1 | // xImaInt.cpp : interpolation functions
|
---|
2 | /* 02/2004 - Branko Brevensek
|
---|
3 | * CxImage version 6.0.0 02/Feb/2008 - Davide Pizzolato - www.xdp.it
|
---|
4 | */
|
---|
5 |
|
---|
6 | #include "ximage.h"
|
---|
7 | #include "ximath.h"
|
---|
8 |
|
---|
9 | #if CXIMAGE_SUPPORT_INTERPOLATION
|
---|
10 |
|
---|
11 | ////////////////////////////////////////////////////////////////////////////////
|
---|
12 | /**
|
---|
13 | * Recalculates coordinates according to specified overflow method.
|
---|
14 | * If pixel (x,y) lies within image, nothing changes.
|
---|
15 | *
|
---|
16 | * \param x, y - coordinates of pixel
|
---|
17 | * \param ofMethod - overflow method
|
---|
18 | *
|
---|
19 | * \return x, y - new coordinates (pixel (x,y) now lies inside image)
|
---|
20 | *
|
---|
21 | * \author ***bd*** 2.2004
|
---|
22 | */
|
---|
23 | void CxImage::OverflowCoordinates(long &x, long &y, OverflowMethod const ofMethod)
|
---|
24 | {
|
---|
25 | if (IsInside(x,y)) return; //if pixel is within bounds, no change
|
---|
26 | switch (ofMethod) {
|
---|
27 | case OM_REPEAT:
|
---|
28 | //clip coordinates
|
---|
29 | x=max(x,0); x=min(x, head.biWidth-1);
|
---|
30 | y=max(y,0); y=min(y, head.biHeight-1);
|
---|
31 | break;
|
---|
32 | case OM_WRAP:
|
---|
33 | //wrap coordinates
|
---|
34 | x = x % head.biWidth;
|
---|
35 | y = y % head.biHeight;
|
---|
36 | if (x<0) x = head.biWidth + x;
|
---|
37 | if (y<0) y = head.biHeight + y;
|
---|
38 | break;
|
---|
39 | case OM_MIRROR:
|
---|
40 | //mirror pixels near border
|
---|
41 | if (x<0) x=((-x) % head.biWidth);
|
---|
42 | else if (x>=head.biWidth) x=head.biWidth-(x % head.biWidth + 1);
|
---|
43 | if (y<0) y=((-y) % head.biHeight);
|
---|
44 | else if (y>=head.biHeight) y=head.biHeight-(y % head.biHeight + 1);
|
---|
45 | break;
|
---|
46 | default:
|
---|
47 | return;
|
---|
48 | }//switch
|
---|
49 | }
|
---|
50 |
|
---|
51 | ////////////////////////////////////////////////////////////////////////////////
|
---|
52 | /**
|
---|
53 | * See OverflowCoordinates for integer version
|
---|
54 | * \author ***bd*** 2.2004
|
---|
55 | */
|
---|
56 | void CxImage::OverflowCoordinates(float &x, float &y, OverflowMethod const ofMethod)
|
---|
57 | {
|
---|
58 | if (x>=0 && x<head.biWidth && y>=0 && y<head.biHeight) return; //if pixel is within bounds, no change
|
---|
59 | switch (ofMethod) {
|
---|
60 | case OM_REPEAT:
|
---|
61 | //clip coordinates
|
---|
62 | x=max(x,0); x=min(x, head.biWidth-1);
|
---|
63 | y=max(y,0); y=min(y, head.biHeight-1);
|
---|
64 | break;
|
---|
65 | case OM_WRAP:
|
---|
66 | //wrap coordinates
|
---|
67 | x = (float)fmod(x, (float) head.biWidth);
|
---|
68 | y = (float)fmod(y, (float) head.biHeight);
|
---|
69 | if (x<0) x = head.biWidth + x;
|
---|
70 | if (y<0) y = head.biHeight + y;
|
---|
71 | break;
|
---|
72 | case OM_MIRROR:
|
---|
73 | //mirror pixels near border
|
---|
74 | if (x<0) x=(float)fmod(-x, (float) head.biWidth);
|
---|
75 | else if (x>=head.biWidth) x=head.biWidth-((float)fmod(x, (float) head.biWidth) + 1);
|
---|
76 | if (y<0) y=(float)fmod(-y, (float) head.biHeight);
|
---|
77 | else if (y>=head.biHeight) y=head.biHeight-((float)fmod(y, (float) head.biHeight) + 1);
|
---|
78 | break;
|
---|
79 | default:
|
---|
80 | return;
|
---|
81 | }//switch
|
---|
82 | }
|
---|
83 |
|
---|
84 | ////////////////////////////////////////////////////////////////////////////////
|
---|
85 | /**
|
---|
86 | * Method return pixel color. Different methods are implemented for out of bounds pixels.
|
---|
87 | * If an image has alpha channel, alpha value is returned in .RGBReserved.
|
---|
88 | *
|
---|
89 | * \param x,y : pixel coordinates
|
---|
90 | * \param ofMethod : out-of-bounds method:
|
---|
91 | * - OF_WRAP - wrap over to pixels on other side of the image
|
---|
92 | * - OF_REPEAT - repeat last pixel on the edge
|
---|
93 | * - OF_COLOR - return input value of color
|
---|
94 | * - OF_BACKGROUND - return background color (if not set, return input color)
|
---|
95 | * - OF_TRANSPARENT - return transparent pixel
|
---|
96 | *
|
---|
97 | * \param rplColor : input color (returned for out-of-bound coordinates in OF_COLOR mode and if other mode is not applicable)
|
---|
98 | *
|
---|
99 | * \return color : color of pixel
|
---|
100 | * \author ***bd*** 2.2004
|
---|
101 | */
|
---|
102 | RGBQUAD CxImage::GetPixelColorWithOverflow(long x, long y, OverflowMethod const ofMethod, RGBQUAD* const rplColor)
|
---|
103 | {
|
---|
104 | RGBQUAD color; //color to return
|
---|
105 | if ((!IsInside(x,y)) || pDib==NULL) { //is pixel within bouns?:
|
---|
106 | //pixel is out of bounds or no DIB
|
---|
107 | if (rplColor!=NULL)
|
---|
108 | color=*rplColor;
|
---|
109 | else {
|
---|
110 | color.rgbRed=color.rgbGreen=color.rgbBlue=255; color.rgbReserved=0; //default replacement colour: white transparent
|
---|
111 | }//if
|
---|
112 | if (pDib==NULL) return color;
|
---|
113 | //pixel is out of bounds:
|
---|
114 | switch (ofMethod) {
|
---|
115 | case OM_TRANSPARENT:
|
---|
116 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
117 | if (AlphaIsValid()) {
|
---|
118 | //alpha transparency is supported and image has alpha layer
|
---|
119 | color.rgbReserved=0;
|
---|
120 | } else {
|
---|
121 | #endif //CXIMAGE_SUPPORT_ALPHA
|
---|
122 | //no alpha transparency
|
---|
123 | if (GetTransIndex()>=0) {
|
---|
124 | color=GetTransColor(); //single color transparency enabled (return transparent color)
|
---|
125 | }//if
|
---|
126 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
127 | }//if
|
---|
128 | #endif //CXIMAGE_SUPPORT_ALPHA
|
---|
129 | return color;
|
---|
130 | case OM_BACKGROUND:
|
---|
131 | //return background color (if it exists, otherwise input value)
|
---|
132 | if (info.nBkgndIndex >= 0) {
|
---|
133 | if (head.biBitCount<24) color = GetPaletteColor((BYTE)info.nBkgndIndex);
|
---|
134 | else color = info.nBkgndColor;
|
---|
135 | }//if
|
---|
136 | return color;
|
---|
137 | case OM_REPEAT:
|
---|
138 | case OM_WRAP:
|
---|
139 | case OM_MIRROR:
|
---|
140 | OverflowCoordinates(x,y,ofMethod);
|
---|
141 | break;
|
---|
142 | default:
|
---|
143 | //simply return replacement color (OM_COLOR and others)
|
---|
144 | return color;
|
---|
145 | }//switch
|
---|
146 | }//if
|
---|
147 | //just return specified pixel (it's within bounds)
|
---|
148 | return BlindGetPixelColor(x,y);
|
---|
149 | }
|
---|
150 |
|
---|
151 | ////////////////////////////////////////////////////////////////////////////////
|
---|
152 | /**
|
---|
153 | * This method reconstructs image according to chosen interpolation method and then returns pixel (x,y).
