction,m,real,imag);
1602 else DFT(direction,h,real,imag,real2,imag2);
1603
1604 for (j=0;j<h;j++) {
1605 grid[k][j].x = real[j];
1606 grid[k][j].y = imag[j];
1607 }
1608 }
1609 free(real);
1610 free(imag);
1611
1612 free(real2);
1613 free(imag2);
1614
1615 /* converting from double to byte, there is a HUGE loss in the dynamics
1616 "nn" tries to keep an acceptable SNR, but 8bit=48dB: don't ask more */
1617 double nn=pow((double)2,(double)log((double)max(w,h))/(double)log((double)2)-4);
1618 //reversed gain for reversed transform
1619 if (direction==-1) nn=1/nn;
1620 //bMagnitude : just to see it on the screen
1621 if (bMagnitude) nn*=4;
1622
1623 for (j=0;j<h;j++) {
1624 for (k=0;k<w;k++) {
1625 if (bMagnitude){
1626 tmpReal->SetPixelIndex(k,j,(BYTE)max(0,min(255,(nn*(3+log(_cabs(grid[k][j])))))));
1627 if (grid[k][j].x==0){
1628 tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128+(atan(grid[k][j].y/0.0000000001)*nn)))));
1629 } else {
1630 tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128+(atan(grid[k][j].y/grid[k][j].x)*nn)))));
1631 }
1632 } else {
1633 tmpReal->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128 + grid[k][j].x*nn))));
1634 tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128 + grid[k][j].y*nn))));
1635 }
1636 }
1637 }
1638
1639 for (k=0;k<w;k++) free (grid[k]);
1640 free (grid);
1641
1642 if (srcReal==0 && dstReal==0) delete tmpReal;
1643 if (srcImag==0 && dstImag==0) delete tmpImag;
1644
1645 return true;
1646}
1647////////////////////////////////////////////////////////////////////////////////
1648bool CxImage::IsPowerof2(long x)
1649{
1650 long i=0;
1651 while ((1<<i)<x) i++;
1652 if (x==(1<<i)) return true;
1653 return false;
1654}
1655////////////////////////////////////////////////////////////////////////////////
1656/**
1657 This computes an in-place complex-to-complex FFT
1658 x and y are the real and imaginary arrays of n=2^m points.
1659 o(n)=n*log2(n)
1660 dir = 1 gives forward transform
1661 dir = -1 gives reverse transform
1662 Written by Paul Bourke, July 1998
1663 FFT algorithm by Cooley and Tukey, 1965
1664*/
1665bool CxImage::FFT(int dir,int m,double *x,double *y)
1666{
1667 long nn,i,i1,j,k,i2,l,l1,l2;
1668 double c1,c2,tx,ty,t1,t2,u1,u2,z;
1669
1670 /* Calculate the number of points */
1671 nn = 1<<m;
1672
1673 /* Do the bit reversal */
1674 i2 = nn >> 1;
1675 j = 0;
1676 for (i=0;i<nn-1;i++) {
1677 if (i < j) {
1678 tx = x[i];
1679 ty = y[i];
1680 x[i] = x[j];
1681 y[i] = y[j];
1682 x[j] = tx;
1683 y[j] = ty;
1684 }
1685 k = i2;
1686 while (k <= j) {
1687 j -= k;
1688 k >>= 1;
1689 }
1690 j += k;
1691 }
1692
1693 /* Compute the FFT */
1694 c1 = -1.0;
1695 c2 = 0.0;
1696 l2 = 1;
1697 for (l=0;l<m;l++) {
1698 l1 = l2;
1699 l2 <<= 1;
1700 u1 = 1.0;
1701 u2 = 0.0;
1702 for (j=0;j<l1;j++) {
1703 for (i=j;i<nn;i+=l2) {
1704 i1 = i + l1;
1705 t1 = u1 * x[i1] - u2 * y[i1];
1706 t2 = u1 * y[i1] + u2 * x[i1];
1707 x[i1] = x[i] - t1;
1708 y[i1] = y[i] - t2;
1709 x[i] += t1;
1710 y[i] += t2;
1711 }
1712 z = u1 * c1 - u2 * c2;
1713 u2 = u1 * c2 + u2 * c1;
1714 u1 = z;
1715 }
1716 c2 = sqrt((1.0 - c1) / 2.0);
1717 if (dir == 1)
1718 c2 = -c2;
1719 c1 = sqrt((1.0 + c1) / 2.0);
1720 }
1721
1722 /* Scaling for forward transform */
1723 if (dir == 1) {
1724 for (i=0;i<nn;i++) {
1725 x[i] /= (double)nn;
1726 y[i] /= (double)nn;
1727 }
1728 }
1729
1730 return true;
1731}
1732////////////////////////////////////////////////////////////////////////////////
1733/**
1734 Direct fourier transform o(n)=n^2
1735 Written by Paul Bourke, July 1998
1736*/
1737bool CxImage::DFT(int dir,long m,double *x1,double *y1,double *x2,double *y2)
1738{
1739 long i,k;
1740 double arg;
1741 double cosarg,sinarg;
1742
1743 for (i=0;i<m;i++) {
1744 x2[i] = 0;
1745 y2[i] = 0;
1746 arg = - dir * 2.0 * PI * i / (double)m;
1747 for (k=0;k<m;k++) {
1748 cosarg = cos(k * arg);
1749 sinarg = sin(k * arg);
1750 x2[i] += (x1[k] * cosarg - y1[k] * sinarg);
1751 y2[i] += (x1[k] * sinarg + y1[k] * cosarg);
1752 }
1753 }
1754
1755 /* Copy the data back */
1756 if (dir == 1) {
1757 for (i=0;i<m;i++) {
1758 x1[i] = x2[i] / m;
1759 y1[i] = y2[i] / m;
1760 }
1761 } else {
1762 for (i=0;i<m;i++) {
1763 x1[i] = x2[i];
1764 y1[i] = y2[i];
1765 }
1766 }
1767
1768 return true;
1769}
1770////////////////////////////////////////////////////////////////////////////////
1771/**
1772 * Combines different color components into a single image
1773 * \param r,g,b: color channels
1774 * \param a: alpha layer, can be NULL
1775 * \param colorspace: 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
1776 * \return true if everything is ok
1777 */
1778bool CxImage::Combine(CxImage* r,CxImage* g,CxImage* b,CxImage* a, long colorspace)
1779{
1780 if (r==0 || g==0 || b==0) return false;
1781
1782 long w = r->GetWidth();
1783 long h = r->GetHeight();
1784
1785 Create(w,h,24);
1786
1787 g->Resample(w,h);
1788 b->Resample(w,h);
1789
1790 if (a) {
1791 a->Resample(w,h);
1792#if CXIMAGE_SUPPORT_ALPHA
1793 AlphaCreate();
1794#endif //CXIMAGE_SUPPORT_ALPHA
1795 }
1796
1797 RGBQUAD c;
1798 for (long y=0;y<h;y++){
1799 info.nProgress = (long)(100*y/h); //<Anatoly Ivasyuk>
1800 for (long x=0;x<w;x++){
1801 c.rgbRed=r->GetPixelIndex(x,y);
1802 c.rgbGreen=g->GetPixelIndex(x,y);
1803 c.rgbBlue=b->GetPixelIndex(x,y);
1804 switch (colorspace){
1805 case 1:
1806 BlindSetPixelColor(x,y,HSLtoRGB(c));
1807 break;
1808 case 2:
1809 BlindSetPixelColor(x,y,YUVtoRGB(c));
1810 break;
1811 case 3:
1812 BlindSetPixelColor(x,y,YIQtoRGB(c));
1813 break;
1814 case 4:
1815 BlindSetPixelColor(x,y,XYZtoRGB(c));
1816 break;
1817 default:
1818 BlindSetPixelColor(x,y,c);
1819 }
1820#if CXIMAGE_SUPPORT_ALPHA
1821 if (a) AlphaSet(x,y,a->GetPixelIndex(x,y));
1822#endif //CXIMAGE_SUPPORT_ALPHA
1823 }
1824 }
1825
1826 return true;
1827}
1828////////////////////////////////////////////////////////////////////////////////
1829/**
1830 * Smart blurring to remove small defects, dithering or artifacts.
