[95] | 1 | // xImaInt.cpp : interpolation functions
|
---|
| 2 | /* 02/2004 - Branko Brevensek
|
---|
| 3 | * CxImage version 6.0.0 02/Feb/2008 - Davide Pizzolato - www.xdp.it
|
---|
| 4 | */
|
---|
| 5 |
|
---|
| 6 | #include "ximage.h"
|
---|
| 7 | #include "ximath.h"
|
---|
| 8 |
|
---|
| 9 | #if CXIMAGE_SUPPORT_INTERPOLATION
|
---|
| 10 |
|
---|
| 11 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 12 | /**
|
---|
| 13 | * Recalculates coordinates according to specified overflow method.
|
---|
| 14 | * If pixel (x,y) lies within image, nothing changes.
|
---|
| 15 | *
|
---|
| 16 | * \param x, y - coordinates of pixel
|
---|
| 17 | * \param ofMethod - overflow method
|
---|
| 18 | *
|
---|
| 19 | * \return x, y - new coordinates (pixel (x,y) now lies inside image)
|
---|
| 20 | *
|
---|
| 21 | * \author ***bd*** 2.2004
|
---|
| 22 | */
|
---|
| 23 | void CxImage::OverflowCoordinates(long &x, long &y, OverflowMethod const ofMethod)
|
---|
| 24 | {
|
---|
| 25 | if (IsInside(x,y)) return; //if pixel is within bounds, no change
|
---|
| 26 | switch (ofMethod) {
|
---|
| 27 | case OM_REPEAT:
|
---|
| 28 | //clip coordinates
|
---|
| 29 | x=max(x,0); x=min(x, head.biWidth-1);
|
---|
| 30 | y=max(y,0); y=min(y, head.biHeight-1);
|
---|
| 31 | break;
|
---|
| 32 | case OM_WRAP:
|
---|
| 33 | //wrap coordinates
|
---|
| 34 | x = x % head.biWidth;
|
---|
| 35 | y = y % head.biHeight;
|
---|
| 36 | if (x<0) x = head.biWidth + x;
|
---|
| 37 | if (y<0) y = head.biHeight + y;
|
---|
| 38 | break;
|
---|
| 39 | case OM_MIRROR:
|
---|
| 40 | //mirror pixels near border
|
---|
| 41 | if (x<0) x=((-x) % head.biWidth);
|
---|
| 42 | else if (x>=head.biWidth) x=head.biWidth-(x % head.biWidth + 1);
|
---|
| 43 | if (y<0) y=((-y) % head.biHeight);
|
---|
| 44 | else if (y>=head.biHeight) y=head.biHeight-(y % head.biHeight + 1);
|
---|
| 45 | break;
|
---|
| 46 | default:
|
---|
| 47 | return;
|
---|
| 48 | }//switch
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 52 | /**
|
---|
| 53 | * See OverflowCoordinates for integer version
|
---|
| 54 | * \author ***bd*** 2.2004
|
---|
| 55 | */
|
---|
| 56 | void CxImage::OverflowCoordinates(float &x, float &y, OverflowMethod const ofMethod)
|
---|
| 57 | {
|
---|
| 58 | if (x>=0 && x<head.biWidth && y>=0 && y<head.biHeight) return; //if pixel is within bounds, no change
|
---|
| 59 | switch (ofMethod) {
|
---|
| 60 | case OM_REPEAT:
|
---|
| 61 | //clip coordinates
|
---|
| 62 | x=max(x,0); x=min(x, head.biWidth-1);
|
---|
| 63 | y=max(y,0); y=min(y, head.biHeight-1);
|
---|
| 64 | break;
|
---|
| 65 | case OM_WRAP:
|
---|
| 66 | //wrap coordinates
|
---|
| 67 | x = (float)fmod(x, (float) head.biWidth);
|
---|
| 68 | y = (float)fmod(y, (float) head.biHeight);
|
---|
| 69 | if (x<0) x = head.biWidth + x;
|
---|
| 70 | if (y<0) y = head.biHeight + y;
|
---|
| 71 | break;
|
---|
| 72 | case OM_MIRROR:
|
---|
| 73 | //mirror pixels near border
|
---|
| 74 | if (x<0) x=(float)fmod(-x, (float) head.biWidth);
|
---|
| 75 | else if (x>=head.biWidth) x=head.biWidth-((float)fmod(x, (float) head.biWidth) + 1);
|
---|
| 76 | if (y<0) y=(float)fmod(-y, (float) head.biHeight);
|
---|
| 77 | else if (y>=head.biHeight) y=head.biHeight-((float)fmod(y, (float) head.biHeight) + 1);
|
---|
| 78 | break;
|
---|
| 79 | default:
|
---|
| 80 | return;
|
---|
| 81 | }//switch
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 85 | /**
|
---|
| 86 | * Method return pixel color. Different methods are implemented for out of bounds pixels.
|
---|
| 87 | * If an image has alpha channel, alpha value is returned in .RGBReserved.
|
---|
| 88 | *
|
---|
| 89 | * \param x,y : pixel coordinates
|
---|
| 90 | * \param ofMethod : out-of-bounds method:
|
---|
| 91 | * - OF_WRAP - wrap over to pixels on other side of the image
|
---|
| 92 | * - OF_REPEAT - repeat last pixel on the edge
|
---|
| 93 | * - OF_COLOR - return input value of color
|
---|
| 94 | * - OF_BACKGROUND - return background color (if not set, return input color)
|
---|
| 95 | * - OF_TRANSPARENT - return transparent pixel
|
---|
| 96 | *
|
---|
| 97 | * \param rplColor : input color (returned for out-of-bound coordinates in OF_COLOR mode and if other mode is not applicable)
|
---|
| 98 | *
|
---|
| 99 | * \return color : color of pixel
|
---|
| 100 | * \author ***bd*** 2.2004
|
---|
| 101 | */
|
---|
| 102 | RGBQUAD CxImage::GetPixelColorWithOverflow(long x, long y, OverflowMethod const ofMethod, RGBQUAD* const rplColor)
|
---|
| 103 | {
|
---|
| 104 | RGBQUAD color; //color to return
|
---|
| 105 | if ((!IsInside(x,y)) || pDib==NULL) { //is pixel within bouns?:
|
---|
| 106 | //pixel is out of bounds or no DIB
|
---|
| 107 | if (rplColor!=NULL)
|
---|
| 108 | color=*rplColor;
|
---|
| 109 | else {
|
---|
| 110 | color.rgbRed=color.rgbGreen=color.rgbBlue=255; color.rgbReserved=0; //default replacement colour: white transparent
|
---|
| 111 | }//if
|
---|
| 112 | if (pDib==NULL) return color;
|
---|
| 113 | //pixel is out of bounds:
|
---|
| 114 | switch (ofMethod) {
|
---|
| 115 | case OM_TRANSPARENT:
|
---|
| 116 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 117 | if (AlphaIsValid()) {
|
---|
| 118 | //alpha transparency is supported and image has alpha layer
|
---|
| 119 | color.rgbReserved=0;
|
---|
| 120 | } else {
|
---|
| 121 | #endif //CXIMAGE_SUPPORT_ALPHA
|
---|
| 122 | //no alpha transparency
|
---|
| 123 | if (GetTransIndex()>=0) {
|
---|
| 124 | color=GetTransColor(); //single color transparency enabled (return transparent color)
|
---|
| 125 | }//if
|
---|
| 126 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 127 | }//if
|
---|
| 128 | #endif //CXIMAGE_SUPPORT_ALPHA
|
---|
| 129 | return color;
|
---|
| 130 | case OM_BACKGROUND:
|
---|
| 131 | //return background color (if it exists, otherwise input value)
|
---|
| 132 | if (info.nBkgndIndex >= 0) {
|
---|
| 133 | if (head.biBitCount<24) color = GetPaletteColor((BYTE)info.nBkgndIndex);
|
---|
| 134 | else color = info.nBkgndColor;
|
---|
| 135 | }//if
|
---|
| 136 | return color;
|
---|
| 137 | case OM_REPEAT:
|
---|
| 138 | case OM_WRAP:
|
---|
| 139 | case OM_MIRROR:
|
---|
| 140 | OverflowCoordinates(x,y,ofMethod);
|
---|
| 141 | break;
|
---|
| 142 | default:
|
---|
| 143 | //simply return replacement color (OM_COLOR and others)
|
---|
| 144 | return color;
|
---|
| 145 | }//switch
|
---|
| 146 | }//if
|
---|
| 147 | //just return specified pixel (it's within bounds)
|
---|
| 148 | return BlindGetPixelColor(x,y);
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 152 | /**
|
---|
| 153 | * This method reconstructs image according to chosen interpolation method and then returns pixel (x,y).