|
---|
154 | * (x,y) can lie between actual image pixels. If (x,y) lies outside of image, method returns value
|
---|
155 | * according to overflow method.
|
---|
156 | * This method is very useful for geometrical image transformations, where destination pixel
|
---|
157 | * can often assume color value lying between source pixels.
|
---|
158 | *
|
---|
159 | * \param (x,y) - coordinates of pixel to return
|
---|
160 | * GPCI method recreates "analogue" image back from digital data, so x and y
|
---|
161 | * are float values and color value of point (1.1,1) will generally not be same
|
---|
162 | * as (1,1). Center of first pixel is at (0,0) and center of pixel right to it is (1,0).
|
---|
163 | * (0.5,0) is half way between these two pixels.
|
---|
164 | * \param inMethod - interpolation (reconstruction) method (kernel) to use:
|
---|
165 | * - IM_NEAREST_NEIGHBOUR - returns colour of nearest lying pixel (causes stairy look of
|
---|
166 | * processed images)
|
---|
167 | * - IM_BILINEAR - interpolates colour from four neighbouring pixels (softens image a bit)
|
---|
168 | * - IM_BICUBIC - interpolates from 16 neighbouring pixels (can produce "halo" artifacts)
|
---|
169 | * - IM_BICUBIC2 - interpolates from 16 neighbouring pixels (perhaps a bit less halo artifacts
|
---|
170 | than IM_BICUBIC)
|
---|
171 | * - IM_BSPLINE - interpolates from 16 neighbouring pixels (softens image, washes colours)
|
---|
172 | * (As far as I know, image should be prefiltered for this method to give
|
---|
173 | * good results... some other time :) )
|
---|
174 | * This method uses bicubic interpolation kernel from CXImage 5.99a and older
|
---|
175 | * versions.
|
---|
176 | * - IM_LANCZOS - interpolates from 12*12 pixels (slow, ringing artifacts)
|
---|
177 | *
|
---|
178 | * \param ofMethod - overflow method (see comments at GetPixelColorWithOverflow)
|
---|
179 | * \param rplColor - pointer to color used for out of borders pixels in OM_COLOR mode
|
---|
180 | * (and other modes if colour can't calculated in a specified way)
|
---|
181 | *
|
---|
182 | * \return interpolated color value (including interpolated alpha value, if image has alpha layer)
|
---|
183 | *
|
---|
184 | * \author ***bd*** 2.2004
|
---|
185 | */
|
---|
186 | RGBQUAD CxImage::GetPixelColorInterpolated(
|
---|
187 | float x,float y,
|
---|
188 | InterpolationMethod const inMethod,
|
---|
189 | OverflowMethod const ofMethod,
|
---|
190 | RGBQUAD* const rplColor)
|
---|
191 | {
|
---|
192 | //calculate nearest pixel
|
---|
193 | int xi=(int)(x); if (x<0) xi--; //these replace (incredibly slow) floor (Visual c++ 2003, AMD Athlon)
|
---|
194 | int yi=(int)(y); if (y<0) yi--;
|
---|
195 | RGBQUAD color; //calculated colour
|
---|
196 |
|
---|
197 | switch (inMethod) {
|
---|
198 | case IM_NEAREST_NEIGHBOUR:
|
---|
199 | return GetPixelColorWithOverflow((long)(x+0.5f), (long)(y+0.5f), ofMethod, rplColor);
|
---|
200 | default: {
|
---|
201 | //IM_BILINEAR: bilinear interpolation
|
---|
202 | if (xi<-1 || xi>=head.biWidth || yi<-1 || yi>=head.biHeight) { //all 4 points are outside bounds?:
|
---|
203 | switch (ofMethod) {
|
---|
204 | case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
|
---|
205 | //we don't need to interpolate anything with all points outside in this case
|
---|
206 | return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
|
---|
207 | default:
|
---|
208 | //recalculate coordinates and use faster method later on
|
---|
209 | OverflowCoordinates(x,y,ofMethod);
|
---|
210 | xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
|
---|
211 | yi=(int)(y); if (y<0) yi--;
|
---|
212 | }//switch
|
---|
213 | }//if
|
---|
214 | //get four neighbouring pixels
|
---|
215 | if ((xi+1)<head.biWidth && xi>=0 && (yi+1)<head.biHeight && yi>=0 && head.biClrUsed==0) {
|
---|
216 | //all pixels are inside RGB24 image... optimize reading (and use fixed point arithmetic)
|
---|
217 | WORD wt1=(WORD)((x-xi)*256.0f), wt2=(WORD)((y-yi)*256.0f);
|
---|
218 | WORD wd=wt1*wt2>>8;
|
---|
219 | WORD wb=wt1-wd;
|
---|
220 | WORD wc=wt2-wd;
|
---|
221 | WORD wa=256-wt1-wc;
|
---|
222 | WORD wrr,wgg,wbb;
|
---|
223 | BYTE *pxptr=(BYTE*)info.pImage+yi*info.dwEffWidth+xi*3;
|
---|
224 | wbb=wa*(*pxptr++); wgg=wa*(*pxptr++); wrr=wa*(*pxptr++);
|
---|
225 | wbb+=wb*(*pxptr++); wgg+=wb*(*pxptr++); wrr+=wb*(*pxptr);
|
---|
226 | pxptr+=(info.dwEffWidth-5); //move to next row
|
---|
227 | wbb+=wc*(*pxptr++); wgg+=wc*(*pxptr++); wrr+=wc*(*pxptr++);
|
---|
228 | wbb+=wd*(*pxptr++); wgg+=wd*(*pxptr++); wrr+=wd*(*pxptr);
|
---|
229 | color.rgbRed=(BYTE) (wrr>>8); color.rgbGreen=(BYTE) (wgg>>8); color.rgbBlue=(BYTE) (wbb>>8);
|
---|
230 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
231 | if (pAlpha) {
|
---|
232 | WORD waa;
|
---|
233 | //image has alpha layer... we have to do the same for alpha data
|
---|
234 | pxptr=AlphaGetPointer(xi,yi); //pointer to first byte
|
---|
235 | waa=wa*(*pxptr++); waa+=wb*(*pxptr); //first two pixels
|
---|
236 | pxptr+=(head.biWidth-1); //move to next row
|
---|
237 | waa+=wc*(*pxptr++); waa+=wd*(*pxptr); //and second row pixels
|
---|
238 | color.rgbReserved=(BYTE) (waa>>8);
|
---|
239 | } else
|
---|
240 | #endif
|
---|
241 | { //Alpha not supported or no alpha at all
|
---|
242 | color.rgbReserved = 0;
|
---|
243 | }
|
---|
244 | return color;
|
---|
245 | } else {
|
---|
246 | //default (slower) way to get pixels (not RGB24 or some pixels out of borders)
|
---|
247 | float t1=x-xi, t2=y-yi;
|
---|
248 | float d=t1*t2;
|
---|
249 | float b=t1-d;
|
---|
250 | float c=t2-d;
|
---|
251 | float a=1-t1-c;
|
---|
252 | RGBQUAD rgb11,rgb21,rgb12,rgb22;
|
---|
253 | rgb11=GetPixelColorWithOverflow(xi, yi, ofMethod, rplColor);
|
---|
254 | rgb21=GetPixelColorWithOverflow(xi+1, yi, ofMethod, rplColor);
|
---|
255 | rgb12=GetPixelColorWithOverflow(xi, yi+1, ofMethod, rplColor);
|
---|
256 | rgb22=GetPixelColorWithOverflow(xi+1, yi+1, ofMethod, rplColor);
|
---|
257 | //calculate linear interpolation
|
---|
258 | color.rgbRed=(BYTE) (a*rgb11.rgbRed+b*rgb21.rgbRed+c*rgb12.rgbRed+d*rgb22.rgbRed);
|
---|