1831 * \param radius: normally between 0.01 and 0.5
1832 * \param niterations: should be trimmed with radius, to avoid blurring should be (radius*niterations)<1
1833 * \param colorspace: 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
1834 * \return true if everything is ok
1835 */
1836bool CxImage::Repair(float radius, long niterations, long colorspace)
1837{
1838 if (!IsValid()) return false;
1839
1840 long w = GetWidth();
1841 long h = GetHeight();
1842
1843 CxImage r,g,b;
1844
1845 r.Create(w,h,8);
1846 g.Create(w,h,8);
1847 b.Create(w,h,8);
1848
1849 switch (colorspace){
1850 case 1:
1851 SplitHSL(&r,&g,&b);
1852 break;
1853 case 2:
1854 SplitYUV(&r,&g,&b);
1855 break;
1856 case 3:
1857 SplitYIQ(&r,&g,&b);
1858 break;
1859 case 4:
1860 SplitXYZ(&r,&g,&b);
1861 break;
1862 default:
1863 SplitRGB(&r,&g,&b);
1864 }
1865
1866 for (int i=0; i<niterations; i++){
1867 RepairChannel(&r,radius);
1868 RepairChannel(&g,radius);
1869 RepairChannel(&b,radius);
1870 }
1871
1872 CxImage* a=NULL;
1873#if CXIMAGE_SUPPORT_ALPHA
1874 if (AlphaIsValid()){
1875 a = new CxImage();
1876 AlphaSplit(a);
1877 }
1878#endif
1879
1880 Combine(&r,&g,&b,a,colorspace);
1881
1882 delete a;
1883
1884 return true;
1885}
1886////////////////////////////////////////////////////////////////////////////////
1887bool CxImage::RepairChannel(CxImage *ch, float radius)
1888{
1889 if (ch==NULL) return false;
1890
1891 CxImage tmp(*ch);
1892 if (!tmp.IsValid()){
1893 strcpy(info.szLastError,tmp.GetLastError());
1894 return false;
1895 }
1896
1897 long w = ch->GetWidth()-1;
1898 long h = ch->GetHeight()-1;
1899
1900 double correction,ix,iy,ixx,ixy,iyy;
1901 int x,y,xy0,xp1,xm1,yp1,ym1;
1902
1903 for(x=1; x<w; x++){
1904 for(y=1; y<h; y++){
1905
1906 xy0 = ch->BlindGetPixelIndex(x,y);
1907 xm1 = ch->BlindGetPixelIndex(x-1,y);
1908 xp1 = ch->BlindGetPixelIndex(x+1,y);
1909 ym1 = ch->BlindGetPixelIndex(x,y-1);
1910 yp1 = ch->BlindGetPixelIndex(x,y+1);
1911
1912 ix= (xp1-xm1)/2.0;
1913 iy= (yp1-ym1)/2.0;
1914 ixx= xp1 - 2.0 * xy0 + xm1;
1915 iyy= yp1 - 2.0 * xy0 + ym1;
1916 ixy=(ch->BlindGetPixelIndex(x+1,y+1) + ch->BlindGetPixelIndex(x-1,y-1) -
1917 ch->BlindGetPixelIndex(x-1,y+1) - ch->BlindGetPixelIndex(x+1,y-1))/4.0;
1918
1919 correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
1920
1921 tmp.BlindSetPixelIndex(x,y,(BYTE)min(255,max(0,(xy0 + radius * correction + 0.5))));
1922 }
1923 }
1924
1925 for (x=0;x<=w;x++){
1926 for(y=0; y<=h; y+=h){
1927 xy0 = ch->BlindGetPixelIndex(x,y);
1928 xm1 = ch->GetPixelIndex(x-1,y);
1929 xp1 = ch->GetPixelIndex(x+1,y);
1930 ym1 = ch->GetPixelIndex(x,y-1);
1931 yp1 = ch->GetPixelIndex(x,y+1);
1932
1933 ix= (xp1-xm1)/2.0;
1934 iy= (yp1-ym1)/2.0;
1935 ixx= xp1 - 2.0 * xy0 + xm1;
1936 iyy= yp1 - 2.0 * xy0 + ym1;
1937 ixy=(ch->GetPixelIndex(x+1,y+1) + ch->GetPixelIndex(x-1,y-1) -
1938 ch->GetPixelIndex(x-1,y+1) - ch->GetPixelIndex(x+1,y-1))/4.0;
1939
1940 correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
1941
1942 tmp.BlindSetPixelIndex(x,y,(BYTE)min(255,max(0,(xy0 + radius * correction + 0.5))));
1943 }
1944 }
1945 for (x=0;x<=w;x+=w){
1946 for (y=0;y<=h;y++){
1947 xy0 = ch->BlindGetPixelIndex(x,y);
1948 xm1 = ch->GetPixelIndex(x-1,y);
1949 xp1 = ch->GetPixelIndex(x+1,y);
1950 ym1 = ch->GetPixelIndex(x,y-1);
1951 yp1 = ch->GetPixelIndex(x,y+1);
1952
1953 ix= (xp1-xm1)/2.0;
1954 iy= (yp1-ym1)/2.0;
1955 ixx= xp1 - 2.0 * xy0 + xm1;
1956 iyy= yp1 - 2.0 * xy0 + ym1;
1957 ixy=(ch->GetPixelIndex(x+1,y+1) + ch->GetPixelIndex(x-1,y-1) -
1958 ch->GetPixelIndex(x-1,y+1) - ch->GetPixelIndex(x+1,y-1))/4.0;
1959
1960 correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
1961
1962 tmp.BlindSetPixelIndex(x,y,(BYTE)min(255,max(0,(xy0 + radius * correction + 0.5))));
1963 }
1964 }
1965
1966 ch->Transfer(tmp);
1967 return true;
1968}
1969////////////////////////////////////////////////////////////////////////////////
1970/**
1971 * Enhance the variations between adjacent pixels.
1972 * Similar results can be achieved using Filter(),
1973 * but the algorithms are different both in Edge() and in Contour().
1974 * \return true if everything is ok
1975 */
1976bool CxImage::Contour()
1977{
1978 if (!pDib) return false;
1979
1980 long Ksize = 3;
1981 long k2 = Ksize/2;
1982 long kmax= Ksize-k2;
1983 long i,j,k;
1984 BYTE maxr,maxg,maxb;
1985 RGBQUAD pix1,pix2;
1986
1987 CxImage tmp(*this);
1988 if (!tmp.IsValid()){
1989 strcpy(info.szLastError,tmp.GetLastError());
1990 return false;
1991 }
1992
1993 long xmin,xmax,ymin,ymax;
1994 if (pSelection){
1995 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
1996 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
1997 } else {
1998 xmin = ymin = 0;
1999 xmax = head.biWidth; ymax=head.biHeight;
2000 }
2001
2002 for(long y=ymin; y<ymax; y++){
2003 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
2004 if (info.nEscape) break;
2005 for(long x=xmin; x<xmax; x++){
2006#if CXIMAGE_SUPPORT_SELECTION
2007 if (BlindSelectionIsInside(x,y))
2008#endif //CXIMAGE_SUPPORT_SELECTION
2009 {
2010 pix1 = BlindGetPixelColor(x,y);
2011 maxr=maxg=maxb=0;
2012 for(j=-k2, i=0;j<kmax;j++){
2013 for(k=-k2;k<kmax;k++, i++){
2014 if (!IsInside(x+j,y+k)) continue;
2015 pix2 = BlindGetPixelColor(x+j,y+k);
2016 if ((pix2.rgbBlue-pix1.rgbBlue)>maxb) maxb = pix2.rgbBlue;
2017 if ((pix2.rgbGreen-pix1.rgbGreen)>maxg) maxg = pix2.rgbGreen;
2018 if ((pix2.rgbRed-pix1.rgbRed)>maxr) maxr = pix2.rgbRed;
2019 }
2020 }
2021 pix1.rgbBlue=(BYTE)(255-maxb);
2022 pix1.rgbGreen=(BYTE)(255-maxg);
2023 pix1.rgbRed=(BYTE)(255-maxr);
2024 tmp.BlindSetPixelColor(x,y,pix1);
2025 }
2026 }
2027 }
2028 Transfer(tmp);
2029 return true;
2030}
2031////////////////////////////////////////////////////////////////////////////////
2032/**
2033 * Adds a random offset to each pixel in the image
2034 * \param radius: maximum pixel displacement
2035 * \return true if everything is ok
2036 */
2037bool CxImage::Jitter(long radius)
2038{
2039 if (!pDib) return false;
2040
2041 long nx,ny;
2042
2043 CxImage tmp(*this);
2044 if (!tmp.IsValid()){
2045 strcpy(info.szLastError,tmp.GetLastError());
2046 return false;
2047 }
2048
2049 long xmin,xmax,ymin,ymax;
2050 if (pSelection){
2051 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
2052 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
2053 } else {
2054 xmin = ymin = 0;
2055 xmax = head.biWidth; ymax=head.biHeight;
2056 }
2057
2058 for(long y=ymin; y<ymax; y++){
2059 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
2060 if (info.nEscape) break;
2061 for(long x=xmin; x<xmax; x++){
2062#if CXIMAGE_SUPPORT_SELECTION
2063 if (BlindSelectionIsInside(x,y))
2064#endif //CXIMAGE_SUPPORT_SELECTION
2065 {
2066 nx=x+(long)((rand()/(float)RAND_MAX - 0.5)*(radius*2));
2067 ny=y+(long)((rand()/(float)RAND_MAX - 0.5)*(radius*2));
2068 if (!IsInside(nx,ny)) {
2069 nx=x;
2070 ny=y;
2071 }
2072 if (head.biClrUsed==0){
2073 tmp.BlindSetPixelColor(x,y,BlindGetPixelColor(nx,ny));
2074 } else {
2075 tmp.BlindSetPixelIndex(x,y,BlindGetPixelIndex(nx,ny));
2076 }
2077#if CXIMAGE_SUPPORT_ALPHA
2078 tmp.AlphaSet(x,y,AlphaGet(nx,ny));
2079#endif //CXIMAGE_SUPPORT_ALPHA
2080 }
2081 }
2082 }
2083 Transfer(tmp);
2084 return true;
2085}
2086////////////////////////////////////////////////////////////////////////////////
2087/**
2088 * generates a 1-D convolution matrix to be used for each pass of
2089 * a two-pass gaussian blur. Returns the length of the matrix.
2090 * \author [nipper]
2091 */
2092int CxImage::gen_convolve_matrix (float radius, float **cmatrix_p)
2093{
2094 int matrix_length;
2095 int matrix_midpoint;
2096 float* cmatrix;
2097 int i,j;
2098 float std_dev;
2099 float sum;
2100
2101 /* we want to generate a matrix that goes out a certain radius
2102 * from the center, so we have to go out ceil(rad-0.5) pixels,
2103 * inlcuding the center pixel. Of course, that's only in one direction,
2104 * so we have to go the same amount in the other direction, but not count
2105 * the center pixel again. So we double the previous result and subtract
2106 * one.
2107 * The radius parameter that is passed to this function is used as
2108 * the standard deviation, and the radius of effect is the
2109 * standard deviation * 2. It's a little confusing.
2110 * <DP> modified scaling, so that matrix_lenght = 1+2*radius parameter
2111 */
2112 radius = (float)fabs(0.5*radius) + 0.25f;
2113
2114 std_dev = radius;
2115 radius = std_dev * 2;
2116
2117 /* go out 'radius' in each direction */
2118 matrix_length = int (2 * ceil(radius-0.5) + 1);
2119 if (matrix_length <= 0) matrix_length = 1;
2120 matrix_midpoint = matrix_length/2 + 1;
2121 *cmatrix_p = new float[matrix_length];
2122 cmatrix = *cmatrix_p;
2123
2124 /* Now we fill the matrix by doing a numeric integration approximation
2125 * from -2*std_dev to 2*std_dev, sampling 50 points per pixel.
2126 * We do the bottom half, mirror it to the top half, then compute the
2127 * center point. Otherwise asymmetric quantization errors will occur.
2128 * The formula to integrate is e^-(x^2/2s^2).