|
---|
| 154 | * (x,y) can lie between actual image pixels. If (x,y) lies outside of image, method returns value
|
---|
| 155 | * according to overflow method.
|
---|
| 156 | * This method is very useful for geometrical image transformations, where destination pixel
|
---|
| 157 | * can often assume color value lying between source pixels.
|
---|
| 158 | *
|
---|
| 159 | * \param (x,y) - coordinates of pixel to return
|
---|
| 160 | * GPCI method recreates "analogue" image back from digital data, so x and y
|
---|
| 161 | * are float values and color value of point (1.1,1) will generally not be same
|
---|
| 162 | * as (1,1). Center of first pixel is at (0,0) and center of pixel right to it is (1,0).
|
---|
| 163 | * (0.5,0) is half way between these two pixels.
|
---|
| 164 | * \param inMethod - interpolation (reconstruction) method (kernel) to use:
|
---|
| 165 | * - IM_NEAREST_NEIGHBOUR - returns colour of nearest lying pixel (causes stairy look of
|
---|
| 166 | * processed images)
|
---|
| 167 | * - IM_BILINEAR - interpolates colour from four neighbouring pixels (softens image a bit)
|
---|
| 168 | * - IM_BICUBIC - interpolates from 16 neighbouring pixels (can produce "halo" artifacts)
|
---|
| 169 | * - IM_BICUBIC2 - interpolates from 16 neighbouring pixels (perhaps a bit less halo artifacts
|
---|
| 170 | than IM_BICUBIC)
|
---|
| 171 | * - IM_BSPLINE - interpolates from 16 neighbouring pixels (softens image, washes colours)
|
---|
| 172 | * (As far as I know, image should be prefiltered for this method to give
|
---|
| 173 | * good results... some other time :) )
|
---|
| 174 | * This method uses bicubic interpolation kernel from CXImage 5.99a and older
|
---|
| 175 | * versions.
|
---|
| 176 | * - IM_LANCZOS - interpolates from 12*12 pixels (slow, ringing artifacts)
|
---|
| 177 | *
|
---|
| 178 | * \param ofMethod - overflow method (see comments at GetPixelColorWithOverflow)
|
---|
| 179 | * \param rplColor - pointer to color used for out of borders pixels in OM_COLOR mode
|
---|
| 180 | * (and other modes if colour can't calculated in a specified way)
|
---|
| 181 | *
|
---|
| 182 | * \return interpolated color value (including interpolated alpha value, if image has alpha layer)
|
---|
| 183 | *
|
---|
| 184 | * \author ***bd*** 2.2004
|
---|
| 185 | */
|
---|
| 186 | RGBQUAD CxImage::GetPixelColorInterpolated(
|
---|
| 187 | float x,float y,
|
---|
| 188 | InterpolationMethod const inMethod,
|
---|
| 189 | OverflowMethod const ofMethod,
|
---|
| 190 | RGBQUAD* const rplColor)
|
---|
| 191 | {
|
---|
| 192 | //calculate nearest pixel
|
---|
| 193 | int xi=(int)(x); if (x<0) xi--; //these replace (incredibly slow) floor (Visual c++ 2003, AMD Athlon)
|
---|
| 194 | int yi=(int)(y); if (y<0) yi--;
|
---|
| 195 | RGBQUAD color; //calculated colour
|
---|
| 196 |
|
---|
| 197 | switch (inMethod) {
|
---|
| 198 | case IM_NEAREST_NEIGHBOUR:
|
---|
| 199 | return GetPixelColorWithOverflow((long)(x+0.5f), (long)(y+0.5f), ofMethod, rplColor);
|
---|
| 200 | default: {
|
---|
| 201 | //IM_BILINEAR: bilinear interpolation
|
---|
| 202 | if (xi<-1 || xi>=head.biWidth || yi<-1 || yi>=head.biHeight) { //all 4 points are outside bounds?:
|
---|
| 203 | switch (ofMethod) {
|
---|
| 204 | case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
|
---|
| 205 | //we don't need to interpolate anything with all points outside in this case
|
---|
| 206 | return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
|
---|
| 207 | default:
|
---|
| 208 | //recalculate coordinates and use faster method later on
|
---|
| 209 | OverflowCoordinates(x,y,ofMethod);
|
---|
| 210 | xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
|
---|
| 211 | yi=(int)(y); if (y<0) yi--;
|
---|
| 212 | }//switch
|
---|
| 213 | }//if
|
---|
| 214 | //get four neighbouring pixels
|
---|
| 215 | if ((xi+1)<head.biWidth && xi>=0 && (yi+1)<head.biHeight && yi>=0 && head.biClrUsed==0) {
|
---|
| 216 | //all pixels are inside RGB24 image... optimize reading (and use fixed point arithmetic)
|
---|
| 217 | WORD wt1=(WORD)((x-xi)*256.0f), wt2=(WORD)((y-yi)*256.0f);
|
---|
| 218 | WORD wd=wt1*wt2>>8;
|
---|
| 219 | WORD wb=wt1-wd;
|
---|
| 220 | WORD wc=wt2-wd;
|
---|
| 221 | WORD wa=256-wt1-wc;
|
---|
| 222 | WORD wrr,wgg,wbb;
|
---|
| 223 | BYTE *pxptr=(BYTE*)info.pImage+yi*info.dwEffWidth+xi*3;
|
---|
| 224 | wbb=wa*(*pxptr++); wgg=wa*(*pxptr++); wrr=wa*(*pxptr++);
|
---|
| 225 | wbb+=wb*(*pxptr++); wgg+=wb*(*pxptr++); wrr+=wb*(*pxptr);
|
---|
| 226 | pxptr+=(info.dwEffWidth-5); //move to next row
|
---|
| 227 | wbb+=wc*(*pxptr++); wgg+=wc*(*pxptr++); wrr+=wc*(*pxptr++);
|
---|
| 228 | wbb+=wd*(*pxptr++); wgg+=wd*(*pxptr++); wrr+=wd*(*pxptr);
|
---|
| 229 | color.rgbRed=(BYTE) (wrr>>8); color.rgbGreen=(BYTE) (wgg>>8); color.rgbBlue=(BYTE) (wbb>>8);
|
---|
| 230 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 231 | if (pAlpha) {
|
---|
| 232 | WORD waa;
|
---|
| 233 | //image has alpha layer... we have to do the same for alpha data
|
---|
| 234 | pxptr=AlphaGetPointer(xi,yi); //pointer to first byte
|
---|
| 235 | waa=wa*(*pxptr++); waa+=wb*(*pxptr); //first two pixels
|
---|
| 236 | pxptr+=(head.biWidth-1); //move to next row
|
---|
| 237 | waa+=wc*(*pxptr++); waa+=wd*(*pxptr); //and second row pixels
|
---|
| 238 | color.rgbReserved=(BYTE) (waa>>8);
|
---|
| 239 | } else
|
---|
| 240 | #endif
|
---|
| 241 | { //Alpha not supported or no alpha at all
|
---|
| 242 | color.rgbReserved = 0;
|
---|
| 243 | }
|
---|
| 244 | return color;
|
---|
| 245 | } else {
|
---|
| 246 | //default (slower) way to get pixels (not RGB24 or some pixels out of borders)
|
---|
| 247 | float t1=x-xi, t2=y-yi;
|
---|
| 248 | float d=t1*t2;
|
---|
| 249 | float b=t1-d;
|
---|
| 250 | float c=t2-d;
|
---|
| 251 | float a=1-t1-c;
|
---|
| 252 | RGBQUAD rgb11,rgb21,rgb12,rgb22;
|
---|
| 253 | rgb11=GetPixelColorWithOverflow(xi, yi, ofMethod, rplColor);
|
---|
| 254 | rgb21=GetPixelColorWithOverflow(xi+1, yi, ofMethod, rplColor);
|
---|
| 255 | rgb12=GetPixelColorWithOverflow(xi, yi+1, ofMethod, rplColor);
|
---|
| 256 | rgb22=GetPixelColorWithOverflow(xi+1, yi+1, ofMethod, rplColor);
|
---|
| 257 | //calculate linear interpolation
|
---|
| 258 | color.rgbRed=(BYTE) (a*rgb11.rgbRed+b*rgb21.rgbRed+c*rgb12.rgbRed+d*rgb22.rgbRed);
|
---|
| 259 | color.rgbGreen=(BYTE) (a*rgb11.rgbGreen+b*rgb21.rgbGreen+c*rgb12.rgbGreen+d*rgb22.rgbGreen);