259 | color.rgbGreen=(BYTE) (a*rgb11.rgbGreen+b*rgb21.rgbGreen+c*rgb12.rgbGreen+d*rgb22.rgbGreen);
|
---|
260 | color.rgbBlue=(BYTE) (a*rgb11.rgbBlue+b*rgb21.rgbBlue+c*rgb12.rgbBlue+d*rgb22.rgbBlue);
|
---|
261 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
262 | if (AlphaIsValid())
|
---|
263 | color.rgbReserved=(BYTE) (a*rgb11.rgbReserved+b*rgb21.rgbReserved+c*rgb12.rgbReserved+d*rgb22.rgbReserved);
|
---|
264 | else
|
---|
265 | #endif
|
---|
266 | { //Alpha not supported or no alpha at all
|
---|
267 | color.rgbReserved = 0;
|
---|
268 | }
|
---|
269 | return color;
|
---|
270 | }//if
|
---|
271 | }//default
|
---|
272 | case IM_BICUBIC:
|
---|
273 | case IM_BICUBIC2:
|
---|
274 | case IM_BSPLINE:
|
---|
275 | case IM_BOX:
|
---|
276 | case IM_HERMITE:
|
---|
277 | case IM_HAMMING:
|
---|
278 | case IM_SINC:
|
---|
279 | case IM_BLACKMAN:
|
---|
280 | case IM_BESSEL:
|
---|
281 | case IM_GAUSSIAN:
|
---|
282 | case IM_QUADRATIC:
|
---|
283 | case IM_MITCHELL:
|
---|
284 | case IM_CATROM:
|
---|
285 | case IM_HANNING:
|
---|
286 | case IM_POWER:
|
---|
287 | //bicubic interpolation(s)
|
---|
288 | if (((xi+2)<0) || ((xi-1)>=head.biWidth) || ((yi+2)<0) || ((yi-1)>=head.biHeight)) { //all points are outside bounds?:
|
---|
289 | switch (ofMethod) {
|
---|
290 | case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
|
---|
291 | //we don't need to interpolate anything with all points outside in this case
|
---|
292 | return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
|
---|
293 | break;
|
---|
294 | default:
|
---|
295 | //recalculate coordinates and use faster method later on
|
---|
296 | OverflowCoordinates(x,y,ofMethod);
|
---|
297 | xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
|
---|
298 | yi=(int)(y); if (y<0) yi--;
|
---|
299 | }//switch
|
---|
300 | }//if
|
---|
301 |
|
---|
302 | //some variables needed from here on
|
---|
303 | int xii,yii; //x any y integer indexes for loops
|
---|
304 | float kernel, kernelyc; //kernel cache
|
---|
305 | float kernelx[12], kernely[4]; //precalculated kernel values
|
---|
306 | float rr,gg,bb,aa; //accumulated color values
|
---|
307 | //calculate multiplication factors for all pixels
|
---|
308 | int i;
|
---|
309 | switch (inMethod) {
|
---|
310 | case IM_BICUBIC:
|
---|
311 | for (i=0; i<4; i++) {
|
---|
312 | kernelx[i]=KernelCubic((float)(xi+i-1-x));
|
---|
313 | kernely[i]=KernelCubic((float)(yi+i-1-y));
|
---|
314 | }//for i
|
---|
315 | break;
|
---|
316 | case IM_BICUBIC2:
|
---|
317 | for (i=0; i<4; i++) {
|
---|
318 | kernelx[i]=KernelGeneralizedCubic((float)(xi+i-1-x), -0.5);
|
---|
319 | kernely[i]=KernelGeneralizedCubic((float)(yi+i-1-y), -0.5);
|
---|
320 | }//for i
|
---|
321 | break;
|
---|
322 | case IM_BSPLINE:
|
---|
323 | for (i=0; i<4; i++) {
|
---|
324 | kernelx[i]=KernelBSpline((float)(xi+i-1-x));
|
---|
325 | kernely[i]=KernelBSpline((float)(yi+i-1-y));
|
---|
326 | }//for i
|
---|
327 | break;
|
---|
328 | case IM_BOX:
|
---|
329 | for (i=0; i<4; i++) {
|
---|
330 | kernelx[i]=KernelBox((float)(xi+i-1-x));
|
---|
331 | kernely[i]=KernelBox((float)(yi+i-1-y));
|
---|
332 | }//for i
|
---|
333 | break;
|
---|
334 | case IM_HERMITE:
|
---|
335 | for (i=0; i<4; i++) {
|
---|
336 | kernelx[i]=KernelHermite((float)(xi+i-1-x));
|
---|
337 | kernely[i]=KernelHermite((float)(yi+i-1-y));
|
---|
338 | }//for i
|
---|
339 | break;
|
---|
340 | case IM_HAMMING:
|
---|
341 | for (i=0; i<4; i++) {
|
---|
342 | kernelx[i]=KernelHamming((float)(xi+i-1-x));
|
---|
343 | kernely[i]=KernelHamming((float)(yi+i-1-y));
|
---|
344 | }//for i
|
---|
345 | break;
|
---|
346 | case IM_SINC:
|
---|
347 | for (i=0; i<4; i++) {
|
---|
348 | kernelx[i]=KernelSinc((float)(xi+i-1-x));
|
---|
349 | kernely[i]=KernelSinc((float)(yi+i-1-y));
|
---|
350 | }//for i
|
---|
351 | break;
|
---|
352 | case IM_BLACKMAN:
|
---|
353 | for (i=0; i<4; i++) {
|
---|
354 | kernelx[i]=KernelBlackman((float)(xi+i-1-x));
|
---|
355 | kernely[i]=KernelBlackman((float)(yi+i-1-y));
|
---|
356 | }//for i
|
---|
357 | break;
|
---|
358 | case IM_BESSEL:
|
---|
359 | for (i=0; i<4; i++) {
|
---|
360 | kernelx[i]=KernelBessel((float)(xi+i-1-x));
|
---|
361 | kernely[i]=KernelBessel((float)(yi+i-1-y));
|
---|
362 | }//for i
|
---|
363 | break;
|
---|
364 | case IM_GAUSSIAN:
|
---|
365 | for (i=0; i<4; i++) {
|
---|
366 | kernelx[i]=KernelGaussian((float)(xi+i-1-x));
|
---|
367 | kernely[i]=KernelGaussian((float)(yi+i-1-y));
|
---|
368 | }//for i
|
---|
369 | break;
|
---|
370 | case IM_QUADRATIC:
|
---|
371 | for (i=0; i<4; i++) {
|
---|
372 | kernelx[i]=KernelQuadratic((float)(xi+i-1-x));
|
---|
373 | kernely[i]=KernelQuadratic((float)(yi+i-1-y));
|
---|
374 | }//for i
|
---|
375 | break;
|
---|
376 | case IM_MITCHELL:
|
---|
377 | for (i=0; i<4; i++) {
|
---|
378 | kernelx[i]=KernelMitchell((float)(xi+i-1-x));
|
---|
379 | kernely[i]=KernelMitchell((float)(yi+i-1-y));
|
---|
380 | }//for i
|
---|
381 | break;
|
---|
382 | case IM_CATROM:
|
---|
383 | for (i=0; i<4; i++) {
|
---|
384 | kernelx[i]=KernelCatrom((float)(xi+i-1-x));
|
---|
385 | kernely[i]=KernelCatrom((float)(yi+i-1-y));
|
---|
386 | }//for i
|
---|
387 | break;
|
---|
388 | case IM_HANNING:
|
---|
389 | for (i=0; i<4; i++) {
|
---|
390 | kernelx[i]=KernelHanning((float)(xi+i-1-x));
|
---|
391 | kernely[i]=KernelHanning((float)(yi+i-1-y));
|
---|
392 | }//for i
|
---|
393 | break;
|
---|
394 | case IM_POWER:
|
---|
395 | for (i=0; i<4; i++) {
|
---|
396 | kernelx[i]=KernelPower((float)(xi+i-1-x));
|
---|
397 | kernely[i]=KernelPower((float)(yi+i-1-y));
|
---|
398 | }//for i
|
---|
399 | break;
|
---|
400 | }//switch
|
---|
401 | rr=gg=bb=aa=0;
|
---|
402 | if (((xi+2)<head.biWidth) && xi>=1 && ((yi+2)<head.biHeight) && (yi>=1) && !IsIndexed()) {
|
---|
403 | //optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds
|
---|
404 | BYTE *pxptr, *pxptra;
|
---|
405 | for (yii=yi-1; yii<yi+3; yii++) {
|
---|
406 | pxptr=(BYTE *)BlindGetPixelPointer(xi-1, yii); //calculate pointer to first byte in row
|
---|
407 | kernelyc=kernely[yii-(yi-1)];
|
---|
408 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
409 | if (AlphaIsValid()) {
