source: liacs/MIR2010/SourceCode/cximage/ximaint.cpp@ 317

Last change on this file since 317 was 95, checked in by Rick van der Zwet, 15 years ago

Bad boy, improper move of directory

File size: 38.7 KB
RevLine 
[95]1// xImaInt.cpp : interpolation functions
2/* 02/2004 - Branko Brevensek
3 * CxImage version 6.0.0 02/Feb/2008 - Davide Pizzolato - www.xdp.it
4 */
5
6#include "ximage.h"
7#include "ximath.h"
8
9#if CXIMAGE_SUPPORT_INTERPOLATION
10
11////////////////////////////////////////////////////////////////////////////////
12/**
13 * Recalculates coordinates according to specified overflow method.
14 * If pixel (x,y) lies within image, nothing changes.
15 *
16 * \param x, y - coordinates of pixel
17 * \param ofMethod - overflow method
18 *
19 * \return x, y - new coordinates (pixel (x,y) now lies inside image)
20 *
21 * \author ***bd*** 2.2004
22 */
23void CxImage::OverflowCoordinates(long &x, long &y, OverflowMethod const ofMethod)
24{
25 if (IsInside(x,y)) return; //if pixel is within bounds, no change
26 switch (ofMethod) {
27 case OM_REPEAT:
28 //clip coordinates
29 x=max(x,0); x=min(x, head.biWidth-1);
30 y=max(y,0); y=min(y, head.biHeight-1);
31 break;
32 case OM_WRAP:
33 //wrap coordinates
34 x = x % head.biWidth;
35 y = y % head.biHeight;
36 if (x<0) x = head.biWidth + x;
37 if (y<0) y = head.biHeight + y;
38 break;
39 case OM_MIRROR:
40 //mirror pixels near border
41 if (x<0) x=((-x) % head.biWidth);
42 else if (x>=head.biWidth) x=head.biWidth-(x % head.biWidth + 1);
43 if (y<0) y=((-y) % head.biHeight);
44 else if (y>=head.biHeight) y=head.biHeight-(y % head.biHeight + 1);
45 break;
46 default:
47 return;
48 }//switch
49}
50
51////////////////////////////////////////////////////////////////////////////////
52/**
53 * See OverflowCoordinates for integer version
54 * \author ***bd*** 2.2004
55 */
56void CxImage::OverflowCoordinates(float &x, float &y, OverflowMethod const ofMethod)
57{
58 if (x>=0 && x<head.biWidth && y>=0 && y<head.biHeight) return; //if pixel is within bounds, no change
59 switch (ofMethod) {
60 case OM_REPEAT:
61 //clip coordinates
62 x=max(x,0); x=min(x, head.biWidth-1);
63 y=max(y,0); y=min(y, head.biHeight-1);
64 break;
65 case OM_WRAP:
66 //wrap coordinates
67 x = (float)fmod(x, (float) head.biWidth);
68 y = (float)fmod(y, (float) head.biHeight);
69 if (x<0) x = head.biWidth + x;
70 if (y<0) y = head.biHeight + y;
71 break;
72 case OM_MIRROR:
73 //mirror pixels near border
74 if (x<0) x=(float)fmod(-x, (float) head.biWidth);
75 else if (x>=head.biWidth) x=head.biWidth-((float)fmod(x, (float) head.biWidth) + 1);
76 if (y<0) y=(float)fmod(-y, (float) head.biHeight);
77 else if (y>=head.biHeight) y=head.biHeight-((float)fmod(y, (float) head.biHeight) + 1);
78 break;
79 default:
80 return;
81 }//switch
82}
83
84////////////////////////////////////////////////////////////////////////////////
85/**
86 * Method return pixel color. Different methods are implemented for out of bounds pixels.
87 * If an image has alpha channel, alpha value is returned in .RGBReserved.
88 *
89 * \param x,y : pixel coordinates
90 * \param ofMethod : out-of-bounds method:
91 * - OF_WRAP - wrap over to pixels on other side of the image
92 * - OF_REPEAT - repeat last pixel on the edge
93 * - OF_COLOR - return input value of color
94 * - OF_BACKGROUND - return background color (if not set, return input color)
95 * - OF_TRANSPARENT - return transparent pixel
96 *
97 * \param rplColor : input color (returned for out-of-bound coordinates in OF_COLOR mode and if other mode is not applicable)
98 *
99 * \return color : color of pixel
100 * \author ***bd*** 2.2004
101 */
102RGBQUAD CxImage::GetPixelColorWithOverflow(long x, long y, OverflowMethod const ofMethod, RGBQUAD* const rplColor)
103{
104 RGBQUAD color; //color to return
105 if ((!IsInside(x,y)) || pDib==NULL) { //is pixel within bouns?:
106 //pixel is out of bounds or no DIB
107 if (rplColor!=NULL)
108 color=*rplColor;
109 else {
110 color.rgbRed=color.rgbGreen=color.rgbBlue=255; color.rgbReserved=0; //default replacement colour: white transparent
111 }//if
112 if (pDib==NULL) return color;
113 //pixel is out of bounds:
114 switch (ofMethod) {
115 case OM_TRANSPARENT:
116#if CXIMAGE_SUPPORT_ALPHA
117 if (AlphaIsValid()) {
118 //alpha transparency is supported and image has alpha layer
119 color.rgbReserved=0;
120 } else {
121#endif //CXIMAGE_SUPPORT_ALPHA
122 //no alpha transparency
123 if (GetTransIndex()>=0) {
124 color=GetTransColor(); //single color transparency enabled (return transparent color)
125 }//if
126#if CXIMAGE_SUPPORT_ALPHA
127 }//if
128#endif //CXIMAGE_SUPPORT_ALPHA
129 return color;
130 case OM_BACKGROUND:
131 //return background color (if it exists, otherwise input value)
132 if (info.nBkgndIndex >= 0) {
133 if (head.biBitCount<24) color = GetPaletteColor((BYTE)info.nBkgndIndex);
134 else color = info.nBkgndColor;
135 }//if
136 return color;
137 case OM_REPEAT:
138 case OM_WRAP:
139 case OM_MIRROR:
140 OverflowCoordinates(x,y,ofMethod);
141 break;
142 default:
143 //simply return replacement color (OM_COLOR and others)
144 return color;
145 }//switch
146 }//if
147 //just return specified pixel (it's within bounds)
148 return BlindGetPixelColor(x,y);
149}
150
151////////////////////////////////////////////////////////////////////////////////
152/**
153 * This method reconstructs image according to chosen interpolation method and then returns pixel (x,y).