|
---|
| 260 | color.rgbBlue=(BYTE) (a*rgb11.rgbBlue+b*rgb21.rgbBlue+c*rgb12.rgbBlue+d*rgb22.rgbBlue);
|
---|
| 261 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 262 | if (AlphaIsValid())
|
---|
| 263 | color.rgbReserved=(BYTE) (a*rgb11.rgbReserved+b*rgb21.rgbReserved+c*rgb12.rgbReserved+d*rgb22.rgbReserved);
|
---|
| 264 | else
|
---|
| 265 | #endif
|
---|
| 266 | { //Alpha not supported or no alpha at all
|
---|
| 267 | color.rgbReserved = 0;
|
---|
| 268 | }
|
---|
| 269 | return color;
|
---|
| 270 | }//if
|
---|
| 271 | }//default
|
---|
| 272 | case IM_BICUBIC:
|
---|
| 273 | case IM_BICUBIC2:
|
---|
| 274 | case IM_BSPLINE:
|
---|
| 275 | case IM_BOX:
|
---|
| 276 | case IM_HERMITE:
|
---|
| 277 | case IM_HAMMING:
|
---|
| 278 | case IM_SINC:
|
---|
| 279 | case IM_BLACKMAN:
|
---|
| 280 | case IM_BESSEL:
|
---|
| 281 | case IM_GAUSSIAN:
|
---|
| 282 | case IM_QUADRATIC:
|
---|
| 283 | case IM_MITCHELL:
|
---|
| 284 | case IM_CATROM:
|
---|
| 285 | case IM_HANNING:
|
---|
| 286 | case IM_POWER:
|
---|
| 287 | //bicubic interpolation(s)
|
---|
| 288 | if (((xi+2)<0) || ((xi-1)>=head.biWidth) || ((yi+2)<0) || ((yi-1)>=head.biHeight)) { //all points are outside bounds?:
|
---|
| 289 | switch (ofMethod) {
|
---|
| 290 | case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
|
---|
| 291 | //we don't need to interpolate anything with all points outside in this case
|
---|
| 292 | return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
|
---|
| 293 | break;
|
---|
| 294 | default:
|
---|
| 295 | //recalculate coordinates and use faster method later on
|
---|
| 296 | OverflowCoordinates(x,y,ofMethod);
|
---|
| 297 | xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
|
---|
| 298 | yi=(int)(y); if (y<0) yi--;
|
---|
| 299 | }//switch
|
---|
| 300 | }//if
|
---|
| 301 |
|
---|
| 302 | //some variables needed from here on
|
---|
| 303 | int xii,yii; //x any y integer indexes for loops
|
---|
| 304 | float kernel, kernelyc; //kernel cache
|
---|
| 305 | float kernelx[12], kernely[4]; //precalculated kernel values
|
---|
| 306 | float rr,gg,bb,aa; //accumulated color values
|
---|
| 307 | //calculate multiplication factors for all pixels
|
---|
| 308 | int i;
|
---|
| 309 | switch (inMethod) {
|
---|
| 310 | case IM_BICUBIC:
|
---|
| 311 | for (i=0; i<4; i++) {
|
---|
| 312 | kernelx[i]=KernelCubic((float)(xi+i-1-x));
|
---|
| 313 | kernely[i]=KernelCubic((float)(yi+i-1-y));
|
---|
| 314 | }//for i
|
---|
| 315 | break;
|
---|
| 316 | case IM_BICUBIC2:
|
---|
| 317 | for (i=0; i<4; i++) {
|
---|
| 318 | kernelx[i]=KernelGeneralizedCubic((float)(xi+i-1-x), -0.5);
|
---|
| 319 | kernely[i]=KernelGeneralizedCubic((float)(yi+i-1-y), -0.5);
|
---|
| 320 | }//for i
|
---|
| 321 | break;
|
---|
| 322 | case IM_BSPLINE:
|
---|
| 323 | for (i=0; i<4; i++) {
|
---|
| 324 | kernelx[i]=KernelBSpline((float)(xi+i-1-x));
|
---|
| 325 | kernely[i]=KernelBSpline((float)(yi+i-1-y));
|
---|
| 326 | }//for i
|
---|
| 327 | break;
|
---|
| 328 | case IM_BOX:
|
---|
| 329 | for (i=0; i<4; i++) {
|
---|
| 330 | kernelx[i]=KernelBox((float)(xi+i-1-x));
|
---|
| 331 | kernely[i]=KernelBox((float)(yi+i-1-y));
|
---|
| 332 | }//for i
|
---|
| 333 | break;
|
---|
| 334 | case IM_HERMITE:
|
---|
| 335 | for (i=0; i<4; i++) {
|
---|
| 336 | kernelx[i]=KernelHermite((float)(xi+i-1-x));
|
---|
| 337 | kernely[i]=KernelHermite((float)(yi+i-1-y));
|
---|
| 338 | }//for i
|
---|
| 339 | break;
|
---|
| 340 | case IM_HAMMING:
|
---|
| 341 | for (i=0; i<4; i++) {
|
---|
| 342 | kernelx[i]=KernelHamming((float)(xi+i-1-x));
|
---|
| 343 | kernely[i]=KernelHamming((float)(yi+i-1-y));
|
---|
| 344 | }//for i
|
---|
| 345 | break;
|
---|
| 346 | case IM_SINC:
|
---|
| 347 | for (i=0; i<4; i++) {
|
---|
| 348 | kernelx[i]=KernelSinc((float)(xi+i-1-x));
|
---|
| 349 | kernely[i]=KernelSinc((float)(yi+i-1-y));
|
---|
| 350 | }//for i
|
---|
| 351 | break;
|
---|
| 352 | case IM_BLACKMAN:
|
---|
| 353 | for (i=0; i<4; i++) {
|
---|
| 354 | kernelx[i]=KernelBlackman((float)(xi+i-1-x));
|
---|
| 355 | kernely[i]=KernelBlackman((float)(yi+i-1-y));
|
---|
| 356 | }//for i
|
---|
| 357 | break;
|
---|
| 358 | case IM_BESSEL:
|
---|
| 359 | for (i=0; i<4; i++) {
|
---|
| 360 | kernelx[i]=KernelBessel((float)(xi+i-1-x));
|
---|
| 361 | kernely[i]=KernelBessel((float)(yi+i-1-y));
|
---|
| 362 | }//for i
|
---|
| 363 | break;
|
---|
| 364 | case IM_GAUSSIAN:
|
---|
| 365 | for (i=0; i<4; i++) {
|
---|
| 366 | kernelx[i]=KernelGaussian((float)(xi+i-1-x));
|
---|
| 367 | kernely[i]=KernelGaussian((float)(yi+i-1-y));
|
---|
| 368 | }//for i
|
---|
| 369 | break;
|
---|
| 370 | case IM_QUADRATIC:
|
---|
| 371 | for (i=0; i<4; i++) {
|
---|
| 372 | kernelx[i]=KernelQuadratic((float)(xi+i-1-x));
|
---|
| 373 | kernely[i]=KernelQuadratic((float)(yi+i-1-y));
|
---|
| 374 | }//for i
|
---|
| 375 | break;
|
---|
| 376 | case IM_MITCHELL:
|
---|
| 377 | for (i=0; i<4; i++) {
|
---|
| 378 | kernelx[i]=KernelMitchell((float)(xi+i-1-x));
|
---|
| 379 | kernely[i]=KernelMitchell((float)(yi+i-1-y));
|
---|
| 380 | }//for i
|
---|
| 381 | break;
|
---|
| 382 | case IM_CATROM:
|
---|
| 383 | for (i=0; i<4; i++) {
|
---|
| 384 | kernelx[i]=KernelCatrom((float)(xi+i-1-x));
|
---|
| 385 | kernely[i]=KernelCatrom((float)(yi+i-1-y));
|
---|
| 386 | }//for i
|
---|
| 387 | break;
|
---|
| 388 | case IM_HANNING:
|
---|
| 389 | for (i=0; i<4; i++) {
|
---|
| 390 | kernelx[i]=KernelHanning((float)(xi+i-1-x));
|
---|
| 391 | kernely[i]=KernelHanning((float)(yi+i-1-y));
|
---|
| 392 | }//for i
|
---|
| 393 | break;
|
---|
| 394 | case IM_POWER:
|
---|
| 395 | for (i=0; i<4; i++) {
|
---|
| 396 | kernelx[i]=KernelPower((float)(xi+i-1-x));
|
---|
| 397 | kernely[i]=KernelPower((float)(yi+i-1-y));
|
---|
| 398 | }//for i
|
---|
| 399 | break;
|
---|
| 400 | }//switch
|
---|
| 401 | rr=gg=bb=aa=0;
|
---|
| 402 | if (((xi+2)<head.biWidth) && xi>=1 && ((yi+2)<head.biHeight) && (yi>=1) && !IsIndexed()) {
|
---|
| 403 | //optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds
|
---|
| 404 | BYTE *pxptr, *pxptra;
|
---|
| 405 | for (yii=yi-1; yii<yi+3; yii++) {
|
---|
| 406 | pxptr=(BYTE *)BlindGetPixelPointer(xi-1, yii); //calculate pointer to first byte in row
|
---|
| 407 | kernelyc=kernely[yii-(yi-1)];
|
---|
| 408 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 409 | if (AlphaIsValid()) {