|
---|
410 | //alpha is supported and valid (optimized bicubic int. for image with alpha)
|
---|
411 | pxptra=AlphaGetPointer(xi-1, yii);
|
---|
412 | kernel=kernelyc*kernelx[0];
|
---|
413 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
|
---|
414 | kernel=kernelyc*kernelx[1];
|
---|
415 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
|
---|
416 | kernel=kernelyc*kernelx[2];
|
---|
417 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
|
---|
418 | kernel=kernelyc*kernelx[3];
|
---|
419 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr); aa+=kernel*(*pxptra);
|
---|
420 | } else
|
---|
421 | #endif
|
---|
422 | //alpha not supported or valid (optimized bicubic int. for no alpha channel)
|
---|
423 | {
|
---|
424 | kernel=kernelyc*kernelx[0];
|
---|
425 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
|
---|
426 | kernel=kernelyc*kernelx[1];
|
---|
427 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
|
---|
428 | kernel=kernelyc*kernelx[2];
|
---|
429 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
|
---|
430 | kernel=kernelyc*kernelx[3];
|
---|
431 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr);
|
---|
432 | }
|
---|
433 | }//yii
|
---|
434 | } else {
|
---|
435 | //slower more flexible interpolation for border pixels and paletted images
|
---|
436 | RGBQUAD rgbs;
|
---|
437 | for (yii=yi-1; yii<yi+3; yii++) {
|
---|
438 | kernelyc=kernely[yii-(yi-1)];
|
---|
439 | for (xii=xi-1; xii<xi+3; xii++) {
|
---|
440 | kernel=kernelyc*kernelx[xii-(xi-1)];
|
---|
441 | rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);
|
---|
442 | rr+=kernel*rgbs.rgbRed;
|
---|
443 | gg+=kernel*rgbs.rgbGreen;
|
---|
444 | bb+=kernel*rgbs.rgbBlue;
|
---|
445 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
446 | aa+=kernel*rgbs.rgbReserved;
|
---|
447 | #endif
|
---|
448 | }//xii
|
---|
449 | }//yii
|
---|
450 | }//if
|
---|
451 | //for all colors, clip to 0..255 and assign to RGBQUAD
|
---|
452 | if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
|
---|
453 | if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
|
---|
454 | if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
|
---|
455 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
456 | if (AlphaIsValid()) {
|
---|
457 | if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
|
---|
458 | } else
|
---|
459 | #endif
|
---|
460 | { //Alpha not supported or no alpha at all
|
---|
461 | color.rgbReserved = 0;
|
---|
462 | }
|
---|
463 | return color;
|
---|
464 | case IM_LANCZOS:
|
---|
465 | //lanczos window (16*16) sinc interpolation
|
---|
466 | if (((xi+6)<0) || ((xi-5)>=head.biWidth) || ((yi+6)<0) || ((yi-5)>=head.biHeight)) {
|
---|
467 | //all points are outside bounds
|
---|
468 | switch (ofMethod) {
|
---|
469 | case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
|
---|
470 | //we don't need to interpolate anything with all points outside in this case
|
---|
471 | return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
|
---|
472 | break;
|
---|
473 | default:
|
---|
474 | //recalculate coordinates and use faster method later on
|
---|
475 | OverflowCoordinates(x,y,ofMethod);
|
---|
476 | xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
|
---|
477 | yi=(int)(y); if (y<0) yi--;
|
---|
478 | }//switch
|
---|
479 | }//if
|
---|
480 |
|
---|
481 | for (xii=xi-5; xii<xi+7; xii++) kernelx[xii-(xi-5)]=KernelLanczosSinc((float)(xii-x), 6.0f);
|
---|
482 | rr=gg=bb=aa=0;
|
---|
483 |
|
---|
484 | if (((xi+6)<head.biWidth) && ((xi-5)>=0) && ((yi+6)<head.biHeight) && ((yi-5)>=0) && !IsIndexed()) {
|
---|
485 | //optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds
|
---|
486 | BYTE *pxptr, *pxptra;
|
---|
487 | for (yii=yi-5; yii<yi+7; yii++) {
|
---|
488 | pxptr=(BYTE *)BlindGetPixelPointer(xi-5, yii); //calculate pointer to first byte in row
|
---|
489 | kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);
|
---|
490 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
491 | if (AlphaIsValid()) {
|
---|
492 | //alpha is supported and valid
|
---|
493 | pxptra=AlphaGetPointer(xi-1, yii);
|
---|
494 | for (xii=0; xii<12; xii++) {
|
---|
495 | kernel=kernelyc*kernelx[xii];
|
---|
496 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
|
---|
497 | }//for xii
|
---|
498 | } else
|
---|
499 | #endif
|
---|
500 | //alpha not supported or valid
|
---|
501 | {
|
---|
502 | for (xii=0; xii<12; xii++) {
|
---|
503 | kernel=kernelyc*kernelx[xii];
|
---|
504 | bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
|
---|
505 | }//for xii
|
---|
506 | }
|
---|
507 | }//yii
|
---|
508 | } else {
|
---|
509 | //slower more flexible interpolation for border pixels and paletted images
|
---|
510 | RGBQUAD rgbs;
|
---|
511 | for (yii=yi-5; yii<yi+7; yii++) {
|
---|
512 | kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);
|
---|
513 | for (xii=xi-5; xii<xi+7; xii++) {
|
---|
514 | kernel=kernelyc*kernelx[xii-(xi-5)];
|
---|
515 | rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);
|
---|
516 | rr+=kernel*rgbs.rgbRed;
|
---|
517 | gg+=kernel*rgbs.rgbGreen;
|
---|
518 | bb+=kernel*rgbs.rgbBlue;
|
---|
519 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
520 | aa+=kernel*rgbs.rgbReserved;
|
---|
521 | #endif
|
---|
522 | }//xii
|
---|
523 | }//yii
|
---|
524 | }//if
|
---|
525 | //for all colors, clip to 0..255 and assign to RGBQUAD
|
---|
526 | if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
|
---|
527 | if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
|
---|
528 | if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
|
---|
529 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
530 | if (AlphaIsValid()) {
|
---|
531 | if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
|
---|
532 | } else
|
---|
533 | #endif
|
---|
534 | { //Alpha not supported or no alpha at all
|
---|
535 | color.rgbReserved = 0;
|
---|
536 | }
|
---|
537 | return color;
|
---|
538 | }//switch
|
---|
539 | }
|
---|
540 | ////////////////////////////////////////////////////////////////////////////////
|
---|
541 | /**
|
---|
542 | * Helper function for GetAreaColorInterpolated.