2129 */
2130
2131 /* first we do the top (right) half of matrix */
2132 for (i = matrix_length/2 + 1; i < matrix_length; i++)
2133 {
2134 float base_x = i - (float)floor((float)(matrix_length/2)) - 0.5f;
2135 sum = 0;
2136 for (j = 1; j <= 50; j++)
2137 {
2138 if ( base_x+0.02*j <= radius )
2139 sum += (float)exp (-(base_x+0.02*j)*(base_x+0.02*j) /
2140 (2*std_dev*std_dev));
2141 }
2142 cmatrix[i] = sum/50;
2143 }
2144
2145 /* mirror the thing to the bottom half */
2146 for (i=0; i<=matrix_length/2; i++) {
2147 cmatrix[i] = cmatrix[matrix_length-1-i];
2148 }
2149
2150 /* find center val -- calculate an odd number of quanta to make it symmetric,
2151 * even if the center point is weighted slightly higher than others. */
2152 sum = 0;
2153 for (j=0; j<=50; j++)
2154 {
2155 sum += (float)exp (-(0.5+0.02*j)*(0.5+0.02*j) /
2156 (2*std_dev*std_dev));
2157 }
2158 cmatrix[matrix_length/2] = sum/51;
2159
2160 /* normalize the distribution by scaling the total sum to one */
2161 sum=0;
2162 for (i=0; i<matrix_length; i++) sum += cmatrix[i];
2163 for (i=0; i<matrix_length; i++) cmatrix[i] = cmatrix[i] / sum;
2164
2165 return matrix_length;
2166}
2167////////////////////////////////////////////////////////////////////////////////
2168/**
2169 * generates a lookup table for every possible product of 0-255 and
2170 * each value in the convolution matrix. The returned array is
2171 * indexed first by matrix position, then by input multiplicand (?)
2172 * value.
2173 * \author [nipper]
2174 */
2175float* CxImage::gen_lookup_table (float *cmatrix, int cmatrix_length)
2176{
2177 float* lookup_table = new float[cmatrix_length * 256];
2178 float* lookup_table_p = lookup_table;
2179 float* cmatrix_p = cmatrix;
2180
2181 for (int i=0; i<cmatrix_length; i++)
2182 {
2183 for (int j=0; j<256; j++)
2184 {
2185 *(lookup_table_p++) = *cmatrix_p * (float)j;
2186 }
2187 cmatrix_p++;
2188 }
2189
2190 return lookup_table;
2191}
2192////////////////////////////////////////////////////////////////////////////////
2193/**
2194 * this function is written as if it is blurring a column at a time,
2195 * even though it can operate on rows, too. There is no difference
2196 * in the processing of the lines, at least to the blur_line function.
2197 * \author [nipper]
2198 */
2199void CxImage::blur_line (float *ctable, float *cmatrix, int cmatrix_length, BYTE* cur_col, BYTE* dest_col, int y, long bytes)
2200{
2201 float scale;
2202 float sum;
2203 int i=0, j=0;
2204 int row;
2205 int cmatrix_middle = cmatrix_length/2;
2206
2207 float *cmatrix_p;
2208 BYTE *cur_col_p;
2209 BYTE *cur_col_p1;
2210 BYTE *dest_col_p;
2211 float *ctable_p;
2212
2213 /* this first block is the same as the non-optimized version --
2214 * it is only used for very small pictures, so speed isn't a
2215 * big concern.
2216 */
2217 if (cmatrix_length > y)
2218 {
2219 for (row = 0; row < y ; row++)
2220 {
2221 scale=0;
2222 /* find the scale factor */
2223 for (j = 0; j < y ; j++)
2224 {
2225 /* if the index is in bounds, add it to the scale counter */
2226 if ((j + cmatrix_middle - row >= 0) &&
2227 (j + cmatrix_middle - row < cmatrix_length))
2228 scale += cmatrix[j + cmatrix_middle - row];
2229 }
2230 for (i = 0; i<bytes; i++)
2231 {
2232 sum = 0;
2233 for (j = 0; j < y; j++)
2234 {
2235 if ((j >= row - cmatrix_middle) &&
2236 (j <= row + cmatrix_middle))
2237 sum += cur_col[j*bytes + i] * cmatrix[j];
2238 }
2239 dest_col[row*bytes + i] = (BYTE)(0.5f + sum / scale);
2240 }
2241 }
2242 }
2243 else
2244 {
2245 /* for the edge condition, we only use available info and scale to one */
2246 for (row = 0; row < cmatrix_middle; row++)
2247 {
2248 /* find scale factor */
2249 scale=0;
2250 for (j = cmatrix_middle - row; j<cmatrix_length; j++)
2251 scale += cmatrix[j];
2252 for (i = 0; i<bytes; i++)
2253 {
2254 sum = 0;
2255 for (j = cmatrix_middle - row; j<cmatrix_length; j++)
2256 {
2257 sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
2258 }
2259 dest_col[row*bytes + i] = (BYTE)(0.5f + sum / scale);
2260 }
2261 }
2262 /* go through each pixel in each col */
2263 dest_col_p = dest_col + row*bytes;
2264 for (; row < y-cmatrix_middle; row++)
2265 {
2266 cur_col_p = (row - cmatrix_middle) * bytes + cur_col;
2267 for (i = 0; i<bytes; i++)
2268 {
2269 sum = 0;
2270 cmatrix_p = cmatrix;
2271 cur_col_p1 = cur_col_p;
2272 ctable_p = ctable;
2273 for (j = cmatrix_length; j>0; j--)
2274 {
2275 sum += *(ctable_p + *cur_col_p1);
2276 cur_col_p1 += bytes;
2277 ctable_p += 256;
2278 }
2279 cur_col_p++;
2280 *(dest_col_p++) = (BYTE)(0.5f + sum);
2281 }
2282 }
2283
2284 /* for the edge condition , we only use available info, and scale to one */
2285 for (; row < y; row++)
2286 {
2287 /* find scale factor */
2288 scale=0;
2289 for (j = 0; j< y-row + cmatrix_middle; j++)
2290 scale += cmatrix[j];
2291 for (i = 0; i<bytes; i++)
2292 {
2293 sum = 0;
2294 for (j = 0; j<y-row + cmatrix_middle; j++)
2295 {
2296 sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
2297 }
2298 dest_col[row*bytes + i] = (BYTE) (0.5f + sum / scale);
2299 }
2300 }
2301 }
2302}
2303////////////////////////////////////////////////////////////////////////////////
2304/**
2305 * \author [DP]
2306 */
2307void CxImage::blur_text (BYTE threshold, BYTE decay, BYTE max_depth, CxImage* iSrc, CxImage* iDst, BYTE bytes)
2308{
2309 long x,y,z,m;
2310 BYTE *pSrc, *pSrc2, *pSrc3, *pDst;
2311 BYTE step,n;
2312 int pivot;
2313
2314 if (max_depth<1) max_depth = 1;
2315
2316 long nmin,nmax,xmin,xmax,ymin,ymax;
2317 xmin = ymin = 0;
2318 xmax = iSrc->head.biWidth;
2319 ymax = iSrc->head.biHeight;
2320
2321 if (xmin==xmax || ymin==ymax) return;
2322
2323 nmin = xmin * bytes;
2324 nmax = xmax * bytes;
2325
2326 CImageIterator itSrc(iSrc);
2327 CImageIterator itTmp(iDst);
2328
2329 double dbScaler = 100.0f/(ymax-ymin)/bytes;
2330
2331 for (n=0; n<bytes; n++){
2332 for (y=ymin+1;y<(ymax-1);y++)
2333 {
2334 if (info.nEscape) break;
2335 info.nProgress = (long)((y-ymin)*dbScaler*(1+n));
2336
2337 pSrc = itSrc.GetRow(y);
2338 pSrc2 = itSrc.GetRow(y+1);
2339 pSrc3 = itSrc.GetRow(y-1);
2340 pDst = itTmp.GetRow(y);
2341
2342 //scan left to right
2343 for (x=n+nmin /*,i=xmin*/; x<(nmax-1); x+=bytes /*,i++*/)
2344 {
2345 z=x+bytes;
2346 pivot = pSrc[z]-threshold;
2347 //find upper corner
2348 if (pSrc[x]<pivot && pSrc2[z]<pivot && pSrc3[x]>=pivot){
2349 while (z<nmax && pSrc2[z]<pSrc[x+bytes] && pSrc[x+bytes]<=pSrc[z]){
2350 z+=bytes;
2351 }
2352 m = z-x;
2353 m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
2354 if (m>max_depth) m = max_depth;
2355 step = (BYTE)((pSrc[x+bytes]-pSrc[x])/(m+1));
2356 while (m-->1){
2357 pDst[x+m*bytes] = (BYTE)(pDst[x]+(step*(m+1)));
2358 }
2359 }
2360 //find lower corner
2361 z=x+bytes;
2362 if (pSrc[x]<pivot && pSrc3[z]<pivot && pSrc2[x]>=pivot){
2363 while (z<nmax && pSrc3[z]<pSrc[x+bytes] && pSrc[x+bytes]<=pSrc[z]){
2364 z+=bytes;
2365 }
2366 m = z-x;
2367 m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
2368 if (m>max_depth) m = max_depth;
2369 step = (BYTE)((pSrc[x+bytes]-pSrc[x])/(m+1));
2370 while (m-->1){
2371 pDst[x+m*bytes] = (BYTE)(pDst[x]+(step*(m+1)));
2372 }
2373 }
2374 }
2375 //scan right to left
2376 for (x=nmax-1-n /*,i=(xmax-1)*/; x>0; x-=bytes /*,i--*/)
2377 {
2378 z=x-bytes;
2379 pivot = pSrc[z]-threshold;
2380 //find upper corner
2381 if (pSrc[x]<pivot && pSrc2[z]<pivot && pSrc3[x]>=pivot){
2382 while (z>n && pSrc2[z]<pSrc[x-bytes] && pSrc[x-bytes]<=pSrc[z]){
2383 z-=bytes;
2384 }
2385 m = x-z;
2386 m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
2387 if (m>max_depth) m = max_depth;
2388 step = (BYTE)((pSrc[x-bytes]-pSrc[x])/(m+1));
2389 while (m-->1){
2390 pDst[x-m*bytes] = (BYTE)(pDst[x]+(step*(m+1)));
2391 }
2392 }
2393 //find lower corner
2394 z=x-bytes;
2395 if (pSrc[x]<pivot && pSrc3[z]<pivot && pSrc2[x]>=pivot){
2396 while (z>n && pSrc3[z]<pSrc[x-bytes] && pSrc[x-bytes]<=pSrc[z]){