|
---|
| 410 | //alpha is supported and valid (optimized bicubic int. for image with alpha)
|
---|
| 411 | pxptra=AlphaGetPointer(xi-1, yii);
|
---|
| 412 | kernel=kernelyc*kernelx[0];
|
---|
| 413 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
|
---|
| 414 | kernel=kernelyc*kernelx[1];
|
---|
| 415 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
|
---|
| 416 | kernel=kernelyc*kernelx[2];
|
---|
| 417 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
|
---|
| 418 | kernel=kernelyc*kernelx[3];
|
---|
| 419 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr); aa+=kernel*(*pxptra);
|
---|
| 420 | } else
|
---|
| 421 | #endif
|
---|
| 422 | //alpha not supported or valid (optimized bicubic int. for no alpha channel)
|
---|
| 423 | {
|
---|
| 424 | kernel=kernelyc*kernelx[0];
|
---|
| 425 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
|
---|
| 426 | kernel=kernelyc*kernelx[1];
|
---|
| 427 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
|
---|
| 428 | kernel=kernelyc*kernelx[2];
|
---|
| 429 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
|
---|
| 430 | kernel=kernelyc*kernelx[3];
|
---|
| 431 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr);
|
---|
| 432 | }
|
---|
| 433 | }//yii
|
---|
| 434 | } else {
|
---|
| 435 | //slower more flexible interpolation for border pixels and paletted images
|
---|
| 436 | RGBQUAD rgbs;
|
---|
| 437 | for (yii=yi-1; yii<yi+3; yii++) {
|
---|
| 438 | kernelyc=kernely[yii-(yi-1)];
|
---|
| 439 | for (xii=xi-1; xii<xi+3; xii++) {
|
---|
| 440 | kernel=kernelyc*kernelx[xii-(xi-1)];
|
---|
| 441 | rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);
|
---|
| 442 | rr+=kernel*rgbs.rgbRed;
|
---|
| 443 | gg+=kernel*rgbs.rgbGreen;
|
---|
| 444 | bb+=kernel*rgbs.rgbBlue;
|
---|
| 445 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 446 | aa+=kernel*rgbs.rgbReserved;
|
---|
| 447 | #endif
|
---|
| 448 | }//xii
|
---|
| 449 | }//yii
|
---|
| 450 | }//if
|
---|
| 451 | //for all colors, clip to 0..255 and assign to RGBQUAD
|
---|
| 452 | if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
|
---|
| 453 | if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
|
---|
| 454 | if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
|
---|
| 455 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 456 | if (AlphaIsValid()) {
|
---|
| 457 | if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
|
---|
| 458 | } else
|
---|
| 459 | #endif
|
---|
| 460 | { //Alpha not supported or no alpha at all
|
---|
| 461 | color.rgbReserved = 0;
|
---|
| 462 | }
|
---|
| 463 | return color;
|
---|
| 464 | case IM_LANCZOS:
|
---|
| 465 | //lanczos window (16*16) sinc interpolation
|
---|
| 466 | if (((xi+6)<0) || ((xi-5)>=head.biWidth) || ((yi+6)<0) || ((yi-5)>=head.biHeight)) {
|
---|
| 467 | //all points are outside bounds
|
---|
| 468 | switch (ofMethod) {
|
---|
| 469 | case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
|
---|
| 470 | //we don't need to interpolate anything with all points outside in this case
|
---|
| 471 | return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
|
---|
| 472 | break;
|
---|
| 473 | default:
|
---|
| 474 | //recalculate coordinates and use faster method later on
|
---|
| 475 | OverflowCoordinates(x,y,ofMethod);
|
---|
| 476 | xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
|
---|
| 477 | yi=(int)(y); if (y<0) yi--;
|
---|
| 478 | }//switch
|
---|
| 479 | }//if
|
---|
| 480 |
|
---|
| 481 | for (xii=xi-5; xii<xi+7; xii++) kernelx[xii-(xi-5)]=KernelLanczosSinc((float)(xii-x), 6.0f);
|
---|
| 482 | rr=gg=bb=aa=0;
|
---|
| 483 |
|
---|
| 484 | if (((xi+6)<head.biWidth) && ((xi-5)>=0) && ((yi+6)<head.biHeight) && ((yi-5)>=0) && !IsIndexed()) {
|
---|
| 485 | //optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds
|
---|
| 486 | BYTE *pxptr, *pxptra;
|
---|
| 487 | for (yii=yi-5; yii<yi+7; yii++) {
|
---|
| 488 | pxptr=(BYTE *)BlindGetPixelPointer(xi-5, yii); //calculate pointer to first byte in row
|
---|
| 489 | kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);
|
---|
| 490 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 491 | if (AlphaIsValid()) {
|
---|
| 492 | //alpha is supported and valid
|
---|
| 493 | pxptra=AlphaGetPointer(xi-1, yii);
|
---|
| 494 | for (xii=0; xii<12; xii++) {
|
---|
| 495 | kernel=kernelyc*kernelx[xii];
|
---|
| 496 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
|
---|
| 497 | }//for xii
|
---|
| 498 | } else
|
---|
| 499 | #endif
|
---|
| 500 | //alpha not supported or valid
|
---|
| 501 | {
|
---|
| 502 | for (xii=0; xii<12; xii++) {
|
---|
| 503 | kernel=kernelyc*kernelx[xii];
|
---|
| 504 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
|
---|
| 505 | }//for xii
|
---|
| 506 | }
|
---|
| 507 | }//yii
|
---|
| 508 | } else {
|
---|
| 509 | //slower more flexible interpolation for border pixels and paletted images
|
---|
| 510 | RGBQUAD rgbs;
|
---|
| 511 | for (yii=yi-5; yii<yi+7; yii++) {
|
---|
| 512 | kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);
|
---|
| 513 | for (xii=xi-5; xii<xi+7; xii++) {
|
---|
| 514 | kernel=kernelyc*kernelx[xii-(xi-5)];
|
---|
| 515 | rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);
|
---|
| 516 | rr+=kernel*rgbs.rgbRed;
|
---|
| 517 | gg+=kernel*rgbs.rgbGreen;
|
---|
| 518 | bb+=kernel*rgbs.rgbBlue;
|
---|
| 519 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 520 | aa+=kernel*rgbs.rgbReserved;
|
---|
| 521 | #endif
|
---|
| 522 | }//xii
|
---|
| 523 | }//yii
|
---|
| 524 | }//if
|
---|
| 525 | //for all colors, clip to 0..255 and assign to RGBQUAD
|
---|
| 526 | if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
|
---|
| 527 | if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
|
---|
| 528 | if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
|
---|
| 529 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 530 | if (AlphaIsValid()) {
|
---|
| 531 | if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
|
---|
| 532 | } else
|
---|
| 533 | #endif
|
---|
| 534 | { //Alpha not supported or no alpha at all
|
---|
| 535 | color.rgbReserved = 0;
|
---|
| 536 | }
|
---|
| 537 | return color;
|
---|
| 538 | }//switch
|
---|
| 539 | }
|
---|
| 540 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 541 | /**
|
---|
| 542 | * Helper function for GetAreaColorInterpolated.