|
---|
543 | * Adds 'surf' portion of image pixel with color 'color' to (rr,gg,bb,aa).
|
---|
544 | */
|
---|
545 | void CxImage::AddAveragingCont(RGBQUAD const &color, float const surf, float &rr, float &gg, float &bb, float &aa)
|
---|
546 | {
|
---|
547 | rr+=color.rgbRed*surf;
|
---|
548 | gg+=color.rgbGreen*surf;
|
---|
549 | bb+=color.rgbBlue*surf;
|
---|
550 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
551 | aa+=color.rgbReserved*surf;
|
---|
552 | #endif
|
---|
553 | }
|
---|
554 | ////////////////////////////////////////////////////////////////////////////////
|
---|
555 | /**
|
---|
556 | * This method is similar to GetPixelColorInterpolated, but this method also properly handles
|
---|
557 | * subsampling.
|
---|
558 | * If you need to sample original image with interval of more than 1 pixel (as when shrinking an image),
|
---|
559 | * you should use this method instead of GetPixelColorInterpolated or aliasing will occur.
|
---|
560 | * When area width and height are both less than pixel, this method gets pixel color by interpolating
|
---|
561 | * color of frame center with selected (inMethod) interpolation by calling GetPixelColorInterpolated.
|
---|
562 | * If width and height are more than 1, method calculates color by averaging color of pixels within area.
|
---|
563 | * Interpolation method is not used in this case. Pixel color is interpolated by averaging instead.
|
---|
564 | * If only one of both is more than 1, method uses combination of interpolation and averaging.
|
---|
565 | * Chosen interpolation method is used, but since it is averaged later on, there is little difference
|
---|
566 | * between IM_BILINEAR (perhaps best for this case) and better methods. IM_NEAREST_NEIGHBOUR again
|
---|
567 | * leads to aliasing artifacts.
|
---|
568 | * This method is a bit slower than GetPixelColorInterpolated and when aliasing is not a problem, you should
|
---|
569 | * simply use the later.
|
---|
570 | *
|
---|
571 | * \param xc, yc - center of (rectangular) area
|
---|
572 | * \param w, h - width and height of area
|
---|
573 | * \param inMethod - interpolation method that is used, when interpolation is used (see above)
|
---|
574 | * \param ofMethod - overflow method used when retrieving individual pixel colors
|
---|
575 | * \param rplColor - replacement colour to use, in OM_COLOR
|
---|
576 | *
|
---|
577 | * \author ***bd*** 2.2004
|
---|
578 | */
|
---|
579 | RGBQUAD CxImage::GetAreaColorInterpolated(
|
---|
580 | float const xc, float const yc, float const w, float const h,
|
---|
581 | InterpolationMethod const inMethod,
|
---|
582 | OverflowMethod const ofMethod,
|
---|
583 | RGBQUAD* const rplColor)
|
---|
584 | {
|
---|
585 | RGBQUAD color; //calculated colour
|
---|
586 |
|
---|
587 | if (h<=1 && w<=1) {
|
---|
588 | //both width and height are less than one... we will use interpolation of center point
|
---|
589 | return GetPixelColorInterpolated(xc, yc, inMethod, ofMethod, rplColor);
|
---|
590 | } else {
|
---|
591 | //area is wider and/or taller than one pixel:
|
---|
592 | CxRect2 area(xc-w/2.0f, yc-h/2.0f, xc+w/2.0f, yc+h/2.0f); //area
|
---|
593 | int xi1=(int)(area.botLeft.x+0.49999999f); //low x
|
---|
594 | int yi1=(int)(area.botLeft.y+0.49999999f); //low y
|
---|
595 |
|
---|
596 |
|
---|
597 | int xi2=(int)(area.topRight.x+0.5f); //top x
|
---|
598 | int yi2=(int)(area.topRight.y+0.5f); //top y (for loops)
|
---|
599 |
|
---|
600 | float rr,gg,bb,aa; //red, green, blue and alpha components
|
---|
601 | rr=gg=bb=aa=0;
|
---|
602 | int x,y; //loop counters
|
---|
603 | float s=0; //surface of all pixels
|
---|
604 | float cps; //surface of current crosssection
|
---|
605 | if (h>1 && w>1) {
|
---|
606 | //width and height of area are greater than one pixel, so we can employ "ordinary" averaging
|
---|
607 | CxRect2 intBL, intTR; //bottom left and top right intersection
|
---|
608 | intBL=area.CrossSection(CxRect2(((float)xi1)-0.5f, ((float)yi1)-0.5f, ((float)xi1)+0.5f, ((float)yi1)+0.5f));
|
---|
609 | intTR=area.CrossSection(CxRect2(((float)xi2)-0.5f, ((float)yi2)-0.5f, ((float)xi2)+0.5f, ((float)yi2)+0.5f));
|
---|
610 | float wBL, wTR, hBL, hTR;
|
---|
611 | wBL=intBL.Width(); //width of bottom left pixel-area intersection
|
---|
612 | hBL=intBL.Height(); //height of bottom left...
|
---|
613 | wTR=intTR.Width(); //width of top right...
|
---|
614 | hTR=intTR.Height(); //height of top right...