154 * (x,y) can lie between actual image pixels. If (x,y) lies outside of image, method returns value
155 * according to overflow method.
156 * This method is very useful for geometrical image transformations, where destination pixel
157 * can often assume color value lying between source pixels.
158 *
159 * \param (x,y) - coordinates of pixel to return
160 * GPCI method recreates "analogue" image back from digital data, so x and y
161 * are float values and color value of point (1.1,1) will generally not be same
162 * as (1,1). Center of first pixel is at (0,0) and center of pixel right to it is (1,0).
163 * (0.5,0) is half way between these two pixels.
164 * \param inMethod - interpolation (reconstruction) method (kernel) to use:
165 * - IM_NEAREST_NEIGHBOUR - returns colour of nearest lying pixel (causes stairy look of
166 * processed images)
167 * - IM_BILINEAR - interpolates colour from four neighbouring pixels (softens image a bit)
168 * - IM_BICUBIC - interpolates from 16 neighbouring pixels (can produce "halo" artifacts)
169 * - IM_BICUBIC2 - interpolates from 16 neighbouring pixels (perhaps a bit less halo artifacts
170 than IM_BICUBIC)
171 * - IM_BSPLINE - interpolates from 16 neighbouring pixels (softens image, washes colours)
172 * (As far as I know, image should be prefiltered for this method to give
173 * good results... some other time :) )
174 * This method uses bicubic interpolation kernel from CXImage 5.99a and older
175 * versions.
176 * - IM_LANCZOS - interpolates from 12*12 pixels (slow, ringing artifacts)
177 *
178 * \param ofMethod - overflow method (see comments at GetPixelColorWithOverflow)
179 * \param rplColor - pointer to color used for out of borders pixels in OM_COLOR mode
180 * (and other modes if colour can't calculated in a specified way)
181 *
182 * \return interpolated color value (including interpolated alpha value, if image has alpha layer)
183 *
184 * \author ***bd*** 2.2004
185 */
186RGBQUAD CxImage::GetPixelColorInterpolated(
187 float x,float y,
188 InterpolationMethod const inMethod,
189 OverflowMethod const ofMethod,
190 RGBQUAD* const rplColor)
191{
192 //calculate nearest pixel
193 int xi=(int)(x); if (x<0) xi--; //these replace (incredibly slow) floor (Visual c++ 2003, AMD Athlon)
194 int yi=(int)(y); if (y<0) yi--;
195 RGBQUAD color; //calculated colour
196
197 switch (inMethod) {
198 case IM_NEAREST_NEIGHBOUR:
199 return GetPixelColorWithOverflow((long)(x+0.5f), (long)(y+0.5f), ofMethod, rplColor);
200 default: {
201 //IM_BILINEAR: bilinear interpolation
202 if (xi<-1 || xi>=head.biWidth || yi<-1 || yi>=head.biHeight) { //all 4 points are outside bounds?:
203 switch (ofMethod) {
204 case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
205 //we don't need to interpolate anything with all points outside in this case
206 return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
207 default:
208 //recalculate coordinates and use faster method later on
209 OverflowCoordinates(x,y,ofMethod);
210 xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
211 yi=(int)(y); if (y<0) yi--;
212 }//switch
213 }//if
214 //get four neighbouring pixels
215 if ((xi+1)<head.biWidth && xi>=0 && (yi+1)<head.biHeight && yi>=0 && head.biClrUsed==0) {
216 //all pixels are inside RGB24 image... optimize reading (and use fixed point arithmetic)
217 WORD wt1=(WORD)((x-xi)*256.0f), wt2=(WORD)((y-yi)*256.0f);
218 WORD wd=wt1*wt2>>8;
219 WORD wb=wt1-wd;
220 WORD wc=wt2-wd;
221 WORD wa=256-wt1-wc;
222 WORD wrr,wgg,wbb;
223 BYTE *pxptr=(BYTE*)info.pImage+yi*info.dwEffWidth+xi*3;
224 wbb=wa*(*pxptr++); wgg=wa*(*pxptr++); wrr=wa*(*pxptr++);
225 wbb+=wb*(*pxptr++); wgg+=wb*(*pxptr++); wrr+=wb*(*pxptr);
226 pxptr+=(info.dwEffWidth-5); //move to next row
227 wbb+=wc*(*pxptr++); wgg+=wc*(*pxptr++); wrr+=wc*(*pxptr++);
228 wbb+=wd*(*pxptr++); wgg+=wd*(*pxptr++); wrr+=wd*(*pxptr);
229 color.rgbRed=(BYTE) (wrr>>8); color.rgbGreen=(BYTE) (wgg>>8); color.rgbBlue=(BYTE) (wbb>>8);
230#if CXIMAGE_SUPPORT_ALPHA
231 if (pAlpha) {
232 WORD waa;
233 //image has alpha layer... we have to do the same for alpha data
234 pxptr=AlphaGetPointer(xi,yi); //pointer to first byte
235 waa=wa*(*pxptr++); waa+=wb*(*pxptr); //first two pixels
236 pxptr+=(head.biWidth-1); //move to next row
237 waa+=wc*(*pxptr++); waa+=wd*(*pxptr); //and second row pixels
238 color.rgbReserved=(BYTE) (waa>>8);
239 } else
240#endif
241 { //Alpha not supported or no alpha at all
242 color.rgbReserved = 0;
243 }
244 return color;
245 } else {
246 //default (slower) way to get pixels (not RGB24 or some pixels out of borders)
247 float t1=x-xi, t2=y-yi;
248 float d=t1*t2;
249 float b=t1-d;
250 float c=t2-d;
251 float a=1-t1-c;
252 RGBQUAD rgb11,rgb21,rgb12,rgb22;
253 rgb11=GetPixelColorWithOverflow(xi, yi, ofMethod, rplColor);
254 rgb21=GetPixelColorWithOverflow(xi+1, yi, ofMethod, rplColor);
255 rgb12=GetPixelColorWithOverflow(xi, yi+1, ofMethod, rplColor);