|
---|
| 543 | * Adds 'surf' portion of image pixel with color 'color' to (rr,gg,bb,aa).
|
---|
| 544 | */
|
---|
| 545 | void CxImage::AddAveragingCont(RGBQUAD const &color, float const surf, float &rr, float &gg, float &bb, float &aa)
|
---|
| 546 | {
|
---|
| 547 | rr+=color.rgbRed*surf;
|
---|
| 548 | gg+=color.rgbGreen*surf;
|
---|
| 549 | bb+=color.rgbBlue*surf;
|
---|
| 550 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 551 | aa+=color.rgbReserved*surf;
|
---|
| 552 | #endif
|
---|
| 553 | }
|
---|
| 554 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 555 | /**
|
---|
| 556 | * This method is similar to GetPixelColorInterpolated, but this method also properly handles
|
---|
| 557 | * subsampling.
|
---|
| 558 | * If you need to sample original image with interval of more than 1 pixel (as when shrinking an image),
|
---|
| 559 | * you should use this method instead of GetPixelColorInterpolated or aliasing will occur.
|
---|
| 560 | * When area width and height are both less than pixel, this method gets pixel color by interpolating
|
---|
| 561 | * color of frame center with selected (inMethod) interpolation by calling GetPixelColorInterpolated.
|
---|
| 562 | * If width and height are more than 1, method calculates color by averaging color of pixels within area.
|
---|
| 563 | * Interpolation method is not used in this case. Pixel color is interpolated by averaging instead.
|
---|
| 564 | * If only one of both is more than 1, method uses combination of interpolation and averaging.
|
---|
| 565 | * Chosen interpolation method is used, but since it is averaged later on, there is little difference
|
---|
| 566 | * between IM_BILINEAR (perhaps best for this case) and better methods. IM_NEAREST_NEIGHBOUR again
|
---|
| 567 | * leads to aliasing artifacts.
|
---|
| 568 | * This method is a bit slower than GetPixelColorInterpolated and when aliasing is not a problem, you should
|
---|
| 569 | * simply use the later.
|
---|
| 570 | *
|
---|
| 571 | * \param xc, yc - center of (rectangular) area
|
---|
| 572 | * \param w, h - width and height of area
|
---|
| 573 | * \param inMethod - interpolation method that is used, when interpolation is used (see above)
|
---|
| 574 | * \param ofMethod - overflow method used when retrieving individual pixel colors
|
---|
| 575 | * \param rplColor - replacement colour to use, in OM_COLOR
|
---|
| 576 | *
|
---|
| 577 | * \author ***bd*** 2.2004
|
---|
| 578 | */
|
---|
| 579 | RGBQUAD CxImage::GetAreaColorInterpolated(
|
---|
| 580 | float const xc, float const yc, float const w, float const h,
|
---|
| 581 | InterpolationMethod const inMethod,
|
---|
| 582 | OverflowMethod const ofMethod,
|
---|
| 583 | RGBQUAD* const rplColor)
|
---|
| 584 | {
|
---|
| 585 | RGBQUAD color; //calculated colour
|
---|
| 586 |
|
---|
| 587 | if (h<=1 && w<=1) {
|
---|
| 588 | //both width and height are less than one... we will use interpolation of center point
|
---|
| 589 | return GetPixelColorInterpolated(xc, yc, inMethod, ofMethod, rplColor);
|
---|
| 590 | } else {
|
---|
| 591 | //area is wider and/or taller than one pixel:
|
---|
| 592 | CxRect2 area(xc-w/2.0f, yc-h/2.0f, xc+w/2.0f, yc+h/2.0f); //area
|
---|
| 593 | int xi1=(int)(area.botLeft.x+0.49999999f); //low x
|
---|
| 594 | int yi1=(int)(area.botLeft.y+0.49999999f); //low y
|
---|
| 595 |
|
---|
| 596 |
|
---|
| 597 | int xi2=(int)(area.topRight.x+0.5f); //top x
|
---|
| 598 | int yi2=(int)(area.topRight.y+0.5f); //top y (for loops)
|
---|
| 599 |
|
---|
| 600 | float rr,gg,bb,aa; //red, green, blue and alpha components
|
---|
| 601 | rr=gg=bb=aa=0;
|
---|
| 602 | int x,y; //loop counters
|
---|
| 603 | float s=0; //surface of all pixels
|
---|
| 604 | float cps; //surface of current crosssection
|
---|
| 605 | if (h>1 && w>1) {
|
---|
| 606 | //width and height of area are greater than one pixel, so we can employ "ordinary" averaging
|
---|
| 607 | CxRect2 intBL, intTR; //bottom left and top right intersection
|
---|
| 608 | intBL=area.CrossSection(CxRect2(((float)xi1)-0.5f, ((float)yi1)-0.5f, ((float)xi1)+0.5f, ((float)yi1)+0.5f));
|
---|
| 609 | intTR=area.CrossSection(CxRect2(((float)xi2)-0.5f, ((float)yi2)-0.5f, ((float)xi2)+0.5f, ((float)yi2)+0.5f));
|
---|
| 610 | float wBL, wTR, hBL, hTR;
|
---|
| 611 | wBL=intBL.Width(); //width of bottom left pixel-area intersection
|
---|
| 612 | hBL=intBL.Height(); //height of bottom left...
|
---|
| 613 | wTR=intTR.Width(); //width of top right...
|
---|
| 614 | hTR=intTR.Height(); //height of top right...