|
---|
615 |
|
---|
616 | AddAveragingCont(GetPixelColorWithOverflow(xi1,yi1,ofMethod,rplColor), wBL*hBL, rr, gg, bb, aa); //bottom left pixel
|
---|
617 | AddAveragingCont(GetPixelColorWithOverflow(xi2,yi1,ofMethod,rplColor), wTR*hBL, rr, gg, bb, aa); //bottom right pixel
|
---|
618 | AddAveragingCont(GetPixelColorWithOverflow(xi1,yi2,ofMethod,rplColor), wBL*hTR, rr, gg, bb, aa); //top left pixel
|
---|
619 | AddAveragingCont(GetPixelColorWithOverflow(xi2,yi2,ofMethod,rplColor), wTR*hTR, rr, gg, bb, aa); //top right pixel
|
---|
620 | //bottom and top row
|
---|
621 | for (x=xi1+1; x<xi2; x++) {
|
---|
622 | AddAveragingCont(GetPixelColorWithOverflow(x,yi1,ofMethod,rplColor), hBL, rr, gg, bb, aa); //bottom row
|
---|
623 | AddAveragingCont(GetPixelColorWithOverflow(x,yi2,ofMethod,rplColor), hTR, rr, gg, bb, aa); //top row
|
---|
624 | }
|
---|
625 | //leftmost and rightmost column
|
---|
626 | for (y=yi1+1; y<yi2; y++) {
|
---|
627 | AddAveragingCont(GetPixelColorWithOverflow(xi1,y,ofMethod,rplColor), wBL, rr, gg, bb, aa); //left column
|
---|
628 | AddAveragingCont(GetPixelColorWithOverflow(xi2,y,ofMethod,rplColor), wTR, rr, gg, bb, aa); //right column
|
---|
629 | }
|
---|
630 | for (y=yi1+1; y<yi2; y++) {
|
---|
631 | for (x=xi1+1; x<xi2; x++) {
|
---|
632 | color=GetPixelColorWithOverflow(x,y,ofMethod,rplColor);
|
---|
633 | rr+=color.rgbRed;
|
---|
634 | gg+=color.rgbGreen;
|
---|
635 | bb+=color.rgbBlue;
|
---|
636 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
637 | aa+=color.rgbReserved;
|
---|
638 | #endif
|
---|
639 | }//for x
|
---|
640 | }//for y
|
---|
641 | } else {
|
---|
642 | //width or height greater than one:
|
---|
643 | CxRect2 intersect; //intersection with current pixel
|
---|
644 | CxPoint2 center;
|
---|
645 | for (y=yi1; y<=yi2; y++) {
|
---|
646 | for (x=xi1; x<=xi2; x++) {
|
---|
647 | intersect=area.CrossSection(CxRect2(((float)x)-0.5f, ((float)y)-0.5f, ((float)x)+0.5f, ((float)y)+0.5f));
|
---|
648 | center=intersect.Center();
|
---|
649 | color=GetPixelColorInterpolated(center.x, center.y, inMethod, ofMethod, rplColor);
|
---|
650 | cps=intersect.Surface();
|
---|
651 | rr+=color.rgbRed*cps;
|
---|
652 | gg+=color.rgbGreen*cps;
|
---|
653 | bb+=color.rgbBlue*cps;
|
---|
654 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
655 | aa+=color.rgbReserved*cps;
|
---|
656 | #endif
|
---|
657 | }//for x
|
---|
658 | }//for y
|
---|
659 | }//if
|
---|
660 |
|
---|
661 | s=area.Surface();
|
---|
662 | rr/=s; gg/=s; bb/=s; aa/=s;
|
---|
663 | if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
|
---|
664 | if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
|
---|
665 | if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
|
---|
666 | #if CXIMAGE_SUPPORT_ALPHA
|
---|
667 | if (AlphaIsValid()) {
|
---|
668 | if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
|
---|
669 | }//if
|
---|
670 | #endif
|
---|
671 | }//if
|
---|
672 | return color;
|
---|
673 | }
|
---|
674 |
|
---|
675 | ////////////////////////////////////////////////////////////////////////////////
|
---|
676 | float CxImage::KernelBSpline(const float x)
|
---|
677 | {
|
---|
678 | if (x>2.0f) return 0.0f;
|
---|
679 | // thanks to Kristian Kratzenstein
|
---|
680 | float a, b, c, d;
|
---|
681 | float xm1 = x - 1.0f; // Was calculatet anyway cause the "if((x-1.0f) < 0)"
|
---|
682 | float xp1 = x + 1.0f;
|
---|
683 | float xp2 = x + 2.0f;
|
---|
684 |
|
---|
685 | if ((xp2) <= 0.0f) a = 0.0f; else a = xp2*xp2*xp2; // Only float, not float -> double -> float
|
---|
686 | if ((xp1) <= 0.0f) b = 0.0f; else b = xp1*xp1*xp1;
|
---|
687 | if (x <= 0) c = 0.0f; else c = x*x*x;
|
---|
688 | if ((xm1) <= 0.0f) d = 0.0f; else d = xm1*xm1*xm1;
|
---|
689 |
|
---|
690 | return (0.16666666666666666667f * (a - (4.0f * b) + (6.0f * c) - (4.0f * d)));
|
---|
691 |
|
---|
692 | /* equivalent <Vladimír Kloucek>
|
---|
693 | if (x < -2.0)
|
---|
694 | return(0.0f);
|
---|
695 | if (x < -1.0)
|
---|
696 | return((2.0f+x)*(2.0f+x)*(2.0f+x)*0.16666666666666666667f);
|
---|
697 | if (x < 0.0)
|
---|
698 | return((4.0f+x*x*(-6.0f-3.0f*x))*0.16666666666666666667f);
|
---|
699 | if (x < 1.0)
|
---|
700 | return((4.0f+x*x*(-6.0f+3.0f*x))*0.16666666666666666667f);
|
---|
701 | if (x < 2.0)
|
---|
702 | return((2.0f-x)*(2.0f-x)*(2.0f-x)*0.16666666666666666667f);
|
---|
703 | return(0.0f);
|
---|
704 | */
|
---|
705 | }
|
---|
706 |
|
---|
707 | ////////////////////////////////////////////////////////////////////////////////
|
---|
708 | /**
|
---|
709 | * Bilinear interpolation kernel:
|
---|
710 | \verbatim
|
---|
711 | /
|
---|
712 | | 1-t , if 0 <= t <= 1
|
---|
713 | h(t) = | t+1 , if -1 <= t < 0
|
---|
714 | | 0 , otherwise
|
---|
715 | \
|
---|
716 | \endverbatim
|
---|
717 | * ***bd*** 2.2004
|
---|
718 | */
|
---|
719 | float CxImage::KernelLinear(const float t)
|
---|
720 | {
|
---|
721 | // if (0<=t && t<=1) return 1-t;
|
---|
722 | // if (-1<=t && t<0) return 1+t;
|
---|
723 | // return 0;
|
---|
724 |
|
---|
725 | //<Vladimír Kloucek>
|
---|
726 | if (t < -1.0f)
|
---|
727 | return 0.0f;
|
---|
728 | if (t < 0.0f)
|
---|
729 | return 1.0f+t;
|
---|
730 | if (t < 1.0f)
|
---|
731 | return 1.0f-t;
|
---|
732 | return 0.0f;
|
---|
733 | }
|
---|
734 |
|
---|
735 | ////////////////////////////////////////////////////////////////////////////////
|
---|
736 | /**
|
---|
737 | * Bicubic interpolation kernel (a=-1):
|
---|
738 | \verbatim
|
---|
739 | /
|
---|
740 | | 1-2|t|**2+|t|**3 , if |t| < 1
|
---|
741 | h(t) = | 4-8|t|+5|t|**2-|t|**3 , if 1<=|t|<2
|
---|
742 | | 0 , otherwise
|
---|
743 | \
|
---|
744 | \endverbatim
|
---|
745 | * ***bd*** 2.2004
|
---|
746 | */
|
---|
747 | float CxImage::KernelCubic(const float t)
|
---|
748 | {
|
---|
749 | float abs_t = (float)fabs(t);
|
---|
750 | float abs_t_sq = abs_t * abs_t;
|
---|
751 | if (abs_t<1) return 1-2*abs_t_sq+abs_t_sq*abs_t;
|
---|
752 | if (abs_t<2) return 4 - 8*abs_t +5*abs_t_sq - abs_t_sq*abs_t;
|
---|
753 | return 0;
|
---|
754 | }
|
---|
755 |
|
---|
756 | ////////////////////////////////////////////////////////////////////////////////
|
---|
757 | /**
|
---|
758 | * Bicubic kernel (for a=-1 it is the same as BicubicKernel):
|
---|
759 | \verbatim
|
---|
760 | /
|
---|
761 | | (a+2)|t|**3 - (a+3)|t|**2 + 1 , |t| <= 1
|
---|
762 | h(t) = | a|t|**3 - 5a|t|**2 + 8a|t| - 4a , 1 < |t| <= 2
|
---|
763 | | 0 , otherwise
|
---|
764 | \
|
---|
765 | \endverbatim
|
---|
766 | * Often used values for a are -1 and -1/2.