256 rgb22=GetPixelColorWithOverflow(xi+1, yi+1, ofMethod, rplColor);
257 //calculate linear interpolation
258 color.rgbRed=(BYTE) (a*rgb11.rgbRed+b*rgb21.rgbRed+c*rgb12.rgbRed+d*rgb22.rgbRed);
259 color.rgbGreen=(BYTE) (a*rgb11.rgbGreen+b*rgb21.rgbGreen+c*rgb12.rgbGreen+d*rgb22.rgbGreen);
260 color.rgbBlue=(BYTE) (a*rgb11.rgbBlue+b*rgb21.rgbBlue+c*rgb12.rgbBlue+d*rgb22.rgbBlue);
261#if CXIMAGE_SUPPORT_ALPHA
262 if (AlphaIsValid())
263 color.rgbReserved=(BYTE) (a*rgb11.rgbReserved+b*rgb21.rgbReserved+c*rgb12.rgbReserved+d*rgb22.rgbReserved);
264 else
265#endif
266 { //Alpha not supported or no alpha at all
267 color.rgbReserved = 0;
268 }
269 return color;
270 }//if
271 }//default
272 case IM_BICUBIC:
273 case IM_BICUBIC2:
274 case IM_BSPLINE:
275 case IM_BOX:
276 case IM_HERMITE:
277 case IM_HAMMING:
278 case IM_SINC:
279 case IM_BLACKMAN:
280 case IM_BESSEL:
281 case IM_GAUSSIAN:
282 case IM_QUADRATIC:
283 case IM_MITCHELL:
284 case IM_CATROM:
285 case IM_HANNING:
286 case IM_POWER:
287 //bicubic interpolation(s)
288 if (((xi+2)<0) || ((xi-1)>=head.biWidth) || ((yi+2)<0) || ((yi-1)>=head.biHeight)) { //all points are outside bounds?:
289 switch (ofMethod) {
290 case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
291 //we don't need to interpolate anything with all points outside in this case
292 return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
293 break;
294 default:
295 //recalculate coordinates and use faster method later on
296 OverflowCoordinates(x,y,ofMethod);
297 xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
298 yi=(int)(y); if (y<0) yi--;
299 }//switch
300 }//if
301
302 //some variables needed from here on
303 int xii,yii; //x any y integer indexes for loops
304 float kernel, kernelyc; //kernel cache
305 float kernelx[12], kernely[4]; //precalculated kernel values
306 float rr,gg,bb,aa; //accumulated color values
307 //calculate multiplication factors for all pixels
308 int i;
309 switch (inMethod) {
310 case IM_BICUBIC:
311 for (i=0; i<4; i++) {
312 kernelx[i]=KernelCubic((float)(xi+i-1-x));
313 kernely[i]=KernelCubic((float)(yi+i-1-y));
314 }//for i
315 break;
316 case IM_BICUBIC2:
317 for (i=0; i<4; i++) {
318 kernelx[i]=KernelGeneralizedCubic((float)(xi+i-1-x), -0.5);
319 kernely[i]=KernelGeneralizedCubic((float)(yi+i-1-y), -0.5);
320 }//for i
321 break;
322 case IM_BSPLINE:
323 for (i=0; i<4; i++) {
324 kernelx[i]=KernelBSpline((float)(xi+i-1-x));
325 kernely[i]=KernelBSpline((float)(yi+i-1-y));
326 }//for i
327 break;
328 case IM_BOX:
329 for (i=0; i<4; i++) {
330 kernelx[i]=KernelBox((float)(xi+i-1-x));
331 kernely[i]=KernelBox((float)(yi+i-1-y));
332 }//for i
333 break;
334 case IM_HERMITE:
335 for (i=0; i<4; i++) {
336 kernelx[i]=KernelHermite((float)(xi+i-1-x));
337 kernely[i]=KernelHermite((float)(yi+i-1-y));
338 }//for i
339 break;
340 case IM_HAMMING:
341 for (i=0; i<4; i++) {
342 kernelx[i]=KernelHamming((float)(xi+i-1-x));
343 kernely[i]=KernelHamming((float)(yi+i-1-y));
344 }//for i
345 break;
346 case IM_SINC:
347 for (i=0; i<4; i++) {
348 kernelx[i]=KernelSinc((float)(xi+i-1-x));
349 kernely[i]=KernelSinc((float)(yi+i-1-y));
350 }//for i
351 break;
352 case IM_BLACKMAN:
353 for (i=0; i<4; i++) {
354 kernelx[i]=KernelBlackman((float)(xi+i-1-x));
355 kernely[i]=KernelBlackman((float)(yi+i-1-y));
356 }//for i
357 break;
358 case IM_BESSEL:
359 for (i=0; i<4; i++) {
360 kernelx[i]=KernelBessel((float)(xi+i-1-x));
361 kernely[i]=KernelBessel((float)(yi+i-1-y));
362 }//for i
363 break;
364 case IM_GAUSSIAN:
365 for (i=0; i<4; i++) {
366 kernelx[i]=KernelGaussian((float)(xi+i-1-x));
367 kernely[i]=KernelGaussian((float)(yi+i-1-y));
368 }//for i
369 break;
370 case IM_QUADRATIC:
371 for (i=0; i<4; i++) {
372 kernelx[i]=KernelQuadratic((float)(xi+i-1-x));
373 kernely[i]=KernelQuadratic((float)(yi+i-1-y));
374 }//for i
375 break;
376 case IM_MITCHELL:
377 for (i=0; i<4; i++) {
378 kernelx[i]=KernelMitchell((float)(xi+i-1-x));
379 kernely[i]=KernelMitchell((float)(yi+i-1-y));
380 }//for i
381 break;
382 case IM_CATROM:
383 for (i=0; i<4; i++) {
384 kernelx[i]=KernelCatrom((float)(xi+i-1-x));
385 kernely[i]=KernelCatrom((float)(yi+i-1-y));
386 }//for i
387 break;
388 case IM_HANNING:
389 for (i=0; i<4; i++) {
390 kernelx[i]=KernelHanning((float)(xi+i-1-x));
391 kernely[i]=KernelHanning((float)(yi+i-1-y));
392 }//for i
393 break;
394 case IM_POWER:
395 for (i=0; i<4; i++) {
396 kernelx[i]=KernelPower((float)(xi+i-1-x));
397 kernely[i]=KernelPower((float)(yi+i-1-y));
398 }//for i
399 break;
400 }//switch
401 rr=gg=bb=aa=0;
402 if (((xi+2)<head.biWidth) && xi>=1 && ((yi+2)<head.biHeight) && (yi>=1) && !IsIndexed()) {
403 //optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds
404 BYTE *pxptr, *pxptra;
405 for (yii=yi-1; yii<yi+3; yii++) {
406 pxptr=(BYTE *)BlindGetPixelPointer(xi-1, yii); //calculate pointer to first byte in row