2397 z-=bytes;
2398 }
2399 m = x-z;
2400 m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
2401 if (m>max_depth) m = max_depth;
2402 step = (BYTE)((pSrc[x-bytes]-pSrc[x])/(m+1));
2403 while (m-->1){
2404 pDst[x-m*bytes] = (BYTE)(pDst[x]+(step*(m+1)));
2405 }
2406 }
2407 }
2408 }
2409 }
2410}
2411////////////////////////////////////////////////////////////////////////////////
2412/**
2413 * \author [DP]
2414 */
2415bool CxImage::TextBlur(BYTE threshold, BYTE decay, BYTE max_depth, bool bBlurHorizontal, bool bBlurVertical, CxImage* iDst)
2416{
2417 if (!pDib) return false;
2418
2419 RGBQUAD* pPalette=NULL;
2420 WORD bpp = GetBpp();
2421
2422 //the routine is optimized for RGB or GrayScale images
2423 if (!(head.biBitCount == 24 || IsGrayScale())){
2424 pPalette = new RGBQUAD[head.biClrUsed];
2425 memcpy(pPalette, GetPalette(),GetPaletteSize());
2426 if (!IncreaseBpp(24))
2427 return false;
2428 }
2429
2430 CxImage tmp(*this);
2431 if (!tmp.IsValid()){
2432 strcpy(info.szLastError,tmp.GetLastError());
2433 return false;
2434 }
2435
2436 if (bBlurHorizontal)
2437 blur_text(threshold, decay, max_depth, this, &tmp, head.biBitCount>>3);
2438
2439 if (bBlurVertical){
2440 CxImage src2(*this);
2441 src2.RotateLeft();
2442 tmp.RotateLeft();
2443 blur_text(threshold, decay, max_depth, &src2, &tmp, head.biBitCount>>3);
2444 tmp.RotateRight();
2445 }
2446
2447#if CXIMAGE_SUPPORT_SELECTION
2448 //restore the non selected region
2449 if (pSelection){
2450 for(long y=0; y<head.biHeight; y++){
2451 for(long x=0; x<head.biWidth; x++){
2452 if (!BlindSelectionIsInside(x,y)){
2453 tmp.BlindSetPixelColor(x,y,BlindGetPixelColor(x,y));
2454 }
2455 }
2456 }
2457 }
2458#endif //CXIMAGE_SUPPORT_SELECTION
2459
2460 //if necessary, restore the original BPP and palette
2461 if (pPalette){
2462 tmp.DecreaseBpp(bpp, true, pPalette);
2463 delete [] pPalette;
2464 }
2465
2466 if (iDst) iDst->Transfer(tmp);
2467 else Transfer(tmp);
2468
2469 return true;
2470}
2471////////////////////////////////////////////////////////////////////////////////
2472/**
2473 * \author [nipper]; changes [DP]
2474 */
2475bool CxImage::GaussianBlur(float radius /*= 1.0f*/, CxImage* iDst /*= 0*/)
2476{
2477 if (!pDib) return false;
2478
2479 RGBQUAD* pPalette=NULL;
2480 WORD bpp = GetBpp();
2481
2482 //the routine is optimized for RGB or GrayScale images
2483 if (!(head.biBitCount == 24 || IsGrayScale())){
2484 pPalette = new RGBQUAD[head.biClrUsed];
2485 memcpy(pPalette, GetPalette(),GetPaletteSize());
2486 if (!IncreaseBpp(24))
2487 return false;
2488 }
2489
2490 CxImage tmp_x(*this, false, true, true);
2491 if (!tmp_x.IsValid()){
2492 strcpy(info.szLastError,tmp_x.GetLastError());
2493 return false;
2494 }
2495
2496 // generate convolution matrix and make sure it's smaller than each dimension
2497 float *cmatrix = NULL;
2498 int cmatrix_length = gen_convolve_matrix(radius, &cmatrix);
2499 // generate lookup table
2500 float *ctable = gen_lookup_table(cmatrix, cmatrix_length);
2501
2502 long x,y;
2503 int bypp = head.biBitCount>>3;
2504
2505 CImageIterator itSrc(this);
2506 CImageIterator itTmp(&tmp_x);
2507
2508 double dbScaler = 50.0f/head.biHeight;
2509
2510 // blur the rows
2511 for (y=0;y<head.biHeight;y++)
2512 {
2513 if (info.nEscape) break;
2514 info.nProgress = (long)(y*dbScaler);
2515
2516 blur_line(ctable, cmatrix, cmatrix_length, itSrc.GetRow(y), itTmp.GetRow(y), head.biWidth, bypp);
2517 }
2518
2519 CxImage tmp_y(tmp_x, false, true, true);
2520 if (!tmp_y.IsValid()){
2521 strcpy(info.szLastError,tmp_y.GetLastError());
2522 return false;
2523 }
2524
2525 CImageIterator itDst(&tmp_y);
2526
2527 // blur the cols
2528 BYTE* cur_col = (BYTE*)malloc(bypp*head.biHeight);
2529 BYTE* dest_col = (BYTE*)malloc(bypp*head.biHeight);
2530
2531 dbScaler = 50.0f/head.biWidth;
2532
2533 for (x=0;x<head.biWidth;x++)
2534 {
2535 if (info.nEscape) break;
2536 info.nProgress = (long)(50.0f+x*dbScaler);
2537
2538 itTmp.GetCol(cur_col, x);
2539 itDst.GetCol(dest_col, x);
2540 blur_line(ctable, cmatrix, cmatrix_length, cur_col, dest_col, head.biHeight, bypp);
2541 itDst.SetCol(dest_col, x);
2542 }
2543
2544 free(cur_col);
2545 free(dest_col);
2546
2547 delete [] cmatrix;
2548 delete [] ctable;
2549
2550#if CXIMAGE_SUPPORT_SELECTION
2551 //restore the non selected region
2552 if (pSelection){
2553 for(y=0; y<head.biHeight; y++){
2554 for(x=0; x<head.biWidth; x++){
2555 if (!BlindSelectionIsInside(x,y)){
2556 tmp_y.BlindSetPixelColor(x,y,BlindGetPixelColor(x,y));
2557 }
2558 }
2559 }
2560 }
2561#endif //CXIMAGE_SUPPORT_SELECTION
2562
2563 //if necessary, restore the original BPP and palette
2564 if (pPalette){
2565 tmp_y.DecreaseBpp(bpp, false, pPalette);
2566 if (iDst) DecreaseBpp(bpp, false, pPalette);
2567 delete [] pPalette;
2568 }
2569
2570 if (iDst) iDst->Transfer(tmp_y);
2571 else Transfer(tmp_y);
2572
2573 return true;
2574}
2575////////////////////////////////////////////////////////////////////////////////
2576/**
2577 * \author [DP],[nipper]
2578 */
2579bool CxImage::SelectiveBlur(float radius, BYTE threshold, CxImage* iDst)
2580{
2581 if (!pDib) return false;
2582
2583 RGBQUAD* pPalette=NULL;
2584 WORD bpp = GetBpp();
2585
2586 CxImage Tmp(*this, true, true, true);
2587 if (!Tmp.IsValid()){
2588 strcpy(info.szLastError,Tmp.GetLastError());
2589 return false;
2590 }
2591
2592 //the routine is optimized for RGB or GrayScale images
2593 if (!(head.biBitCount == 24 || IsGrayScale())){
2594 pPalette = new RGBQUAD[head.biClrUsed];
2595 memcpy(pPalette, GetPalette(),GetPaletteSize());
2596 if (!Tmp.IncreaseBpp(24))
2597 return false;
2598 }
2599
2600 CxImage Dst(Tmp, true, true, true);
2601 if (!Dst.IsValid()){
2602 strcpy(info.szLastError,Dst.GetLastError());
2603 return false;
2604 }
2605
2606 //build the difference mask
2607 BYTE thresh_dw = (BYTE)max( 0 ,(int)(128 - threshold));
2608 BYTE thresh_up = (BYTE)min(255,(int)(128 + threshold));
2609 long kernel[]={-100,-100,-100,-100,801,-100,-100,-100,-100};
2610 if (!Tmp.Filter(kernel,3,800,128)){
2611 strcpy(info.szLastError,Tmp.GetLastError());
2612 return false;
2613 }
2614
2615 //if the image has no selection, build a selection for the whole image
2616 if (!Tmp.SelectionIsValid()){
2617 Tmp.SelectionCreate();
2618 Tmp.SelectionClear(255);
2619 }
2620
2621 long xmin,xmax,ymin,ymax;
2622 xmin = Tmp.info.rSelectionBox.left;
2623 xmax = Tmp.info.rSelectionBox.right;
2624 ymin = Tmp.info.rSelectionBox.bottom;
2625 ymax = Tmp.info.rSelectionBox.top;
2626
2627 //modify the selection where the difference mask is over the threshold
2628 for(long y=ymin; y<ymax; y++){
2629 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
2630 if (info.nEscape) break;
2631 for(long x=xmin; x<xmax; x++){
2632 if(Tmp.BlindSelectionIsInside(x,y)){
2633 RGBQUAD c = Tmp.BlindGetPixelColor(x,y);
2634 if ((c.rgbRed < thresh_dw || c.rgbRed > thresh_up) ||
2635 (c.rgbGreen < thresh_dw || c.rgbGreen > thresh_up) ||
2636 (c.rgbBlue < thresh_dw || c.rgbBlue > thresh_up))
2637 {
2638 Tmp.SelectionSet(x,y,0);
2639 }
2640 }
2641 }
2642 }
2643
2644 //blur the image (only in the selected pixels)
2645 Dst.SelectionCopy(Tmp);
2646 if (!Dst.GaussianBlur(radius)){
2647 strcpy(info.szLastError,Dst.GetLastError());
2648 return false;
2649 }
2650
2651 //restore the original selection
2652 Dst.SelectionCopy(*this);
2653
2654 //if necessary, restore the original BPP and palette
2655 if (pPalette){
2656 Dst.DecreaseBpp(bpp, false, pPalette);
2657 delete [] pPalette;
2658 }
2659
2660 if (iDst) iDst->Transfer(Dst);
2661 else Transfer(Dst);
2662
2663 return true;
2664}
2665////////////////////////////////////////////////////////////////////////////////
2666/**
2667 * sharpen the image by subtracting a blurred copy from the original image.
2668 * \param radius: width in pixels of the blurring effect. Range: >0; default = 5.