|
---|
767 | */
|
---|
768 | float CxImage::KernelGeneralizedCubic(const float t, const float a)
|
---|
769 | {
|
---|
770 | float abs_t = (float)fabs(t);
|
---|
771 | float abs_t_sq = abs_t * abs_t;
|
---|
772 | if (abs_t<1) return (a+2)*abs_t_sq*abs_t - (a+3)*abs_t_sq + 1;
|
---|
773 | if (abs_t<2) return a*abs_t_sq*abs_t - 5*a*abs_t_sq + 8*a*abs_t - 4*a;
|
---|
774 | return 0;
|
---|
775 | }
|
---|
776 |
|
---|
777 | ////////////////////////////////////////////////////////////////////////////////
|
---|
778 | /**
|
---|
779 | * Lanczos windowed sinc interpolation kernel with radius r.
|
---|
780 | \verbatim
|
---|
781 | /
|
---|
782 | h(t) = | sinc(t)*sinc(t/r) , if |t|<r
|
---|
783 | | 0 , otherwise
|
---|
784 | \
|
---|
785 | \endverbatim
|
---|
786 | * ***bd*** 2.2004
|
---|
787 | */
|
---|
788 | float CxImage::KernelLanczosSinc(const float t, const float r)
|
---|
789 | {
|
---|
790 | if (fabs(t) > r) return 0;
|
---|
791 | if (t==0) return 1;
|
---|
792 | float pit=PI*t;
|
---|
793 | float pitd=pit/r;
|
---|
794 | return (float)((sin(pit)/pit) * (sin(pitd)/pitd));
|
---|
795 | }
|
---|
796 |
|
---|
797 | ////////////////////////////////////////////////////////////////////////////////
|
---|
798 | float CxImage::KernelBox(const float x)
|
---|
799 | {
|
---|
800 | if (x < -0.5f)
|
---|
801 | return 0.0f;
|
---|
802 | if (x < 0.5f)
|
---|
803 | return 1.0f;
|
---|
804 | return 0.0f;
|
---|
805 | }
|
---|
806 | ////////////////////////////////////////////////////////////////////////////////
|
---|
807 | float CxImage::KernelHermite(const float x)
|
---|
808 | {
|
---|
809 | if (x < -1.0f)
|
---|
810 | return 0.0f;
|
---|
811 | if (x < 0.0f)
|
---|
812 | return (-2.0f*x-3.0f)*x*x+1.0f;
|
---|
813 | if (x < 1.0f)
|
---|
814 | return (2.0f*x-3.0f)*x*x+1.0f;
|
---|
815 | return 0.0f;
|
---|
816 | // if (fabs(x)>1) return 0.0f;
|
---|
817 | // return(0.5f+0.5f*(float)cos(PI*x));
|
---|
818 | }
|
---|
819 | ////////////////////////////////////////////////////////////////////////////////
|
---|
820 | float CxImage::KernelHanning(const float x)
|
---|
821 | {
|
---|
822 | if (fabs(x)>1) return 0.0f;
|
---|
823 | return (0.5f+0.5f*(float)cos(PI*x))*((float)sin(PI*x)/(PI*x));
|
---|
824 | }
|
---|
825 | ////////////////////////////////////////////////////////////////////////////////
|
---|
826 | float CxImage::KernelHamming(const float x)
|
---|
827 | {
|
---|
828 | if (x < -1.0f)
|
---|
829 | return 0.0f;
|
---|
830 | if (x < 0.0f)
|
---|
831 | return 0.92f*(-2.0f*x-3.0f)*x*x+1.0f;
|
---|
832 | if (x < 1.0f)
|
---|
833 | return 0.92f*(2.0f*x-3.0f)*x*x+1.0f;
|
---|
834 | return 0.0f;
|
---|
835 | // if (fabs(x)>1) return 0.0f;
|
---|
836 | // return(0.54f+0.46f*(float)cos(PI*x));
|
---|
837 | }
|
---|
838 | ////////////////////////////////////////////////////////////////////////////////
|
---|
839 | float CxImage::KernelSinc(const float x)
|
---|
840 | {
|
---|
841 | if (x == 0.0)
|
---|
842 | return(1.0);
|
---|
843 | return((float)sin(PI*x)/(PI*x));
|
---|
844 | }
|
---|
845 | ////////////////////////////////////////////////////////////////////////////////
|
---|
846 | float CxImage::KernelBlackman(const float x)
|
---|
847 | {
|
---|
848 | //if (fabs(x)>1) return 0.0f;
|
---|
849 | return (0.42f+0.5f*(float)cos(PI*x)+0.08f*(float)cos(2.0f*PI*x));
|
---|
850 | }
|
---|
851 | ////////////////////////////////////////////////////////////////////////////////
|
---|
852 | float CxImage::KernelBessel_J1(const float x)
|
---|
853 | {
|
---|
854 | double p, q;
|
---|
855 |
|
---|
856 | register long i;
|
---|
857 |
|
---|
858 | static const double
|
---|
859 | Pone[] =
|
---|
860 | {
|
---|
861 | 0.581199354001606143928050809e+21,
|
---|
862 | -0.6672106568924916298020941484e+20,
|
---|
863 | 0.2316433580634002297931815435e+19,
|
---|
864 | -0.3588817569910106050743641413e+17,
|
---|
865 | 0.2908795263834775409737601689e+15,
|
---|
866 | -0.1322983480332126453125473247e+13,
|
---|
867 | 0.3413234182301700539091292655e+10,
|
---|
868 | -0.4695753530642995859767162166e+7,
|
---|
869 | 0.270112271089232341485679099e+4
|
---|
870 | },
|
---|
871 | Qone[] =
|
---|
872 | {
|
---|
873 | 0.11623987080032122878585294e+22,
|
---|
874 | 0.1185770712190320999837113348e+20,
|
---|
875 | 0.6092061398917521746105196863e+17,
|
---|
876 | 0.2081661221307607351240184229e+15,
|
---|
877 | 0.5243710262167649715406728642e+12,
|
---|
878 | 0.1013863514358673989967045588e+10,
|
---|
879 | 0.1501793594998585505921097578e+7,
|
---|
880 | 0.1606931573481487801970916749e+4,
|
---|
881 | 0.1e+1
|
---|
882 | };
|
---|
883 |
|
---|
884 | p = Pone[8];
|
---|
885 | q = Qone[8];
|
---|
886 | for (i=7; i >= 0; i--)
|
---|
887 | {
|
---|
888 | p = p*x*x+Pone[i];
|
---|
889 | q = q*x*x+Qone[i];
|
---|
890 | }
|
---|
891 | return (float)(p/q);
|
---|
892 | }
|
---|
893 | ////////////////////////////////////////////////////////////////////////////////
|
---|
894 | float CxImage::KernelBessel_P1(const float x)
|
---|
895 | {
|
---|
896 | double p, q;
|
---|
897 |
|
---|
898 | register long i;
|
---|
899 |
|
---|
900 | static const double
|
---|
901 | Pone[] =
|
---|
902 | {
|
---|
903 | 0.352246649133679798341724373e+5,
|
---|
904 | 0.62758845247161281269005675e+5,
|
---|
905 | 0.313539631109159574238669888e+5,
|
---|
906 | 0.49854832060594338434500455e+4,
|
---|
907 | 0.2111529182853962382105718e+3,
|
---|
908 | 0.12571716929145341558495e+1
|
---|
909 | },
|
---|
910 | Qone[] =
|
---|
911 | {
|
---|
912 | 0.352246649133679798068390431e+5,
|
---|