407 kernelyc=kernely[yii-(yi-1)];
408#if CXIMAGE_SUPPORT_ALPHA
409 if (AlphaIsValid()) {
410 //alpha is supported and valid (optimized bicubic int. for image with alpha)
411 pxptra=AlphaGetPointer(xi-1, yii);
412 kernel=kernelyc*kernelx[0];
413 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
414 kernel=kernelyc*kernelx[1];
415 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
416 kernel=kernelyc*kernelx[2];
417 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
418 kernel=kernelyc*kernelx[3];
419 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr); aa+=kernel*(*pxptra);
420 } else
421#endif
422 //alpha not supported or valid (optimized bicubic int. for no alpha channel)
423 {
424 kernel=kernelyc*kernelx[0];
425 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
426 kernel=kernelyc*kernelx[1];
427 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
428 kernel=kernelyc*kernelx[2];
429 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
430 kernel=kernelyc*kernelx[3];
431 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr);
432 }
433 }//yii
434 } else {
435 //slower more flexible interpolation for border pixels and paletted images
436 RGBQUAD rgbs;
437 for (yii=yi-1; yii<yi+3; yii++) {
438 kernelyc=kernely[yii-(yi-1)];
439 for (xii=xi-1; xii<xi+3; xii++) {
440 kernel=kernelyc*kernelx[xii-(xi-1)];
441 rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);
442 rr+=kernel*rgbs.rgbRed;
443 gg+=kernel*rgbs.rgbGreen;
444 bb+=kernel*rgbs.rgbBlue;
445#if CXIMAGE_SUPPORT_ALPHA
446 aa+=kernel*rgbs.rgbReserved;
447#endif
448 }//xii
449 }//yii
450 }//if
451 //for all colors, clip to 0..255 and assign to RGBQUAD
452 if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
453 if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
454 if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
455#if CXIMAGE_SUPPORT_ALPHA
456 if (AlphaIsValid()) {
457 if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
458 } else
459#endif
460 { //Alpha not supported or no alpha at all
461 color.rgbReserved = 0;
462 }
463 return color;
464 case IM_LANCZOS:
465 //lanczos window (16*16) sinc interpolation
466 if (((xi+6)<0) || ((xi-5)>=head.biWidth) || ((yi+6)<0) || ((yi-5)>=head.biHeight)) {
467 //all points are outside bounds
468 switch (ofMethod) {
469 case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
470 //we don't need to interpolate anything with all points outside in this case
471 return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
472 break;
473 default:
474 //recalculate coordinates and use faster method later on
475 OverflowCoordinates(x,y,ofMethod);
476 xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
477 yi=(int)(y); if (y<0) yi--;
478 }//switch
479 }//if
480
481 for (xii=xi-5; xii<xi+7; xii++) kernelx[xii-(xi-5)]=KernelLanczosSinc((float)(xii-x), 6.0f);
482 rr=gg=bb=aa=0;
483
484 if (((xi+6)<head.biWidth) && ((xi-5)>=0) && ((yi+6)<head.biHeight) && ((yi-5)>=0) && !IsIndexed()) {
485 //optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds
486 BYTE *pxptr, *pxptra;
487 for (yii=yi-5; yii<yi+7; yii++) {
488 pxptr=(BYTE *)BlindGetPixelPointer(xi-5, yii); //calculate pointer to first byte in row
489 kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);
490#if CXIMAGE_SUPPORT_ALPHA
491 if (AlphaIsValid()) {
492 //alpha is supported and valid
493 pxptra=AlphaGetPointer(xi-1, yii);
494 for (xii=0; xii<12; xii++) {
495 kernel=kernelyc*kernelx[xii];
496 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
497 }//for xii
498 } else
499#endif
500 //alpha not supported or valid
501 {
502 for (xii=0; xii<12; xii++) {
503 kernel=kernelyc*kernelx[xii];
504 bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
505 }//for xii
506 }
507 }//yii
508 } else {
509 //slower more flexible interpolation for border pixels and paletted images
510 RGBQUAD rgbs;
511 for (yii=yi-5; yii<yi+7; yii++) {
512 kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);
513 for (xii=xi-5; xii<xi+7; xii++) {
514 kernel=kernelyc*kernelx[xii-(xi-5)];
515 rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);
516 rr+=kernel*rgbs.rgbRed;
517 gg+=kernel*rgbs.rgbGreen;
518 bb+=kernel*rgbs.rgbBlue;
519#if CXIMAGE_SUPPORT_ALPHA
520 aa+=kernel*rgbs.rgbReserved;
521#endif
522 }//xii
523 }//yii
524 }//if
525 //for all colors, clip to 0..255 and assign to RGBQUAD
526 if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
527 if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
528 if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
529#if CXIMAGE_SUPPORT_ALPHA
530 if (AlphaIsValid()) {
531 if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
532 } else
533#endif
534 { //Alpha not supported or no alpha at all
535 color.rgbReserved = 0;
536 }
537 return color;
538 }//switch
539}
540////////////////////////////////////////////////////////////////////////////////
541/**
542 * Helper function for GetAreaColorInterpolated.