|
---|
| 615 |
|
---|
| 616 | AddAveragingCont(GetPixelColorWithOverflow(xi1,yi1,ofMethod,rplColor), wBL*hBL, rr, gg, bb, aa); //bottom left pixel
|
---|
| 617 | AddAveragingCont(GetPixelColorWithOverflow(xi2,yi1,ofMethod,rplColor), wTR*hBL, rr, gg, bb, aa); //bottom right pixel
|
---|
| 618 | AddAveragingCont(GetPixelColorWithOverflow(xi1,yi2,ofMethod,rplColor), wBL*hTR, rr, gg, bb, aa); //top left pixel
|
---|
| 619 | AddAveragingCont(GetPixelColorWithOverflow(xi2,yi2,ofMethod,rplColor), wTR*hTR, rr, gg, bb, aa); //top right pixel
|
---|
| 620 | //bottom and top row
|
---|
| 621 | for (x=xi1+1; x<xi2; x++) {
|
---|
| 622 | AddAveragingCont(GetPixelColorWithOverflow(x,yi1,ofMethod,rplColor), hBL, rr, gg, bb, aa); //bottom row
|
---|
| 623 | AddAveragingCont(GetPixelColorWithOverflow(x,yi2,ofMethod,rplColor), hTR, rr, gg, bb, aa); //top row
|
---|
| 624 | }
|
---|
| 625 | //leftmost and rightmost column
|
---|
| 626 | for (y=yi1+1; y<yi2; y++) {
|
---|
| 627 | AddAveragingCont(GetPixelColorWithOverflow(xi1,y,ofMethod,rplColor), wBL, rr, gg, bb, aa); //left column
|
---|
| 628 | AddAveragingCont(GetPixelColorWithOverflow(xi2,y,ofMethod,rplColor), wTR, rr, gg, bb, aa); //right column
|
---|
| 629 | }
|
---|
| 630 | for (y=yi1+1; y<yi2; y++) {
|
---|
| 631 | for (x=xi1+1; x<xi2; x++) {
|
---|
| 632 | color=GetPixelColorWithOverflow(x,y,ofMethod,rplColor);
|
---|
| 633 | rr+=color.rgbRed;
|
---|
| 634 | gg+=color.rgbGreen;
|
---|
| 635 | bb+=color.rgbBlue;
|
---|
| 636 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 637 | aa+=color.rgbReserved;
|
---|
| 638 | #endif
|
---|
| 639 | }//for x
|
---|
| 640 | }//for y
|
---|
| 641 | } else {
|
---|
| 642 | //width or height greater than one:
|
---|
| 643 | CxRect2 intersect; //intersection with current pixel
|
---|
| 644 | CxPoint2 center;
|
---|
| 645 | for (y=yi1; y<=yi2; y++) {
|
---|
| 646 | for (x=xi1; x<=xi2; x++) {
|
---|
| 647 | intersect=area.CrossSection(CxRect2(((float)x)-0.5f, ((float)y)-0.5f, ((float)x)+0.5f, ((float)y)+0.5f));
|
---|
| 648 | center=intersect.Center();
|
---|
| 649 | color=GetPixelColorInterpolated(center.x, center.y, inMethod, ofMethod, rplColor);
|
---|
| 650 | cps=intersect.Surface();
|
---|
| 651 | rr+=color.rgbRed*cps;
|
---|
| 652 | gg+=color.rgbGreen*cps;
|
---|
| 653 | bb+=color.rgbBlue*cps;
|
---|
| 654 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 655 | aa+=color.rgbReserved*cps;
|
---|
| 656 | #endif
|
---|
| 657 | }//for x
|
---|
| 658 | }//for y
|
---|
| 659 | }//if
|
---|
| 660 |
|
---|
| 661 | s=area.Surface();
|
---|
| 662 | rr/=s; gg/=s; bb/=s; aa/=s;
|
---|
| 663 | if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
|
---|
| 664 | if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
|
---|
| 665 | if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
|
---|
| 666 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
| 667 | if (AlphaIsValid()) {
|
---|
| 668 | if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
|
---|
| 669 | }//if
|
---|
| 670 | #endif
|
---|
| 671 | }//if
|
---|
| 672 | return color;
|
---|
| 673 | }
|
---|
| 674 |
|
---|
| 675 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 676 | float CxImage::KernelBSpline(const float x)
|
---|
| 677 | {
|
---|
| 678 | if (x>2.0f) return 0.0f;
|
---|
| 679 | // thanks to Kristian Kratzenstein
|
---|
| 680 | float a, b, c, d;
|
---|
| 681 | float xm1 = x - 1.0f; // Was calculatet anyway cause the "if((x-1.0f) < 0)"
|
---|
| 682 | float xp1 = x + 1.0f;
|
---|
| 683 | float xp2 = x + 2.0f;
|
---|
| 684 |
|
---|
| 685 | if ((xp2) <= 0.0f) a = 0.0f; else a = xp2*xp2*xp2; // Only float, not float -> double -> float
|
---|
| 686 | if ((xp1) <= 0.0f) b = 0.0f; else b = xp1*xp1*xp1;
|
---|
| 687 | if (x <= 0) c = 0.0f; else c = x*x*x;
|
---|
| 688 | if ((xm1) <= 0.0f) d = 0.0f; else d = xm1*xm1*xm1;
|
---|
| 689 |
|
---|
| 690 | return (0.16666666666666666667f * (a - (4.0f * b) + (6.0f * c) - (4.0f * d)));
|
---|
| 691 |
|
---|
| 692 | /* equivalent <Vladimír Kloucek>
|
---|
| 693 | if (x < -2.0)
|
---|
| 694 | return(0.0f);
|
---|
| 695 | if (x < -1.0)
|
---|
| 696 | return((2.0f+x)*(2.0f+x)*(2.0f+x)*0.16666666666666666667f);
|
---|
| 697 | if (x < 0.0)
|
---|
| 698 | return((4.0f+x*x*(-6.0f-3.0f*x))*0.16666666666666666667f);
|
---|
| 699 | if (x < 1.0)
|
---|
| 700 | return((4.0f+x*x*(-6.0f+3.0f*x))*0.16666666666666666667f);
|
---|
| 701 | if (x < 2.0)
|
---|
| 702 | return((2.0f-x)*(2.0f-x)*(2.0f-x)*0.16666666666666666667f);
|
---|
| 703 | return(0.0f);
|
---|
| 704 | */
|
---|
| 705 | }
|
---|
| 706 |
|
---|
| 707 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 708 | /**
|
---|
| 709 | * Bilinear interpolation kernel:
|
---|
| 710 | \verbatim
|
---|
| 711 | /
|
---|
| 712 | | 1-t , if 0 <= t <= 1
|
---|
| 713 | h(t) = | t+1 , if -1 <= t < 0
|
---|
| 714 | | 0 , otherwise
|
---|
| 715 | \
|
---|
| 716 | \endverbatim
|
---|
| 717 | * ***bd*** 2.2004
|
---|
| 718 | */
|
---|
| 719 | float CxImage::KernelLinear(const float t)
|
---|
| 720 | {
|
---|
| 721 | // if (0<=t && t<=1) return 1-t;
|
---|
| 722 | // if (-1<=t && t<0) return 1+t;
|
---|
| 723 | // return 0;
|
---|
| 724 |
|
---|
| 725 | //<Vladimír Kloucek>
|
---|
| 726 | if (t < -1.0f)
|
---|
| 727 | return 0.0f;
|
---|
| 728 | if (t < 0.0f)
|
---|
| 729 | return 1.0f+t;
|
---|
| 730 | if (t < 1.0f)
|
---|
| 731 | return 1.0f-t;
|
---|
| 732 | return 0.0f;
|
---|
| 733 | }
|
---|
| 734 |
|
---|
| 735 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 736 | /**
|
---|
| 737 | * Bicubic interpolation kernel (a=-1):
|
---|
| 738 | \verbatim
|
---|
| 739 | /
|
---|
| 740 | | 1-2|t|**2+|t|**3 , if |t| < 1
|
---|
| 741 | h(t) = | 4-8|t|+5|t|**2-|t|**3 , if 1<=|t|<2
|
---|
| 742 | | 0 , otherwise
|
---|
| 743 | \
|
---|
| 744 | \endverbatim
|
---|
| 745 | * ***bd*** 2.2004
|
---|
| 746 | */
|
---|
| 747 | float CxImage::KernelCubic(const float t)
|
---|
| 748 | {
|
---|
| 749 | float abs_t = (float)fabs(t);
|
---|
| 750 | float abs_t_sq = abs_t * abs_t;
|
---|
| 751 | if (abs_t<1) return 1-2*abs_t_sq+abs_t_sq*abs_t;
|
---|
| 752 | if (abs_t<2) return 4 - 8*abs_t +5*abs_t_sq - abs_t_sq*abs_t;
|
---|
| 753 | return 0;
|
---|
| 754 | }
|
---|
| 755 |
|
---|
| 756 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 757 | /**
|
---|
| 758 | * Bicubic kernel (for a=-1 it is the same as BicubicKernel):
|
---|
| 759 | \verbatim
|
---|
| 760 | /
|
---|
| 761 | | (a+2)|t|**3 - (a+3)|t|**2 + 1 , |t| <= 1
|
---|
| 762 | h(t) = | a|t|**3 - 5a|t|**2 + 8a|t| - 4a , 1 < |t| <= 2
|
---|
| 763 | | 0 , otherwise
|
---|
| 764 | \
|
---|
| 765 | \endverbatim
|
---|
| 766 | * Often used values for a are -1 and -1/2.