913 | 0.626943469593560511888833731e+5,
|
---|
914 | 0.312404063819041039923015703e+5,
|
---|
915 | 0.4930396490181088979386097e+4,
|
---|
916 | 0.2030775189134759322293574e+3,
|
---|
917 | 0.1e+1
|
---|
918 | };
|
---|
919 |
|
---|
920 | p = Pone[5];
|
---|
921 | q = Qone[5];
|
---|
922 | for (i=4; i >= 0; i--)
|
---|
923 | {
|
---|
924 | p = p*(8.0/x)*(8.0/x)+Pone[i];
|
---|
925 | q = q*(8.0/x)*(8.0/x)+Qone[i];
|
---|
926 | }
|
---|
927 | return (float)(p/q);
|
---|
928 | }
|
---|
929 | ////////////////////////////////////////////////////////////////////////////////
|
---|
930 | float CxImage::KernelBessel_Q1(const float x)
|
---|
931 | {
|
---|
932 | double p, q;
|
---|
933 |
|
---|
934 | register long i;
|
---|
935 |
|
---|
936 | static const double
|
---|
937 | Pone[] =
|
---|
938 | {
|
---|
939 | 0.3511751914303552822533318e+3,
|
---|
940 | 0.7210391804904475039280863e+3,
|
---|
941 | 0.4259873011654442389886993e+3,
|
---|
942 | 0.831898957673850827325226e+2,
|
---|
943 | 0.45681716295512267064405e+1,
|
---|
944 | 0.3532840052740123642735e-1
|
---|
945 | },
|
---|
946 | Qone[] =
|
---|
947 | {
|
---|
948 | 0.74917374171809127714519505e+4,
|
---|
949 | 0.154141773392650970499848051e+5,
|
---|
950 | 0.91522317015169922705904727e+4,
|
---|
951 | 0.18111867005523513506724158e+4,
|
---|
952 | 0.1038187585462133728776636e+3,
|
---|
953 | 0.1e+1
|
---|
954 | };
|
---|
955 |
|
---|
956 | p = Pone[5];
|
---|
957 | q = Qone[5];
|
---|
958 | for (i=4; i >= 0; i--)
|
---|
959 | {
|
---|
960 | p = p*(8.0/x)*(8.0/x)+Pone[i];
|
---|
961 | q = q*(8.0/x)*(8.0/x)+Qone[i];
|
---|
962 | }
|
---|
963 | return (float)(p/q);
|
---|
964 | }
|
---|
965 | ////////////////////////////////////////////////////////////////////////////////
|
---|
966 | float CxImage::KernelBessel_Order1(float x)
|
---|
967 | {
|
---|
968 | float p, q;
|
---|
969 |
|
---|
970 | if (x == 0.0)
|
---|
971 | return (0.0f);
|
---|
972 | p = x;
|
---|
973 | if (x < 0.0)
|
---|
974 | x=(-x);
|
---|
975 | if (x < 8.0)
|
---|
976 | return(p*KernelBessel_J1(x));
|
---|
977 | q = (float)sqrt(2.0f/(PI*x))*(float)(KernelBessel_P1(x)*(1.0f/sqrt(2.0f)*(sin(x)-cos(x)))-8.0f/x*KernelBessel_Q1(x)*
|
---|
978 | (-1.0f/sqrt(2.0f)*(sin(x)+cos(x))));
|
---|
979 | if (p < 0.0f)
|
---|
980 | q = (-q);
|
---|
981 | return (q);
|
---|
982 | }
|
---|
983 | ////////////////////////////////////////////////////////////////////////////////
|
---|
984 | float CxImage::KernelBessel(const float x)
|
---|
985 | {
|
---|
986 | if (x == 0.0f)
|
---|
987 | return(PI/4.0f);
|
---|
988 | return(KernelBessel_Order1(PI*x)/(2.0f*x));
|
---|
989 | }
|
---|
990 | ////////////////////////////////////////////////////////////////////////////////
|
---|
991 | float CxImage::KernelGaussian(const float x)
|
---|
992 | {
|
---|
993 | return (float)(exp(-2.0f*x*x)*0.79788456080287f/*sqrt(2.0f/PI)*/);
|
---|
994 | }
|
---|
995 | ////////////////////////////////////////////////////////////////////////////////
|
---|
996 | float CxImage::KernelQuadratic(const float x)
|
---|
997 | {
|
---|
998 | if (x < -1.5f)
|
---|
999 | return(0.0f);
|
---|
1000 | if (x < -0.5f)
|
---|
1001 | return(0.5f*(x+1.5f)*(x+1.5f));
|
---|
1002 | if (x < 0.5f)
|
---|
1003 | return(0.75f-x*x);
|
---|
1004 | if (x < 1.5f)
|
---|
1005 | return(0.5f*(x-1.5f)*(x-1.5f));
|
---|
1006 | return(0.0f);
|
---|
1007 | }
|
---|
1008 | ////////////////////////////////////////////////////////////////////////////////
|
---|
1009 | float CxImage::KernelMitchell(const float x)
|
---|
1010 | {
|
---|
1011 | #define KM_B (1.0f/3.0f)
|
---|
1012 | #define KM_C (1.0f/3.0f)
|
---|
1013 | #define KM_P0 (( 6.0f - 2.0f * KM_B ) / 6.0f)
|
---|
1014 | #define KM_P2 ((-18.0f + 12.0f * KM_B + 6.0f * KM_C) / 6.0f)
|
---|
1015 | #define KM_P3 (( 12.0f - 9.0f * KM_B - 6.0f * KM_C) / 6.0f)
|
---|
1016 | #define KM_Q0 (( 8.0f * KM_B + 24.0f * KM_C) / 6.0f)
|
---|
1017 | #define KM_Q1 ((-12.0f * KM_B - 48.0f * KM_C) / 6.0f)
|
---|
1018 | #define KM_Q2 (( 6.0f * KM_B + 30.0f * KM_C) / 6.0f)
|
---|
1019 | #define KM_Q3 (( -1.0f * KM_B - 6.0f * KM_C) / 6.0f)
|
---|
1020 |
|
---|
1021 | if (x < -2.0)
|
---|
1022 | return(0.0f);
|
---|
1023 | if (x < -1.0)
|
---|
1024 | return(KM_Q0-x*(KM_Q1-x*(KM_Q2-x*KM_Q3)));
|
---|
1025 | if (x < 0.0f)
|
---|
1026 | return(KM_P0+x*x*(KM_P2-x*KM_P3));
|
---|
1027 | if (x < 1.0f)
|
---|
1028 | return(KM_P0+x*x*(KM_P2+x*KM_P3));
|
---|
1029 | if (x < 2.0f)
|
---|
1030 | return(KM_Q0+x*(KM_Q1+x*(KM_Q2+x*KM_Q3)));
|
---|
1031 | return(0.0f);
|
---|
1032 | }
|
---|
1033 | ////////////////////////////////////////////////////////////////////////////////
|
---|
1034 | float CxImage::KernelCatrom(const float x)
|
---|
1035 | {
|
---|
1036 | if (x < -2.0)
|
---|
1037 | return(0.0f);
|
---|
1038 | if (x < -1.0)
|
---|
1039 | return(0.5f*(4.0f+x*(8.0f+x*(5.0f+x))));
|
---|
1040 | if (x < 0.0)
|
---|
1041 | return(0.5f*(2.0f+x*x*(-5.0f-3.0f*x)));
|
---|
1042 | if (x < 1.0)
|
---|
1043 | return(0.5f*(2.0f+x*x*(-5.0f+3.0f*x)));
|
---|
1044 | if (x < 2.0)
|
---|
1045 | return(0.5f*(4.0f+x*(-8.0f+x*(5.0f-x))));
|
---|
1046 | return(0.0f);
|
---|
1047 | }
|
---|
1048 | ////////////////////////////////////////////////////////////////////////////////
|
---|
1049 | float CxImage::KernelPower(const float x, const float a)
|
---|
1050 | {
|
---|
1051 | if (fabs(x)>1) return 0.0f;
|
---|
1052 | return (1.0f - (float)fabs(pow(x,a)));
|
---|
1053 | }
|
---|
1054 | ////////////////////////////////////////////////////////////////////////////////
|
---|
1055 |
|
---|
1056 | #endif
|
---|