543 * Adds 'surf' portion of image pixel with color 'color' to (rr,gg,bb,aa).
544 */
545void CxImage::AddAveragingCont(RGBQUAD const &color, float const surf, float &rr, float &gg, float &bb, float &aa)
546{
547 rr+=color.rgbRed*surf;
548 gg+=color.rgbGreen*surf;
549 bb+=color.rgbBlue*surf;
550#if CXIMAGE_SUPPORT_ALPHA
551 aa+=color.rgbReserved*surf;
552#endif
553}
554////////////////////////////////////////////////////////////////////////////////
555/**
556 * This method is similar to GetPixelColorInterpolated, but this method also properly handles
557 * subsampling.
558 * If you need to sample original image with interval of more than 1 pixel (as when shrinking an image),
559 * you should use this method instead of GetPixelColorInterpolated or aliasing will occur.
560 * When area width and height are both less than pixel, this method gets pixel color by interpolating
561 * color of frame center with selected (inMethod) interpolation by calling GetPixelColorInterpolated.
562 * If width and height are more than 1, method calculates color by averaging color of pixels within area.
563 * Interpolation method is not used in this case. Pixel color is interpolated by averaging instead.
564 * If only one of both is more than 1, method uses combination of interpolation and averaging.
565 * Chosen interpolation method is used, but since it is averaged later on, there is little difference
566 * between IM_BILINEAR (perhaps best for this case) and better methods. IM_NEAREST_NEIGHBOUR again
567 * leads to aliasing artifacts.
568 * This method is a bit slower than GetPixelColorInterpolated and when aliasing is not a problem, you should
569 * simply use the later.
570 *
571 * \param xc, yc - center of (rectangular) area
572 * \param w, h - width and height of area
573 * \param inMethod - interpolation method that is used, when interpolation is used (see above)
574 * \param ofMethod - overflow method used when retrieving individual pixel colors
575 * \param rplColor - replacement colour to use, in OM_COLOR
576 *
577 * \author ***bd*** 2.2004
578 */
579RGBQUAD CxImage::GetAreaColorInterpolated(
580 float const xc, float const yc, float const w, float const h,
581 InterpolationMethod const inMethod,
582 OverflowMethod const ofMethod,
583 RGBQUAD* const rplColor)
584{
585 RGBQUAD color; //calculated colour
586
587 if (h<=1 && w<=1) {
588 //both width and height are less than one... we will use interpolation of center point
589 return GetPixelColorInterpolated(xc, yc, inMethod, ofMethod, rplColor);
590 } else {
591 //area is wider and/or taller than one pixel:
592 CxRect2 area(xc-w/2.0f, yc-h/2.0f, xc+w/2.0f, yc+h/2.0f); //area
593 int xi1=(int)(area.botLeft.x+0.49999999f); //low x
594 int yi1=(int)(area.botLeft.y+0.49999999f); //low y
595
596
597 int xi2=(int)(area.topRight.x+0.5f); //top x
598 int yi2=(int)(area.topRight.y+0.5f); //top y (for loops)
599
600 float rr,gg,bb,aa; //red, green, blue and alpha components
601 rr=gg=bb=aa=0;
602 int x,y; //loop counters
603 float s=0; //surface of all pixels
604 float cps; //surface of current crosssection
605 if (h>1 && w>1) {
606 //width and height of area are greater than one pixel, so we can employ "ordinary" averaging
607 CxRect2 intBL, intTR; //bottom left and top right intersection
608 intBL=area.CrossSection(CxRect2(((float)xi1)-0.5f, ((float)yi1)-0.5f, ((float)xi1)+0.5f, ((float)yi1)+0.5f));
609 intTR=area.CrossSection(CxRect2(((float)xi2)-0.5f, ((float)yi2)-0.5f, ((float)xi2)+0.5f, ((float)yi2)+0.5f));
610 float wBL, wTR, hBL, hTR;
611 wBL=intBL.Width(); //width of bottom left pixel-area intersection
612 hBL=intBL.Height(); //height of bottom left...
613 wTR=intTR.Width(); //width of top right...
614 hTR=intTR.Height(); //height of top right...