2669 * \param amount: strength of the filter. Range: 0.0 (none) to 1.0 (max); default = 0.5
2670 * \param threshold: difference, between blurred and original pixel, to trigger the filter
2671 * Range: 0 (always triggered) to 255 (never triggered); default = 0.
2672 * \return true if everything is ok
2673 * \author [nipper]; changes [DP]
2674 */
2675bool CxImage::UnsharpMask(float radius /*= 5.0*/, float amount /*= 0.5*/, int threshold /*= 0*/)
2676{
2677 if (!pDib) return false;
2678
2679 RGBQUAD* pPalette=NULL;
2680 WORD bpp = GetBpp();
2681
2682 //the routine is optimized for RGB or GrayScale images
2683 if (!(head.biBitCount == 24 || IsGrayScale())){
2684 pPalette = new RGBQUAD[head.biClrUsed];
2685 memcpy(pPalette, GetPalette(),GetPaletteSize());
2686 if (!IncreaseBpp(24))
2687 return false;
2688 }
2689
2690 CxImage iDst;
2691 if (!GaussianBlur(radius,&iDst))
2692 return false;
2693
2694 CImageIterator itSrc(this);
2695 CImageIterator itDst(&iDst);
2696
2697 long xmin,xmax,ymin,ymax;
2698 if (pSelection){
2699 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
2700 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
2701 } else {
2702 xmin = ymin = 0;
2703 xmax = head.biWidth; ymax=head.biHeight;
2704 }
2705
2706 if (xmin==xmax || ymin==ymax)
2707 return false;
2708
2709 double dbScaler = 100.0/(ymax-ymin);
2710 int bypp = head.biBitCount>>3;
2711
2712 // merge the source and destination (which currently contains
2713 // the blurred version) images
2714 for (long y=ymin; y<ymax; y++)
2715 {
2716 if (info.nEscape) break;
2717 info.nProgress = (long)((y-ymin)*dbScaler);
2718
2719 // get source row
2720 BYTE* cur_row = itSrc.GetRow(y);
2721 // get dest row
2722 BYTE* dest_row = itDst.GetRow(y);
2723 // combine the two
2724 for (long x=xmin; x<xmax; x++) {
2725#if CXIMAGE_SUPPORT_SELECTION
2726 if (BlindSelectionIsInside(x,y))
2727#endif //CXIMAGE_SUPPORT_SELECTION
2728 {
2729 for (long b=0, z=x*bypp; b<bypp; b++, z++){
2730 int diff = cur_row[z] - dest_row[z];
2731
2732 // do tresholding
2733 if (abs(diff) < threshold){
2734 dest_row[z] = cur_row[z];
2735 } else {
2736 dest_row[z] = (BYTE)min(255, max(0,(int)(cur_row[z] + amount * diff)));
2737 }
2738 }
2739 }
2740 }
2741 }
2742
2743 //if necessary, restore the original BPP and palette
2744 if (pPalette){
2745 iDst.DecreaseBpp(bpp, false, pPalette);
2746 delete [] pPalette;
2747 }
2748
2749 Transfer(iDst);
2750
2751 return true;
2752}
2753////////////////////////////////////////////////////////////////////////////////
2754/**
2755 * Apply a look up table to the image.
2756 * \param pLut: BYTE[256] look up table
2757 * \return true if everything is ok
2758 */
2759bool CxImage::Lut(BYTE* pLut)
2760{
2761 if (!pDib || !pLut) return false;
2762 RGBQUAD color;
2763
2764 double dbScaler;
2765 if (head.biClrUsed==0){
2766
2767 long xmin,xmax,ymin,ymax;
2768 if (pSelection){
2769 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
2770 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
2771 } else {
2772 // faster loop for full image
2773 BYTE *iSrc=info.pImage;
2774 for(unsigned long i=0; i < head.biSizeImage ; i++){
2775 *iSrc++ = pLut[*iSrc];
2776 }
2777 return true;
2778 }
2779
2780 if (xmin==xmax || ymin==ymax)
2781 return false;
2782
2783 dbScaler = 100.0/(ymax-ymin);
2784
2785 for(long y=ymin; y<ymax; y++){
2786 info.nProgress = (long)((y-ymin)*dbScaler); //<Anatoly Ivasyuk>
2787 for(long x=xmin; x<xmax; x++){
2788#if CXIMAGE_SUPPORT_SELECTION
2789 if (BlindSelectionIsInside(x,y))
2790#endif //CXIMAGE_SUPPORT_SELECTION
2791 {
2792 color = BlindGetPixelColor(x,y);
2793 color.rgbRed = pLut[color.rgbRed];
2794 color.rgbGreen = pLut[color.rgbGreen];
2795 color.rgbBlue = pLut[color.rgbBlue];
2796 BlindSetPixelColor(x,y,color);
2797 }
2798 }
2799 }
2800#if CXIMAGE_SUPPORT_SELECTION
2801 } else if (pSelection && (head.biBitCount==8) && IsGrayScale()){
2802 long xmin,xmax,ymin,ymax;
2803 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
2804 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
2805
2806 if (xmin==xmax || ymin==ymax)
2807 return false;
2808
2809 dbScaler = 100.0/(ymax-ymin);
2810 for(long y=ymin; y<ymax; y++){
2811 info.nProgress = (long)((y-ymin)*dbScaler);
2812 for(long x=xmin; x<xmax; x++){
2813 if (BlindSelectionIsInside(x,y))
2814 {
2815 BlindSetPixelIndex(x,y,pLut[BlindGetPixelIndex(x,y)]);
2816 }
2817 }
2818 }
2819#endif //CXIMAGE_SUPPORT_SELECTION
2820 } else {
2821 bool bIsGrayScale = IsGrayScale();
2822 for(DWORD j=0; j<head.biClrUsed; j++){
2823 color = GetPaletteColor((BYTE)j);
2824 color.rgbRed = pLut[color.rgbRed];
2825 color.rgbGreen = pLut[color.rgbGreen];
2826 color.rgbBlue = pLut[color.rgbBlue];
2827 SetPaletteColor((BYTE)j,color);
2828 }
2829 if (bIsGrayScale) GrayScale();
2830 }
2831 return true;
2832
2833}
2834////////////////////////////////////////////////////////////////////////////////
2835/**
2836 * Apply an indipendent look up table for each channel
2837 * \param pLutR, pLutG, pLutB, pLutA: BYTE[256] look up tables
2838 * \return true if everything is ok
2839 */
2840bool CxImage::Lut(BYTE* pLutR, BYTE* pLutG, BYTE* pLutB, BYTE* pLutA)
2841{
2842 if (!pDib || !pLutR || !pLutG || !pLutB) return false;
2843 RGBQUAD color;
2844
2845 double dbScaler;
2846 if (head.biClrUsed==0){
2847
2848 long xmin,xmax,ymin,ymax;
2849 if (pSelection){
2850 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
2851 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
2852 } else {
2853 xmin = ymin = 0;
2854 xmax = head.biWidth; ymax=head.biHeight;
2855 }
2856
2857 if (xmin==xmax || ymin==ymax)
2858 return false;
2859
2860 dbScaler = 100.0/(ymax-ymin);
2861
2862 for(long y=ymin; y<ymax; y++){
2863 info.nProgress = (long)((y-ymin)*dbScaler);
2864 for(long x=xmin; x<xmax; x++){
2865#if CXIMAGE_SUPPORT_SELECTION
2866 if (BlindSelectionIsInside(x,y))
2867#endif //CXIMAGE_SUPPORT_SELECTION
2868 {
2869 color = BlindGetPixelColor(x,y);
2870 color.rgbRed = pLutR[color.rgbRed];
2871 color.rgbGreen = pLutG[color.rgbGreen];
2872 color.rgbBlue = pLutB[color.rgbBlue];
2873 if (pLutA) color.rgbReserved=pLutA[color.rgbReserved];
2874 BlindSetPixelColor(x,y,color,true);
2875 }
2876 }
2877 }
2878 } else {
2879 bool bIsGrayScale = IsGrayScale();
2880 for(DWORD j=0; j<head.biClrUsed; j++){
2881 color = GetPaletteColor((BYTE)j);
2882 color.rgbRed = pLutR[color.rgbRed];
2883 color.rgbGreen = pLutG[color.rgbGreen];
2884 color.rgbBlue = pLutB[color.rgbBlue];
2885 SetPaletteColor((BYTE)j,color);
2886 }
2887 if (bIsGrayScale) GrayScale();
2888 }
2889
2890 return true;
2891
2892}
2893////////////////////////////////////////////////////////////////////////////////
2894/**
2895 * Use the RedEyeRemove function to remove the red-eye effect that frequently
2896 * occurs in photographs of humans and animals. You must select the region
2897 * where the function will filter the red channel.
2898 * \param strength: range from 0.0f (no effect) to 1.0f (full effect). Default = 0.8
2899 * \return true if everything is ok
2900 */
2901bool CxImage::RedEyeRemove(float strength)
2902{
2903 if (!pDib) return false;
2904 RGBQUAD color;
2905
2906 long xmin,xmax,ymin,ymax;
2907 if (pSelection){
2908 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
2909 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
2910 } else {
2911 xmin = ymin = 0;
2912 xmax = head.biWidth; ymax=head.biHeight;
2913 }
2914
2915 if (xmin==xmax || ymin==ymax)
2916 return false;
2917
2918 if (strength<0.0f) strength = 0.0f;
2919 if (strength>1.0f) strength = 1.0f;
2920
2921 for(long y=ymin; y<ymax; y++){
2922 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
2923 if (info.nEscape) break;
2924 for(long x=xmin; x<xmax; x++){
2925#if CXIMAGE_SUPPORT_SELECTION
2926 if (BlindSelectionIsInside(x,y))
2927#endif //CXIMAGE_SUPPORT_SELECTION
2928 {
2929 float a = 1.0f-5.0f*((float)((x-0.5f*(xmax+xmin))*(x-0.5f*(xmax+xmin))+(y-0.5f*(ymax+ymin))*(y-0.5f*(ymax+ymin))))/((float)((xmax-xmin)*(ymax-ymin)));
2930 if (a<0) a=0;
2931 color = BlindGetPixelColor(x,y);
2932 color.rgbRed = (BYTE)(a*min(color.rgbGreen,color.rgbBlue)+(1.0f-a)*color.rgbRed);
2933 BlindSetPixelColor(x,y,color);
2934 }
2935 }
2936 }
2937 return true;
2938}
2939////////////////////////////////////////////////////////////////////////////////
2940/**
2941 * Changes the saturation of the image.