|
---|
| 767 | */
|
---|
| 768 | float CxImage::KernelGeneralizedCubic(const float t, const float a)
|
---|
| 769 | {
|
---|
| 770 | float abs_t = (float)fabs(t);
|
---|
| 771 | float abs_t_sq = abs_t * abs_t;
|
---|
| 772 | if (abs_t<1) return (a+2)*abs_t_sq*abs_t - (a+3)*abs_t_sq + 1;
|
---|
| 773 | if (abs_t<2) return a*abs_t_sq*abs_t - 5*a*abs_t_sq + 8*a*abs_t - 4*a;
|
---|
| 774 | return 0;
|
---|
| 775 | }
|
---|
| 776 |
|
---|
| 777 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 778 | /**
|
---|
| 779 | * Lanczos windowed sinc interpolation kernel with radius r.
|
---|
| 780 | \verbatim
|
---|
| 781 | /
|
---|
| 782 | h(t) = | sinc(t)*sinc(t/r) , if |t|<r
|
---|
| 783 | | 0 , otherwise
|
---|
| 784 | \
|
---|
| 785 | \endverbatim
|
---|
| 786 | * ***bd*** 2.2004
|
---|
| 787 | */
|
---|
| 788 | float CxImage::KernelLanczosSinc(const float t, const float r)
|
---|
| 789 | {
|
---|
| 790 | if (fabs(t) > r) return 0;
|
---|
| 791 | if (t==0) return 1;
|
---|
| 792 | float pit=PI*t;
|
---|
| 793 | float pitd=pit/r;
|
---|
| 794 | return (float)((sin(pit)/pit) * (sin(pitd)/pitd));
|
---|
| 795 | }
|
---|
| 796 |
|
---|
| 797 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 798 | float CxImage::KernelBox(const float x)
|
---|
| 799 | {
|
---|
| 800 | if (x < -0.5f)
|
---|
| 801 | return 0.0f;
|
---|
| 802 | if (x < 0.5f)
|
---|
| 803 | return 1.0f;
|
---|
| 804 | return 0.0f;
|
---|
| 805 | }
|
---|
| 806 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 807 | float CxImage::KernelHermite(const float x)
|
---|
| 808 | {
|
---|
| 809 | if (x < -1.0f)
|
---|
| 810 | return 0.0f;
|
---|
| 811 | if (x < 0.0f)
|
---|
| 812 | return (-2.0f*x-3.0f)*x*x+1.0f;
|
---|
| 813 | if (x < 1.0f)
|
---|
| 814 | return (2.0f*x-3.0f)*x*x+1.0f;
|
---|
| 815 | return 0.0f;
|
---|
| 816 | // if (fabs(x)>1) return 0.0f;
|
---|
| 817 | // return(0.5f+0.5f*(float)cos(PI*x));
|
---|
| 818 | }
|
---|
| 819 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 820 | float CxImage::KernelHanning(const float x)
|
---|
| 821 | {
|
---|
| 822 | if (fabs(x)>1) return 0.0f;
|
---|
| 823 | return (0.5f+0.5f*(float)cos(PI*x))*((float)sin(PI*x)/(PI*x));
|
---|
| 824 | }
|
---|
| 825 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 826 | float CxImage::KernelHamming(const float x)
|
---|
| 827 | {
|
---|
| 828 | if (x < -1.0f)
|
---|
| 829 | return 0.0f;
|
---|
| 830 | if (x < 0.0f)
|
---|
| 831 | return 0.92f*(-2.0f*x-3.0f)*x*x+1.0f;
|
---|
| 832 | if (x < 1.0f)
|
---|
| 833 | return 0.92f*(2.0f*x-3.0f)*x*x+1.0f;
|
---|
| 834 | return 0.0f;
|
---|
| 835 | // if (fabs(x)>1) return 0.0f;
|
---|
| 836 | // return(0.54f+0.46f*(float)cos(PI*x));
|
---|
| 837 | }
|
---|
| 838 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 839 | float CxImage::KernelSinc(const float x)
|
---|
| 840 | {
|
---|
| 841 | if (x == 0.0)
|
---|
| 842 | return(1.0);
|
---|
| 843 | return((float)sin(PI*x)/(PI*x));
|
---|
| 844 | }
|
---|
| 845 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 846 | float CxImage::KernelBlackman(const float x)
|
---|
| 847 | {
|
---|
| 848 | //if (fabs(x)>1) return 0.0f;
|
---|
| 849 | return (0.42f+0.5f*(float)cos(PI*x)+0.08f*(float)cos(2.0f*PI*x));
|
---|
| 850 | }
|
---|
| 851 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 852 | float CxImage::KernelBessel_J1(const float x)
|
---|
| 853 | {
|
---|
| 854 | double p, q;
|
---|
| 855 |
|
---|
| 856 | register long i;
|
---|
| 857 |
|
---|
| 858 | static const double
|
---|
| 859 | Pone[] =
|
---|
| 860 | {
|
---|
| 861 | 0.581199354001606143928050809e+21,
|
---|
| 862 | -0.6672106568924916298020941484e+20,
|
---|
| 863 | 0.2316433580634002297931815435e+19,
|
---|
| 864 | -0.3588817569910106050743641413e+17,
|
---|
| 865 | 0.2908795263834775409737601689e+15,
|
---|
| 866 | -0.1322983480332126453125473247e+13,
|
---|
| 867 | 0.3413234182301700539091292655e+10,
|
---|
| 868 | -0.4695753530642995859767162166e+7,
|
---|
| 869 | 0.270112271089232341485679099e+4
|
---|
| 870 | },
|
---|
| 871 | Qone[] =
|
---|
| 872 | {
|
---|
| 873 | 0.11623987080032122878585294e+22,
|
---|
| 874 | 0.1185770712190320999837113348e+20,
|
---|
| 875 | 0.6092061398917521746105196863e+17,
|
---|
| 876 | 0.2081661221307607351240184229e+15,
|
---|
| 877 | 0.5243710262167649715406728642e+12,
|
---|
| 878 | 0.1013863514358673989967045588e+10,
|
---|
| 879 | 0.1501793594998585505921097578e+7,
|
---|
| 880 | 0.1606931573481487801970916749e+4,
|
---|
| 881 | 0.1e+1
|
---|
| 882 | };
|
---|
| 883 |
|
---|
| 884 | p = Pone[8];
|
---|
| 885 | q = Qone[8];
|
---|
| 886 | for (i=7; i >= 0; i--)
|
---|
| 887 | {
|
---|
| 888 | p = p*x*x+Pone[i];
|
---|
| 889 | q = q*x*x+Qone[i];
|
---|
| 890 | }
|
---|
| 891 | return (float)(p/q);
|
---|
| 892 | }
|
---|
| 893 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 894 | float CxImage::KernelBessel_P1(const float x)
|
---|
| 895 | {
|
---|
| 896 | double p, q;
|
---|
| 897 |
|
---|
| 898 | register long i;
|
---|
| 899 |
|
---|
| 900 | static const double
|
---|
| 901 | Pone[] =
|
---|
| 902 | {
|
---|
| 903 | 0.352246649133679798341724373e+5,
|
---|
| 904 | 0.62758845247161281269005675e+5,
|
---|
| 905 | 0.313539631109159574238669888e+5,
|
---|
| 906 | 0.49854832060594338434500455e+4,
|
---|
| 907 | 0.2111529182853962382105718e+3,
|
---|
| 908 | 0.12571716929145341558495e+1
|
---|
| 909 | },
|
---|
| 910 | Qone[] =
|
---|
| 911 | {
|
---|
| 912 | 0.352246649133679798068390431e+5,
|
---|
| 913 | 0.626943469593560511888833731e+5,