615
616 AddAveragingCont(GetPixelColorWithOverflow(xi1,yi1,ofMethod,rplColor), wBL*hBL, rr, gg, bb, aa); //bottom left pixel
617 AddAveragingCont(GetPixelColorWithOverflow(xi2,yi1,ofMethod,rplColor), wTR*hBL, rr, gg, bb, aa); //bottom right pixel
618 AddAveragingCont(GetPixelColorWithOverflow(xi1,yi2,ofMethod,rplColor), wBL*hTR, rr, gg, bb, aa); //top left pixel
619 AddAveragingCont(GetPixelColorWithOverflow(xi2,yi2,ofMethod,rplColor), wTR*hTR, rr, gg, bb, aa); //top right pixel
620 //bottom and top row
621 for (x=xi1+1; x<xi2; x++) {
622 AddAveragingCont(GetPixelColorWithOverflow(x,yi1,ofMethod,rplColor), hBL, rr, gg, bb, aa); //bottom row
623 AddAveragingCont(GetPixelColorWithOverflow(x,yi2,ofMethod,rplColor), hTR, rr, gg, bb, aa); //top row
624 }
625 //leftmost and rightmost column
626 for (y=yi1+1; y<yi2; y++) {
627 AddAveragingCont(GetPixelColorWithOverflow(xi1,y,ofMethod,rplColor), wBL, rr, gg, bb, aa); //left column
628 AddAveragingCont(GetPixelColorWithOverflow(xi2,y,ofMethod,rplColor), wTR, rr, gg, bb, aa); //right column
629 }
630 for (y=yi1+1; y<yi2; y++) {
631 for (x=xi1+1; x<xi2; x++) {
632 color=GetPixelColorWithOverflow(x,y,ofMethod,rplColor);
633 rr+=color.rgbRed;
634 gg+=color.rgbGreen;
635 bb+=color.rgbBlue;
636#if CXIMAGE_SUPPORT_ALPHA
637 aa+=color.rgbReserved;
638#endif
639 }//for x
640 }//for y
641 } else {
642 //width or height greater than one:
643 CxRect2 intersect; //intersection with current pixel
644 CxPoint2 center;
645 for (y=yi1; y<=yi2; y++) {
646 for (x=xi1; x<=xi2; x++) {
647 intersect=area.CrossSection(CxRect2(((float)x)-0.5f, ((float)y)-0.5f, ((float)x)+0.5f, ((float)y)+0.5f));
648 center=intersect.Center();
649 color=GetPixelColorInterpolated(center.x, center.y, inMethod, ofMethod, rplColor);
650 cps=intersect.Surface();
651 rr+=color.rgbRed*cps;
652 gg+=color.rgbGreen*cps;
653 bb+=color.rgbBlue*cps;
654#if CXIMAGE_SUPPORT_ALPHA
655 aa+=color.rgbReserved*cps;
656#endif
657 }//for x
658 }//for y
659 }//if
660
661 s=area.Surface();
662 rr/=s; gg/=s; bb/=s; aa/=s;
663 if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
664 if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
665 if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
666#if CXIMAGE_SUPPORT_ALPHA
667 if (AlphaIsValid()) {
668 if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
669 }//if
670#endif
671 }//if
672 return color;
673}
674
675////////////////////////////////////////////////////////////////////////////////
676float CxImage::KernelBSpline(const float x)
677{
678 if (x>2.0f) return 0.0f;
679 // thanks to Kristian Kratzenstein
680 float a, b, c, d;
681 float xm1 = x - 1.0f; // Was calculatet anyway cause the "if((x-1.0f) < 0)"
682 float xp1 = x + 1.0f;
683 float xp2 = x + 2.0f;
684
685 if ((xp2) <= 0.0f) a = 0.0f; else a = xp2*xp2*xp2; // Only float, not float -> double -> float
686 if ((xp1) <= 0.0f) b = 0.0f; else b = xp1*xp1*xp1;
687 if (x <= 0) c = 0.0f; else c = x*x*x;
688 if ((xm1) <= 0.0f) d = 0.0f; else d = xm1*xm1*xm1;
689
690 return (0.16666666666666666667f * (a - (4.0f * b) + (6.0f * c) - (4.0f * d)));
691
692 /* equivalent <Vladimír Kloucek>
693 if (x < -2.0)
694 return(0.0f);
695 if (x < -1.0)
696 return((2.0f+x)*(2.0f+x)*(2.0f+x)*0.16666666666666666667f);
697 if (x < 0.0)
698 return((4.0f+x*x*(-6.0f-3.0f*x))*0.16666666666666666667f);
699 if (x < 1.0)
700 return((4.0f+x*x*(-6.0f+3.0f*x))*0.16666666666666666667f);
701 if (x < 2.0)
702 return((2.0f-x)*(2.0f-x)*(2.0f-x)*0.16666666666666666667f);
703 return(0.0f);
704 */
705}
706
707////////////////////////////////////////////////////////////////////////////////
708/**
709 * Bilinear interpolation kernel:
710 \verbatim
711 /
712 | 1-t , if 0 <= t <= 1
713 h(t) = | t+1 , if -1 <= t < 0
714 | 0 , otherwise
715 \
716 \endverbatim
717 * ***bd*** 2.2004
718 */
719float CxImage::KernelLinear(const float t)
720{
721// if (0<=t && t<=1) return 1-t;
722// if (-1<=t && t<0) return 1+t;
723// return 0;
724
725 //<Vladimír Kloucek>
726 if (t < -1.0f)
727 return 0.0f;
728 if (t < 0.0f)
729 return 1.0f+t;
730 if (t < 1.0f)
731 return 1.0f-t;
732 return 0.0f;
733}
734
735////////////////////////////////////////////////////////////////////////////////
736/**
737 * Bicubic interpolation kernel (a=-1):
738 \verbatim
739 /
740 | 1-2|t|**2+|t|**3 , if |t| < 1
741 h(t) = | 4-8|t|+5|t|**2-|t|**3 , if 1<=|t|<2
742 | 0 , otherwise
743 \
744 \endverbatim
745 * ***bd*** 2.2004
746 */
747float CxImage::KernelCubic(const float t)
748{
749 float abs_t = (float)fabs(t);
750 float abs_t_sq = abs_t * abs_t;
751 if (abs_t<1) return 1-2*abs_t_sq+abs_t_sq*abs_t;
752 if (abs_t<2) return 4 - 8*abs_t +5*abs_t_sq - abs_t_sq*abs_t;
753 return 0;
754}
755
756////////////////////////////////////////////////////////////////////////////////
757/**
758 * Bicubic kernel (for a=-1 it is the same as BicubicKernel):
759 \verbatim
760 /
761 | (a+2)|t|**3 - (a+3)|t|**2 + 1 , |t| <= 1
762 h(t) = | a|t|**3 - 5a|t|**2 + 8a|t| - 4a , 1 < |t| <= 2
763 | 0 , otherwise
764 \
765 \endverbatim
766 * Often used values for a are -1 and -1/2.