2942 * \param saturation: can be from -100 to 100, positive values increase the saturation.
2943 * \param colorspace: can be 1 (HSL) or 2 (YUV).
2944 * \return true if everything is ok
2945 */
2946bool CxImage::Saturate(const long saturation, const long colorspace)
2947{
2948 if (!pDib)
2949 return false;
2950
2951 long xmin,xmax,ymin,ymax;
2952 if (pSelection){
2953 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
2954 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
2955 } else {
2956 xmin = ymin = 0;
2957 xmax = head.biWidth; ymax=head.biHeight;
2958 }
2959
2960 if (xmin==xmax || ymin==ymax)
2961 return false;
2962
2963 BYTE cTable[256];
2964
2965 switch(colorspace)
2966 {
2967 case 1:
2968 {
2969 for (int i=0;i<256;i++) {
2970 cTable[i] = (BYTE)max(0,min(255,(int)(i + saturation)));
2971 }
2972 for(long y=ymin; y<ymax; y++){
2973 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
2974 if (info.nEscape) break;
2975 for(long x=xmin; x<xmax; x++){
2976#if CXIMAGE_SUPPORT_SELECTION
2977 if (BlindSelectionIsInside(x,y))
2978#endif //CXIMAGE_SUPPORT_SELECTION
2979 {
2980 RGBQUAD c = RGBtoHSL(BlindGetPixelColor(x,y));
2981 c.rgbGreen = cTable[c.rgbGreen];
2982 c = HSLtoRGB(c);
2983 BlindSetPixelColor(x,y,c);
2984 }
2985 }
2986 }
2987 }
2988 break;
2989 case 2:
2990 {
2991 for (int i=0;i<256;i++) {
2992 cTable[i] = (BYTE)max(0,min(255,(int)((i-128)*(100 + saturation)/100.0f + 128.5f)));
2993 }
2994 for(long y=ymin; y<ymax; y++){
2995 info.nProgress = (long)(100*(y-ymin)/(ymax-ymin));
2996 if (info.nEscape) break;
2997 for(long x=xmin; x<xmax; x++){
2998#if CXIMAGE_SUPPORT_SELECTION
2999 if (BlindSelectionIsInside(x,y))
3000#endif //CXIMAGE_SUPPORT_SELECTION
3001 {
3002 RGBQUAD c = RGBtoYUV(BlindGetPixelColor(x,y));
3003 c.rgbGreen = cTable[c.rgbGreen];
3004 c.rgbBlue = cTable[c.rgbBlue];
3005 c = YUVtoRGB(c);
3006 BlindSetPixelColor(x,y,c);
3007 }
3008 }
3009 }
3010 }
3011 break;
3012 default:
3013 strcpy(info.szLastError,"Saturate: wrong colorspace");
3014 return false;
3015 }
3016 return true;
3017}
3018
3019////////////////////////////////////////////////////////////////////////////////
3020/**
3021 * Solarize: convert all colors above a given lightness level into their negative
3022 * \param level : lightness threshold. Range = 0 to 255; default = 128.
3023 * \param bLinkedChannels: true = compare with luminance, preserve colors (default)
3024 * false = compare with independent R,G,B levels
3025 * \return true if everything is ok
3026 * \author [Priyank Bolia] (priyank_bolia(at)yahoo(dot)com); changes [DP]
3027 */
3028bool CxImage::Solarize(BYTE level, bool bLinkedChannels)
3029{
3030 if (!pDib) return false;
3031
3032 long xmin,xmax,ymin,ymax;
3033 if (pSelection){
3034 xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
3035 ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
3036 } else {
3037 xmin = ymin = 0;
3038 xmax = head.biWidth; ymax=head.biHeight;
3039 }
3040
3041 if (head.biBitCount<=8){
3042 if (IsGrayScale()){ //GRAYSCALE, selection
3043 for(long y=ymin; y<ymax; y++){
3044 for(long x=xmin; x<xmax; x++){
3045#if CXIMAGE_SUPPORT_SELECTION
3046 if (BlindSelectionIsInside(x,y))
3047#endif //CXIMAGE_SUPPORT_SELECTION
3048 {
3049 BYTE index = BlindGetPixelIndex(x,y);
3050 RGBQUAD color = GetPaletteColor(index);
3051 if ((BYTE)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue)>level){
3052 BlindSetPixelIndex(x,y,255-index);
3053 }
3054 }
3055 }
3056 }
3057 } else { //PALETTE, full image
3058 RGBQUAD* ppal=GetPalette();
3059 for(DWORD i=0;i<head.biClrUsed;i++){
3060 RGBQUAD color = GetPaletteColor((BYTE)i);
3061 if (bLinkedChannels){
3062 if ((BYTE)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue)>level){
3063 ppal[i].rgbBlue =(BYTE)(255-ppal[i].rgbBlue);
3064 ppal[i].rgbGreen =(BYTE)(255-ppal[i].rgbGreen);
3065 ppal[i].rgbRed =(BYTE)(255-ppal[i].rgbRed);
3066 }
3067 } else {
3068 if (color.rgbBlue>level) ppal[i].rgbBlue =(BYTE)(255-ppal[i].rgbBlue);
3069 if (color.rgbGreen>level) ppal[i].rgbGreen =(BYTE)(255-ppal[i].rgbGreen);
3070 if (color.rgbRed>level) ppal[i].rgbRed =(BYTE)(255-ppal[i].rgbRed);
3071 }
3072 }
3073 }
3074 } else { //RGB, selection
3075 for(long y=ymin; y<ymax; y++){
3076 for(long x=xmin; x<xmax; x++){
3077#if CXIMAGE_SUPPORT_SELECTION
3078 if (BlindSelectionIsInside(x,y))
3079#endif //CXIMAGE_SUPPORT_SELECTION
3080 {
3081 RGBQUAD color = BlindGetPixelColor(x,y);
3082 if (bLinkedChannels){
3083 if ((BYTE)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue)>level){
3084 color.rgbRed = (BYTE)(255-color.rgbRed);
3085 color.rgbGreen = (BYTE)(255-color.rgbGreen);
3086 color.rgbBlue = (BYTE)(255-color.rgbBlue);
3087 }
3088 } else {
3089 if (color.rgbBlue>level) color.rgbBlue =(BYTE)(255-color.rgbBlue);
3090 if (color.rgbGreen>level) color.rgbGreen =(BYTE)(255-color.rgbGreen);
3091 if (color.rgbRed>level) color.rgbRed =(BYTE)(255-color.rgbRed);
3092 }
3093 BlindSetPixelColor(x,y,color);
3094 }
3095 }
3096 }
3097 }
3098
3099 //invert transparent color only in case of full image processing
3100 if (pSelection==0 || (!IsGrayScale() && IsIndexed())){
3101 if (bLinkedChannels){
3102 if ((BYTE)RGB2GRAY(info.nBkgndColor.rgbRed,info.nBkgndColor.rgbGreen,info.nBkgndColor.rgbBlue)>level){
3103 info.nBkgndColor.rgbBlue = (BYTE)(255-info.nBkgndColor.rgbBlue);
3104 info.nBkgndColor.rgbGreen = (BYTE)(255-info.nBkgndColor.rgbGreen);
3105 info.nBkgndColor.rgbRed = (BYTE)(255-info.nBkgndColor.rgbRed);
3106 }
3107 } else {
3108 if (info.nBkgndColor.rgbBlue>level) info.nBkgndColor.rgbBlue = (BYTE)(255-info.nBkgndColor.rgbBlue);
3109 if (info.nBkgndColor.rgbGreen>level) info.nBkgndColor.rgbGreen = (BYTE)(255-info.nBkgndColor.rgbGreen);
3110 if (info.nBkgndColor.rgbRed>level) info.nBkgndColor.rgbRed = (BYTE)(255-info.nBkgndColor.rgbRed);
3111 }
3112 }
3113
3114 return true;
3115}
3116
3117////////////////////////////////////////////////////////////////////////////////
3118/**
3119 * Converts the RGB triplets to and from different colorspace
3120 * \param dstColorSpace: destination colorspace; 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
3121 * \param srcColorSpace: source colorspace; 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
3122 * \return true if everything is ok
3123 */
3124bool CxImage::ConvertColorSpace(const long dstColorSpace, const long srcColorSpace)
3125{
3126 if (!pDib)
3127 return false;
3128
3129 if (dstColorSpace == srcColorSpace)
3130 return true;
3131
3132 long w = GetWidth();
3133 long h = GetHeight();
3134
3135 for (long y=0;y<h;y++){
3136 info.nProgress = (long)(100*y/h);
3137 if (info.nEscape) break;
3138 for (long x=0;x<w;x++){
3139 RGBQUAD c = BlindGetPixelColor(x,y);
3140 switch (srcColorSpace){
3141 case 0:
3142 break;
3143 case 1:
3144 c = HSLtoRGB(c);
3145 break;
3146 case 2:
3147 c = YUVtoRGB(c);
3148 break;
3149 case 3:
3150 c = YIQtoRGB(c);
3151 break;
3152 case 4:
3153 c = XYZtoRGB(c);
3154 break;
3155 default:
3156 strcpy(info.szLastError,"ConvertColorSpace: unknown source colorspace");
3157 return false;
3158 }
3159 switch (dstColorSpace){
3160 case 0:
3161 break;
3162 case 1:
3163 c = RGBtoHSL(c);
3164 break;
3165 case 2:
3166 c = RGBtoYUV(c);
3167 break;
3168 case 3:
3169 c = RGBtoYIQ(c);
3170 break;
3171 case 4:
3172 c = RGBtoXYZ(c);
3173 break;
3174 default:
3175 strcpy(info.szLastError,"ConvertColorSpace: unknown destination colorspace");
3176 return false;
3177 }
3178 BlindSetPixelColor(x,y,c);
3179 }
3180 }
3181 return true;
3182}
3183////////////////////////////////////////////////////////////////////////////////
3184/**
3185 * Finds the optimal (global or local) treshold for image binarization
3186 * \param method: 0 = average all methods (default); 1 = Otsu; 2 = Kittler & Illingworth; 3 = max entropy; 4 = potential difference;
3187 * \param pBox: region from where the threshold is computed; 0 = full image (default).