|
---|
| 914 | 0.312404063819041039923015703e+5,
|
---|
| 915 | 0.4930396490181088979386097e+4,
|
---|
| 916 | 0.2030775189134759322293574e+3,
|
---|
| 917 | 0.1e+1
|
---|
| 918 | };
|
---|
| 919 |
|
---|
| 920 | p = Pone[5];
|
---|
| 921 | q = Qone[5];
|
---|
| 922 | for (i=4; i >= 0; i--)
|
---|
| 923 | {
|
---|
| 924 | p = p*(8.0/x)*(8.0/x)+Pone[i];
|
---|
| 925 | q = q*(8.0/x)*(8.0/x)+Qone[i];
|
---|
| 926 | }
|
---|
| 927 | return (float)(p/q);
|
---|
| 928 | }
|
---|
| 929 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 930 | float CxImage::KernelBessel_Q1(const float x)
|
---|
| 931 | {
|
---|
| 932 | double p, q;
|
---|
| 933 |
|
---|
| 934 | register long i;
|
---|
| 935 |
|
---|
| 936 | static const double
|
---|
| 937 | Pone[] =
|
---|
| 938 | {
|
---|
| 939 | 0.3511751914303552822533318e+3,
|
---|
| 940 | 0.7210391804904475039280863e+3,
|
---|
| 941 | 0.4259873011654442389886993e+3,
|
---|
| 942 | 0.831898957673850827325226e+2,
|
---|
| 943 | 0.45681716295512267064405e+1,
|
---|
| 944 | 0.3532840052740123642735e-1
|
---|
| 945 | },
|
---|
| 946 | Qone[] =
|
---|
| 947 | {
|
---|
| 948 | 0.74917374171809127714519505e+4,
|
---|
| 949 | 0.154141773392650970499848051e+5,
|
---|
| 950 | 0.91522317015169922705904727e+4,
|
---|
| 951 | 0.18111867005523513506724158e+4,
|
---|
| 952 | 0.1038187585462133728776636e+3,
|
---|
| 953 | 0.1e+1
|
---|
| 954 | };
|
---|
| 955 |
|
---|
| 956 | p = Pone[5];
|
---|
| 957 | q = Qone[5];
|
---|
| 958 | for (i=4; i >= 0; i--)
|
---|
| 959 | {
|
---|
| 960 | p = p*(8.0/x)*(8.0/x)+Pone[i];
|
---|
| 961 | q = q*(8.0/x)*(8.0/x)+Qone[i];
|
---|
| 962 | }
|
---|
| 963 | return (float)(p/q);
|
---|
| 964 | }
|
---|
| 965 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 966 | float CxImage::KernelBessel_Order1(float x)
|
---|
| 967 | {
|
---|
| 968 | float p, q;
|
---|
| 969 |
|
---|
| 970 | if (x == 0.0)
|
---|
| 971 | return (0.0f);
|
---|
| 972 | p = x;
|
---|
| 973 | if (x < 0.0)
|
---|
| 974 | x=(-x);
|
---|
| 975 | if (x < 8.0)
|
---|
| 976 | return(p*KernelBessel_J1(x));
|
---|
| 977 | q = (float)sqrt(2.0f/(PI*x))*(float)(KernelBessel_P1(x)*(1.0f/sqrt(2.0f)*(sin(x)-cos(x)))-8.0f/x*KernelBessel_Q1(x)*
|
---|
| 978 | (-1.0f/sqrt(2.0f)*(sin(x)+cos(x))));
|
---|
| 979 | if (p < 0.0f)
|
---|
| 980 | q = (-q);
|
---|
| 981 | return (q);
|
---|
| 982 | }
|
---|
| 983 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 984 | float CxImage::KernelBessel(const float x)
|
---|
| 985 | {
|
---|
| 986 | if (x == 0.0f)
|
---|
| 987 | return(PI/4.0f);
|
---|
| 988 | return(KernelBessel_Order1(PI*x)/(2.0f*x));
|
---|
| 989 | }
|
---|
| 990 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 991 | float CxImage::KernelGaussian(const float x)
|
---|
| 992 | {
|
---|
| 993 | return (float)(exp(-2.0f*x*x)*0.79788456080287f/*sqrt(2.0f/PI)*/);
|
---|
| 994 | }
|
---|
| 995 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 996 | float CxImage::KernelQuadratic(const float x)
|
---|
| 997 | {
|
---|
| 998 | if (x < -1.5f)
|
---|
| 999 | return(0.0f);
|
---|
| 1000 | if (x < -0.5f)
|
---|
| 1001 | return(0.5f*(x+1.5f)*(x+1.5f));
|
---|
| 1002 | if (x < 0.5f)
|
---|
| 1003 | return(0.75f-x*x);
|
---|
| 1004 | if (x < 1.5f)
|
---|
| 1005 | return(0.5f*(x-1.5f)*(x-1.5f));
|
---|
| 1006 | return(0.0f);
|
---|
| 1007 | }
|
---|
| 1008 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 1009 | float CxImage::KernelMitchell(const float x)
|
---|
| 1010 | {
|
---|
| 1011 | #define KM_B (1.0f/3.0f)
|
---|
| 1012 | #define KM_C (1.0f/3.0f)
|
---|
| 1013 | #define KM_P0 (( 6.0f - 2.0f * KM_B ) / 6.0f)
|
---|
| 1014 | #define KM_P2 ((-18.0f + 12.0f * KM_B + 6.0f * KM_C) / 6.0f)
|
---|
| 1015 | #define KM_P3 (( 12.0f - 9.0f * KM_B - 6.0f * KM_C) / 6.0f)
|
---|
| 1016 | #define KM_Q0 (( 8.0f * KM_B + 24.0f * KM_C) / 6.0f)
|
---|
| 1017 | #define KM_Q1 ((-12.0f * KM_B - 48.0f * KM_C) / 6.0f)
|
---|
| 1018 | #define KM_Q2 (( 6.0f * KM_B + 30.0f * KM_C) / 6.0f)
|
---|
| 1019 | #define KM_Q3 (( -1.0f * KM_B - 6.0f * KM_C) / 6.0f)
|
---|
| 1020 |
|
---|
| 1021 | if (x < -2.0)
|
---|
| 1022 | return(0.0f);
|
---|
| 1023 | if (x < -1.0)
|
---|
| 1024 | return(KM_Q0-x*(KM_Q1-x*(KM_Q2-x*KM_Q3)));
|
---|
| 1025 | if (x < 0.0f)
|
---|
| 1026 | return(KM_P0+x*x*(KM_P2-x*KM_P3));
|
---|
| 1027 | if (x < 1.0f)
|
---|
| 1028 | return(KM_P0+x*x*(KM_P2+x*KM_P3));
|
---|
| 1029 | if (x < 2.0f)
|
---|
| 1030 | return(KM_Q0+x*(KM_Q1+x*(KM_Q2+x*KM_Q3)));
|
---|
| 1031 | return(0.0f);
|
---|
| 1032 | }
|
---|
| 1033 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 1034 | float CxImage::KernelCatrom(const float x)
|
---|
| 1035 | {
|
---|
| 1036 | if (x < -2.0)
|
---|
| 1037 | return(0.0f);
|
---|
| 1038 | if (x < -1.0)
|
---|
| 1039 | return(0.5f*(4.0f+x*(8.0f+x*(5.0f+x))));
|
---|
| 1040 | if (x < 0.0)
|
---|
| 1041 | return(0.5f*(2.0f+x*x*(-5.0f-3.0f*x)));
|
---|
| 1042 | if (x < 1.0)
|
---|
| 1043 | return(0.5f*(2.0f+x*x*(-5.0f+3.0f*x)));
|
---|
| 1044 | if (x < 2.0)
|
---|
| 1045 | return(0.5f*(4.0f+x*(-8.0f+x*(5.0f-x))));
|
---|
| 1046 | return(0.0f);
|
---|
| 1047 | }
|
---|
| 1048 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 1049 | float CxImage::KernelPower(const float x, const float a)
|
---|
| 1050 | {
|
---|
| 1051 | if (fabs(x)>1) return 0.0f;
|
---|
| 1052 | return (1.0f - (float)fabs(pow(x,a)));
|
---|
| 1053 | }
|
---|
| 1054 | ////////////////////////////////////////////////////////////////////////////////
|
---|
| 1055 |
|
---|
| 1056 | #endif
|
---|