767 */
768float CxImage::KernelGeneralizedCubic(const float t, const float a)
769{
770 float abs_t = (float)fabs(t);
771 float abs_t_sq = abs_t * abs_t;
772 if (abs_t<1) return (a+2)*abs_t_sq*abs_t - (a+3)*abs_t_sq + 1;
773 if (abs_t<2) return a*abs_t_sq*abs_t - 5*a*abs_t_sq + 8*a*abs_t - 4*a;
774 return 0;
775}
776
777////////////////////////////////////////////////////////////////////////////////
778/**
779 * Lanczos windowed sinc interpolation kernel with radius r.
780 \verbatim
781 /
782 h(t) = | sinc(t)*sinc(t/r) , if |t|<r
783 | 0 , otherwise
784 \
785 \endverbatim
786 * ***bd*** 2.2004
787 */
788float CxImage::KernelLanczosSinc(const float t, const float r)
789{
790 if (fabs(t) > r) return 0;
791 if (t==0) return 1;
792 float pit=PI*t;
793 float pitd=pit/r;
794 return (float)((sin(pit)/pit) * (sin(pitd)/pitd));
795}
796
797////////////////////////////////////////////////////////////////////////////////
798float CxImage::KernelBox(const float x)
799{
800 if (x < -0.5f)
801 return 0.0f;
802 if (x < 0.5f)
803 return 1.0f;
804 return 0.0f;
805}
806////////////////////////////////////////////////////////////////////////////////
807float CxImage::KernelHermite(const float x)
808{
809 if (x < -1.0f)
810 return 0.0f;
811 if (x < 0.0f)
812 return (-2.0f*x-3.0f)*x*x+1.0f;
813 if (x < 1.0f)
814 return (2.0f*x-3.0f)*x*x+1.0f;
815 return 0.0f;
816// if (fabs(x)>1) return 0.0f;
817// return(0.5f+0.5f*(float)cos(PI*x));
818}
819////////////////////////////////////////////////////////////////////////////////
820float CxImage::KernelHanning(const float x)
821{
822 if (fabs(x)>1) return 0.0f;
823 return (0.5f+0.5f*(float)cos(PI*x))*((float)sin(PI*x)/(PI*x));
824}
825////////////////////////////////////////////////////////////////////////////////
826float CxImage::KernelHamming(const float x)
827{
828 if (x < -1.0f)
829 return 0.0f;
830 if (x < 0.0f)
831 return 0.92f*(-2.0f*x-3.0f)*x*x+1.0f;
832 if (x < 1.0f)
833 return 0.92f*(2.0f*x-3.0f)*x*x+1.0f;
834 return 0.0f;
835// if (fabs(x)>1) return 0.0f;
836// return(0.54f+0.46f*(float)cos(PI*x));
837}
838////////////////////////////////////////////////////////////////////////////////
839float CxImage::KernelSinc(const float x)
840{
841 if (x == 0.0)
842 return(1.0);
843 return((float)sin(PI*x)/(PI*x));
844}
845////////////////////////////////////////////////////////////////////////////////
846float CxImage::KernelBlackman(const float x)
847{
848 //if (fabs(x)>1) return 0.0f;
849 return (0.42f+0.5f*(float)cos(PI*x)+0.08f*(float)cos(2.0f*PI*x));
850}
851////////////////////////////////////////////////////////////////////////////////
852float CxImage::KernelBessel_J1(const float x)
853{
854 double p, q;
855
856 register long i;
857
858 static const double
859 Pone[] =
860 {
861 0.581199354001606143928050809e+21,
862 -0.6672106568924916298020941484e+20,
863 0.2316433580634002297931815435e+19,
864 -0.3588817569910106050743641413e+17,
865 0.2908795263834775409737601689e+15,
866 -0.1322983480332126453125473247e+13,
867 0.3413234182301700539091292655e+10,
868 -0.4695753530642995859767162166e+7,
869 0.270112271089232341485679099e+4
870 },
871 Qone[] =
872 {
873 0.11623987080032122878585294e+22,
874 0.1185770712190320999837113348e+20,
875 0.6092061398917521746105196863e+17,
876 0.2081661221307607351240184229e+15,
877 0.5243710262167649715406728642e+12,
878 0.1013863514358673989967045588e+10,
879 0.1501793594998585505921097578e+7,
880 0.1606931573481487801970916749e+4,
881 0.1e+1
882 };
883
884 p = Pone[8];
885 q = Qone[8];
886 for (i=7; i >= 0; i--)
887 {
888 p = p*x*x+Pone[i];
889 q = q*x*x+Qone[i];
890 }
891 return (float)(p/q);
892}
893////////////////////////////////////////////////////////////////////////////////
894float CxImage::KernelBessel_P1(const float x)
895{
896 double p, q;
897
898 register long i;
899
900 static const double
901 Pone[] =
902 {
903 0.352246649133679798341724373e+5,
904 0.62758845247161281269005675e+5,
905 0.313539631109159574238669888e+5,
906 0.49854832060594338434500455e+4,
907 0.2111529182853962382105718e+3,
908 0.12571716929145341558495e+1
909 },
910 Qone[] =
911 {
912 0.352246649133679798068390431e+5,
913 0.626943469593560511888833731e+5,
914 0.312404063819041039923015703e+5,