3188 * \param pContrastMask: limit the computation only in regions with contrasted (!=0) pixels; default = 0.
3189 * the pContrastMask image must be grayscale with same with and height of the current image,
3190 * can be obtained from the current image with a filter:
3191 * CxImage iContrastMask(*image,true,false,false);
3192 * iContrastMask.GrayScale();
3193 * long edge[]={-1,-1,-1,-1,8,-1,-1,-1,-1};
3194 * iContrastMask.Filter(edge,3,1,0);
3195 * long blur[]={1,1,1,1,1,1,1,1,1};
3196 * iContrastMask.Filter(blur,3,9,0);
3197 * \return optimal threshold; -1 = error.
3198 * \sa AdaptiveThreshold
3199 */
3200int CxImage::OptimalThreshold(long method, RECT * pBox, CxImage* pContrastMask)
3201{
3202 if (!pDib)
3203 return false;
3204
3205 if (head.biBitCount!=8){
3206 strcpy(info.szLastError,"OptimalThreshold works only on 8 bit images");
3207 return -1;
3208 }
3209
3210 if (pContrastMask){
3211 if (!pContrastMask->IsValid() ||
3212 !pContrastMask->IsGrayScale() ||
3213 pContrastMask->GetWidth() != GetWidth() ||
3214 pContrastMask->GetHeight() != GetHeight()){
3215 strcpy(info.szLastError,"OptimalThreshold invalid ContrastMask");
3216 return -1;
3217 }
3218 }
3219
3220 long xmin,xmax,ymin,ymax;
3221 if (pBox){
3222 xmin = max(pBox->left,0);
3223 xmax = min(pBox->right,head.biWidth);
3224 ymin = max(pBox->bottom,0);
3225 ymax = min(pBox->top,head.biHeight);
3226 } else {
3227 xmin = ymin = 0;
3228 xmax = head.biWidth; ymax=head.biHeight;
3229 }
3230
3231 if (xmin>=xmax || ymin>=ymax)
3232 return -1;
3233
3234 double p[256];
3235 memset(p, 0, 256*sizeof(double));
3236 //build histogram
3237 for (long y = ymin; y<ymax; y++){
3238 BYTE* pGray = GetBits(y) + xmin;
3239 BYTE* pContr = 0;
3240 if (pContrastMask) pContr = pContrastMask->GetBits(y) + xmin;
3241 for (long x = xmin; x<xmax; x++){
3242 BYTE n = *pGray++;
3243 if (pContr){
3244 if (*pContr) p[n]++;
3245 pContr++;
3246 } else {
3247 p[n]++;
3248 }
3249 }
3250 }
3251
3252 //find histogram limits
3253 int gray_min = 0;
3254 while (gray_min<255 && p[gray_min]==0) gray_min++;
3255 int gray_max = 255;
3256 while (gray_max>0 && p[gray_max]==0) gray_max--;
3257 if (gray_min > gray_max)
3258 return -1;
3259 if (gray_min == gray_max){
3260 if (gray_min == 0)
3261 return 0;
3262 else
3263 return gray_max-1;
3264 }
3265
3266 //compute total moments 0th,1st,2nd order
3267 int i,k;
3268 double w_tot = 0;
3269 double m_tot = 0;
3270 double q_tot = 0;
3271 for (i = gray_min; i <= gray_max; i++){
3272 w_tot += p[i];
3273 m_tot += i*p[i];
3274 q_tot += i*i*p[i];
3275 }
3276
3277 double L, L1max, L2max, L3max, L4max; //objective functions
3278 int th1,th2,th3,th4; //optimal thresholds
3279 L1max = L2max = L3max = L4max = 0;
3280 th1 = th2 = th3 = th4 = -1;
3281
3282 double w1, w2, m1, m2, q1, q2, s1, s2;
3283 w1 = m1 = q1 = 0;
3284 for (i = gray_min; i < gray_max; i++){
3285 w1 += p[i];
3286 w2 = w_tot - w1;
3287 m1 += i*p[i];
3288 m2 = m_tot - m1;
3289 q1 += i*i*p[i];
3290 q2 = q_tot - q1;
3291 s1 = q1/w1-m1*m1/w1/w1; //s1 = q1/w1-pow(m1/w1,2);
3292 s2 = q2/w2-m2*m2/w2/w2; //s2 = q2/w2-pow(m2/w2,2);
3293
3294 //Otsu
3295 L = -(s1*w1 + s2*w2); //implemented as definition
3296 //L = w1 * w2 * (m2/w2 - m1/w1)*(m2/w2 - m1/w1); //implementation that doesn't need s1 & s2
3297 if (L1max < L || th1<0){
3298 L1max = L;
3299 th1 = i;
3300 }
3301
3302 //Kittler and Illingworth
3303 if (s1>0 && s2>0){
3304 L = w1*log(w1/sqrt(s1))+w2*log(w2/sqrt(s2));
3305 //L = w1*log(w1*w1/s1)+w2*log(w2*w2/s2);
3306 if (L2max < L || th2<0){
3307 L2max = L;
3308 th2 = i;
3309 }
3310 }
3311
3312 //max entropy
3313 L = 0;
3314 for (k=gray_min;k<=i;k++) if (p[k] > 0) L -= p[k]*log(p[k]/w1)/w1;
3315 for (k;k<=gray_max;k++) if (p[k] > 0) L -= p[k]*log(p[k]/w2)/w2;
3316 if (L3max < L || th3<0){
3317 L3max = L;
3318 th3 = i;
3319 }
3320
3321 //potential difference (based on Electrostatic Binarization method by J. Acharya & G. Sreechakra)
3322 // L=-fabs(vdiff/vsum); è molto selettivo, sembra che L=-fabs(vdiff) o L=-(vsum)
3323 // abbiano lo stesso valore di soglia... il che semplificherebbe molto la routine
3324 double vdiff = 0;
3325 for (k=gray_min;k<=i;k++)
3326 vdiff += p[k]*(i-k)*(i-k);
3327 double vsum = vdiff;
3328 for (k;k<=gray_max;k++){
3329 double dv = p[k]*(k-i)*(k-i);
3330 vdiff -= dv;
3331 vsum += dv;
3332 }
3333 if (vsum>0) L = -fabs(vdiff/vsum); else L = 0;
3334 if (L4max < L || th4<0){
3335 L4max = L;
3336 th4 = i;
3337 }
3338 }
3339
3340 int threshold;
3341 switch (method){
3342 case 1: //Otsu
3343 threshold = th1;
3344 break;
3345 case 2: //Kittler and Illingworth
3346 threshold = th2;
3347 break;
3348 case 3: //max entropy
3349 threshold = th3;
3350 break;
3351 case 4: //potential difference
3352 threshold = th4;
3353 break;
3354 default: //auto
3355 {
3356 int nt = 0;
3357 threshold = 0;
3358 if (th1>=0) { threshold += th1; nt++;}
3359 if (th2>=0) { threshold += th2; nt++;}
3360 if (th3>=0) { threshold += th3; nt++;}
3361 if (th4>=0) { threshold += th4; nt++;}
3362 if (nt)
3363 threshold /= nt;
3364 else
3365 threshold = (gray_min+gray_max)/2;
3366
3367 /*better(?) but really expensive alternative:
3368 n = 0:255;
3369 pth1 = c1(th1)/sqrt(2*pi*s1(th1))*exp(-((n - m1(th1)).^2)/2/s1(th1)) + c2(th1)/sqrt(2*pi*s2(th1))*exp(-((n - m2(th1)).^2)/2/s2(th1));
3370 pth2 = c1(th2)/sqrt(2*pi*s1(th2))*exp(-((n - m1(th2)).^2)/2/s1(th2)) + c2(th2)/sqrt(2*pi*s2(th2))*exp(-((n - m2(th2)).^2)/2/s2(th2));
3371 ...
3372 mse_th1 = sum((p-pth1).^2);
3373 mse_th2 = sum((p-pth2).^2);
3374 ...
3375 select th# that gives minimum mse_th#
3376 */
3377
3378 }
3379 }
3380
3381 if (threshold <= gray_min || threshold >= gray_max)
3382 threshold = (gray_min+gray_max)/2;
3383
3384 return threshold;
3385}
3386///////////////////////////////////////////////////////////////////////////////
3387/**
3388 * Converts the image to B&W, using an optimal threshold mask
3389 * \param method: 0 = average all methods (default); 1 = Otsu; 2 = Kittler & Illingworth; 3 = max entropy; 4 = potential difference;
3390 * \param nBoxSize: the image is divided into "nBoxSize x nBoxSize" blocks, from where the threshold is computed; min = 8; default = 64.
3391 * \param pContrastMask: limit the computation only in regions with contrasted (!=0) pixels; default = 0.
3392 * \param nBias: global offset added to the threshold mask; default = 0.
3393 * \param fGlobalLocalBalance: balance between local and global threshold. default = 0.5
3394 * fGlobalLocalBalance can be from 0.0 (use only local threshold) to 1.0 (use only global threshold)
3395 * the pContrastMask image must be grayscale with same with and height of the current image,
3396 * \return true if everything is ok.
3397 * \sa OptimalThreshold
3398 */
3399bool CxImage::AdaptiveThreshold(long method, long nBoxSize, CxImage* pContrastMask, long nBias, float fGlobalLocalBalance)
3400{
3401 if (!pDib)
3402 return false;
3403
3404 if (pContrastMask){
3405 if (!pContrastMask->IsValid() ||
3406 !pContrastMask->IsGrayScale() ||
3407 pContrastMask->GetWidth() != GetWidth() ||
3408 pContrastMask->GetHeight() != GetHeight()){
3409 strcpy(info.szLastError,"AdaptiveThreshold invalid ContrastMask");
3410 return false;
3411 }
3412 }
3413
3414 if (nBoxSize<8) nBoxSize = 8;
3415 if (fGlobalLocalBalance<0.0f) fGlobalLocalBalance = 0.0f;
3416 if (fGlobalLocalBalance>1.0f) fGlobalLocalBalance = 1.0f;
3417
3418 long mw = (head.biWidth + nBoxSize - 1)/nBoxSize;
3419 long mh = (head.biHeight + nBoxSize - 1)/nBoxSize;
3420
3421 CxImage mask(mw,mh,8);
3422 if(!mask.GrayScale())
3423 return false;
3424
3425 if(!GrayScale())
3426 return false;
3427
3428 int globalthreshold = OptimalThreshold(method, 0, pContrastMask);
3429 if (globalthreshold <0)
3430 return false;
3431
3432 for (long y=0; y<mh; y++){
3433 for (long x=0; x<mw; x++){
3434 info.nProgress = (long)(100*(x+y*mw)/(mw*mh));
3435 if (info.nEscape) break;
3436 RECT r;
3437 r.left = x*nBoxSize;
3438 r.right = r.left + nBoxSize;
3439 r.bottom = y*nBoxSize;
3440 r.top = r.bottom + nBoxSize;
3441 int threshold = OptimalThreshold(method, &r, pContrastMask);
3442 if (threshold <0) return false;
3443 mask.SetPixelIndex(x,y,(BYTE)max(0,min(255,nBias+((1.0f-fGlobalLocalBalance)*threshold + fGlobalLocalBalance*globalthreshold))));
3444 }
3445 }
3446
3447 mask.Resample(mw*nBoxSize,mh*nBoxSize,0);
3448 mask.Crop(0,head.biHeight,head.biWidth,0);
3449
3450 if(!Threshold(&mask))
3451 return false;
3452
3453 return true;
3454}
3455
3456////////////////////////////////////////////////////////////////////////////////
3457#include <queue>
3458////////////////////////////////////////////////////////////////////////////////
3459/**
3460 * Flood Fill
3461 * \param xStart, yStart: starting point
3462 * \param cFillColor: filling color
3463 * \param nTolerance: deviation from the starting point color
3464 * \param nOpacity: can be from 0 (transparent) to 255 (opaque, default)
3465 * \param bSelectFilledArea: if true, the pixels in the region are also set in the selection layer; default = false
3466 * \param nSelectionLevel: if bSelectFilledArea is true, the selected pixels are set to nSelectionLevel; default = 255
3467 * Note: nOpacity=0 && bSelectFilledArea=true act as a "magic wand"
3468 * \return true if everything is ok
3469 */
3470bool CxImage::FloodFill(const long xStart, const long yStart, const RGBQUAD cFillColor, const BYTE nTolerance,
3471 BYTE nOpacity, const bool bSelectFilledArea, const BYTE nSelectionLevel)
3472{
3473 if (!pDib)
3474 return false;
3475
3476 if (!IsInside(xStart,yStart))
3477 return true;
3478
3479#if CXIMAGE_SUPPORT_SELECTION
3480 if (!SelectionIsInside(xStart,yStart))
3481 return true;
3482#endif //CXIMAGE_SUPPORT_SELECTION
3483
3484 RGBQUAD* pPalette=NULL;
3485 WORD bpp = GetBpp();
3486 //nTolerance or nOpacity implemented only for grayscale or 24bpp images
3487 if ((nTolerance || nOpacity != 255) && !(head.biBitCount == 24 || IsGrayScale())){
3488 pPalette = new RGBQUAD[head.biClrUsed];
3489 memcpy(pPalette, GetPalette(),GetPaletteSize());
3490 if (!IncreaseBpp(24))
3491 return false;
3492 }
3493
3494 BYTE* pFillMask = (BYTE*)calloc(head.biWidth * head.biHeight,1);
3495 if (!pFillMask)
3496 return false;
3497
3498//------------------------------------- Begin of Flood Fill
3499 POINT offset[4] = {{-1,0},{0,-1},{1,0},{0,1}};
3500 std::queue<POINT> q;
3501 POINT point = {xStart,yStart};
3502 q.push(point);
3503
3504 if (IsIndexed()){ //--- Generic indexed image, no tolerance OR Grayscale image with tolerance
3505 BYTE idxRef = GetPixelIndex(xStart,yStart);
3506 BYTE idxFill = GetNearestIndex(cFillColor);
3507 BYTE idxMin = (BYTE)min(255, max(0,(int)(idxRef - nTolerance)));
3508 BYTE idxMax = (BYTE)min(255, max(0,(int)(idxRef + nTolerance)));
3509
3510 while(!q.empty())
3511 {
3512 point = q.front();
3513 q.pop();
3514
3515 for (int z=0; z<4; z++){
3516 int x = point.x + offset[z].x;
3517 int y = point.y + offset[z].y;
3518 if(IsInside(x,y)){
3519#if CXIMAGE_SUPPORT_SELECTION
3520 if (BlindSelectionIsInside(x,y))
3521#endif //CXIMAGE_SUPPORT_SELECTION
3522 {
3523 BYTE idx = BlindGetPixelIndex(x, y);
3524 BYTE* pFill = pFillMask + x + y * head.biWidth;
3525 if (*pFill==0 && idxMin <= idx && idx <= idxMax )
3526 {
3527 if (nOpacity>0){
3528 if (nOpacity == 255)
3529 BlindSetPixelIndex(x, y, idxFill);
3530 else
3531 BlindSetPixelIndex(x, y, (BYTE)((idxFill * nOpacity + idx * (255-nOpacity))>>8));
3532 }
3533 POINT pt = {x,y};
3534 q.push(pt);
3535 *pFill = 1;
3536 }
3537 }
3538 }
3539 }
3540 }
3541 } else { //--- RGB image
3542 RGBQUAD cRef = GetPixelColor(xStart,yStart);
3543 RGBQUAD cRefMin, cRefMax;
3544 cRefMin.rgbRed = (BYTE)min(255, max(0,(int)(cRef.rgbRed - nTolerance)));
3545 cRefMin.rgbGreen = (BYTE)min(255, max(0,(int)(cRef.rgbGreen - nTolerance)));
3546 cRefMin.rgbBlue = (BYTE)min(255, max(0,(int)(cRef.rgbBlue - nTolerance)));
3547 cRefMax.rgbRed = (BYTE)min(255, max(0,(int)(cRef.rgbRed + nTolerance)));
3548 cRefMax.rgbGreen = (BYTE)min(255, max(0,(int)(cRef.rgbGreen + nTolerance)));
3549 cRefMax.rgbBlue = (BYTE)min(255, max(0,(int)(cRef.rgbBlue + nTolerance)));
3550
3551 while(!q.empty())
3552 {
3553 point = q.front();
3554 q.pop();
3555
3556 for (int z=0; z<4; z++){
3557 int x = point.x + offset[z].x;
3558 int y = point.y + offset[z].y;
3559 if(IsInside(x,y)){
3560#if CXIMAGE_SUPPORT_SELECTION
3561 if (BlindSelectionIsInside(x,y))
3562#endif //CXIMAGE_SUPPORT_SELECTION
3563 {
3564 RGBQUAD cc = BlindGetPixelColor(x, y);
3565 BYTE* pFill = pFillMask + x + y * head.biWidth;
3566 if (*pFill==0 &&
3567 cRefMin.rgbRed <= cc.rgbRed && cc.rgbRed <= cRefMax.rgbRed &&
3568 cRefMin.rgbGreen <= cc.rgbGreen && cc.rgbGreen <= cRefMax.rgbGreen &&
3569 cRefMin.rgbBlue <= cc.rgbBlue && cc.rgbBlue <= cRefMax.rgbBlue )
3570 {
3571 if (nOpacity>0){
3572 if (nOpacity == 255)
3573 BlindSetPixelColor(x, y, cFillColor);
3574 else
3575 {
3576 cc.rgbRed = (BYTE)((cFillColor.rgbRed * nOpacity + cc.rgbRed * (255-nOpacity))>>8);
3577 cc.rgbGreen = (BYTE)((cFillColor.rgbGreen * nOpacity + cc.rgbGreen * (255-nOpacity))>>8);
3578 cc.rgbBlue = (BYTE)((cFillColor.rgbBlue * nOpacity + cc.rgbBlue * (255-nOpacity))>>8);
3579 BlindSetPixelColor(x, y, cc);
3580 }
3581 }
3582 POINT pt = {x,y};
3583 q.push(pt);
3584 *pFill = 1;
3585 }
3586 }
3587 }
3588 }
3589 }
3590 }
3591 if (pFillMask[xStart+yStart*head.biWidth] == 0 && nOpacity>0){
3592 if (nOpacity == 255)
3593 BlindSetPixelColor(xStart, yStart, cFillColor);
3594 else
3595 {
3596 RGBQUAD cc = BlindGetPixelColor(xStart, yStart);
3597 cc.rgbRed = (BYTE)((cFillColor.rgbRed * nOpacity + cc.rgbRed * (255-nOpacity))>>8);
3598 cc.rgbGreen = (BYTE)((cFillColor.rgbGreen * nOpacity + cc.rgbGreen * (255-nOpacity))>>8);
3599 cc.rgbBlue = (BYTE)((cFillColor.rgbBlue * nOpacity + cc.rgbBlue * (255-nOpacity))>>8);
3600 BlindSetPixelColor(xStart, yStart, cc);
3601 }
3602 }
3603 pFillMask[xStart+yStart*head.biWidth] = 1;
3604//------------------------------------- End of Flood Fill
3605
3606 //if necessary, restore the original BPP and palette
3607 if (pPalette){
3608 DecreaseBpp(bpp, false, pPalette);
3609 delete [] pPalette;
3610 }
3611
3612#if CXIMAGE_SUPPORT_SELECTION
3613 if (bSelectFilledArea){
3614 if (!SelectionIsValid()){
3615 if (!SelectionCreate()){
3616 return false;
3617 }
3618 SelectionClear();
3619 info.rSelectionBox.right = head.biWidth;
3620 info.rSelectionBox.top = head.biHeight;
3621 info.rSelectionBox.left = info.rSelectionBox.bottom = 0;
3622 }
3623 RECT r;
3624 SelectionGetBox(r);
3625 for (long y = r.bottom; y < r.top; y++){
3626 BYTE* pFill = pFillMask + r.left + y * head.biWidth;
3627 for (long x = r.left; x<r.right; x++){
3628 if (*pFill) SelectionSet(x,y,nSelectionLevel);
3629 pFill++;
3630 }
3631 }
3632 SelectionRebuildBox();
3633 }
3634#endif //CXIMAGE_SUPPORT_SELECTION
3635
3636 free(pFillMask);
3637
3638 return true;
3639}
3640
3641////////////////////////////////////////////////////////////////////////////////
3642#endif //CXIMAGE_SUPPORT_DSP
Note: See TracBrowser for help on using the repository browser.