915 0.4930396490181088979386097e+4,
916 0.2030775189134759322293574e+3,
917 0.1e+1
918 };
919
920 p = Pone[5];
921 q = Qone[5];
922 for (i=4; i >= 0; i--)
923 {
924 p = p*(8.0/x)*(8.0/x)+Pone[i];
925 q = q*(8.0/x)*(8.0/x)+Qone[i];
926 }
927 return (float)(p/q);
928}
929////////////////////////////////////////////////////////////////////////////////
930float CxImage::KernelBessel_Q1(const float x)
931{
932 double p, q;
933
934 register long i;
935
936 static const double
937 Pone[] =
938 {
939 0.3511751914303552822533318e+3,
940 0.7210391804904475039280863e+3,
941 0.4259873011654442389886993e+3,
942 0.831898957673850827325226e+2,
943 0.45681716295512267064405e+1,
944 0.3532840052740123642735e-1
945 },
946 Qone[] =
947 {
948 0.74917374171809127714519505e+4,
949 0.154141773392650970499848051e+5,
950 0.91522317015169922705904727e+4,
951 0.18111867005523513506724158e+4,
952 0.1038187585462133728776636e+3,
953 0.1e+1
954 };
955
956 p = Pone[5];
957 q = Qone[5];
958 for (i=4; i >= 0; i--)
959 {
960 p = p*(8.0/x)*(8.0/x)+Pone[i];
961 q = q*(8.0/x)*(8.0/x)+Qone[i];
962 }
963 return (float)(p/q);
964}
965////////////////////////////////////////////////////////////////////////////////
966float CxImage::KernelBessel_Order1(float x)
967{
968 float p, q;
969
970 if (x == 0.0)
971 return (0.0f);
972 p = x;
973 if (x < 0.0)
974 x=(-x);
975 if (x < 8.0)
976 return(p*KernelBessel_J1(x));
977 q = (float)sqrt(2.0f/(PI*x))*(float)(KernelBessel_P1(x)*(1.0f/sqrt(2.0f)*(sin(x)-cos(x)))-8.0f/x*KernelBessel_Q1(x)*
978 (-1.0f/sqrt(2.0f)*(sin(x)+cos(x))));
979 if (p < 0.0f)
980 q = (-q);
981 return (q);
982}
983////////////////////////////////////////////////////////////////////////////////
984float CxImage::KernelBessel(const float x)
985{
986 if (x == 0.0f)
987 return(PI/4.0f);
988 return(KernelBessel_Order1(PI*x)/(2.0f*x));
989}
990////////////////////////////////////////////////////////////////////////////////
991float CxImage::KernelGaussian(const float x)
992{
993 return (float)(exp(-2.0f*x*x)*0.79788456080287f/*sqrt(2.0f/PI)*/);
994}
995////////////////////////////////////////////////////////////////////////////////
996float CxImage::KernelQuadratic(const float x)
997{
998 if (x < -1.5f)
999 return(0.0f);
1000 if (x < -0.5f)
1001 return(0.5f*(x+1.5f)*(x+1.5f));
1002 if (x < 0.5f)
1003 return(0.75f-x*x);
1004 if (x < 1.5f)
1005 return(0.5f*(x-1.5f)*(x-1.5f));
1006 return(0.0f);
1007}
1008////////////////////////////////////////////////////////////////////////////////
1009float CxImage::KernelMitchell(const float x)
1010{
1011#define KM_B (1.0f/3.0f)
1012#define KM_C (1.0f/3.0f)
1013#define KM_P0 (( 6.0f - 2.0f * KM_B ) / 6.0f)
1014#define KM_P2 ((-18.0f + 12.0f * KM_B + 6.0f * KM_C) / 6.0f)
1015#define KM_P3 (( 12.0f - 9.0f * KM_B - 6.0f * KM_C) / 6.0f)
1016#define KM_Q0 (( 8.0f * KM_B + 24.0f * KM_C) / 6.0f)
1017#define KM_Q1 ((-12.0f * KM_B - 48.0f * KM_C) / 6.0f)
1018#define KM_Q2 (( 6.0f * KM_B + 30.0f * KM_C) / 6.0f)
1019#define KM_Q3 (( -1.0f * KM_B - 6.0f * KM_C) / 6.0f)
1020
1021 if (x < -2.0)
1022 return(0.0f);
1023 if (x < -1.0)
1024 return(KM_Q0-x*(KM_Q1-x*(KM_Q2-x*KM_Q3)));
1025 if (x < 0.0f)
1026 return(KM_P0+x*x*(KM_P2-x*KM_P3));
1027 if (x < 1.0f)
1028 return(KM_P0+x*x*(KM_P2+x*KM_P3));
1029 if (x < 2.0f)
1030 return(KM_Q0+x*(KM_Q1+x*(KM_Q2+x*KM_Q3)));
1031 return(0.0f);
1032}
1033////////////////////////////////////////////////////////////////////////////////
1034float CxImage::KernelCatrom(const float x)
1035{
1036 if (x < -2.0)
1037 return(0.0f);
1038 if (x < -1.0)
1039 return(0.5f*(4.0f+x*(8.0f+x*(5.0f+x))));
1040 if (x < 0.0)
1041 return(0.5f*(2.0f+x*x*(-5.0f-3.0f*x)));
1042 if (x < 1.0)
1043 return(0.5f*(2.0f+x*x*(-5.0f+3.0f*x)));
1044 if (x < 2.0)
1045 return(0.5f*(4.0f+x*(-8.0f+x*(5.0f-x))));
1046 return(0.0f);
1047}
1048////////////////////////////////////////////////////////////////////////////////
1049float CxImage::KernelPower(const float x, const float a)
1050{
1051 if (fabs(x)>1) return 0.0f;
1052 return (1.0f - (float)fabs(pow(x,a)));
1053}
1054////////////////////////////////////////////////////////////////////////////////
1055
1056#endif
Note: See TracBrowser for help on using the repository browser.