/* * File: ximajpg.cpp * Purpose: Platform Independent JPEG Image Class Loader and Writer * 07/Aug/2001 Davide Pizzolato - www.xdp.it * CxImage version 6.0.0 02/Feb/2008 */ #include "ximajpg.h" #if CXIMAGE_SUPPORT_JPG #include "jpeg/jmorecfg.h" #include "ximaiter.h" #include struct jpg_error_mgr { struct jpeg_error_mgr pub; /* "public" fields */ jmp_buf setjmp_buffer; /* for return to caller */ char* buffer; /* error message */ }; typedef jpg_error_mgr *jpg_error_ptr; //////////////////////////////////////////////////////////////////////////////// // Here's the routine that will replace the standard error_exit method: //////////////////////////////////////////////////////////////////////////////// static void ima_jpeg_error_exit (j_common_ptr cinfo) { /* cinfo->err really points to a my_error_mgr struct, so coerce pointer */ jpg_error_ptr myerr = (jpg_error_ptr) cinfo->err; /* Create the message */ myerr->pub.format_message (cinfo, myerr->buffer); /* Send it to stderr, adding a newline */ /* Return control to the setjmp point */ longjmp(myerr->setjmp_buffer, 1); } //////////////////////////////////////////////////////////////////////////////// CxImageJPG::CxImageJPG(): CxImage(CXIMAGE_FORMAT_JPG) { #if CXIMAGEJPG_SUPPORT_EXIF m_exif = NULL; memset(&m_exifinfo, 0, sizeof(EXIFINFO)); #endif } //////////////////////////////////////////////////////////////////////////////// CxImageJPG::~CxImageJPG() { #if CXIMAGEJPG_SUPPORT_EXIF if (m_exif) delete m_exif; #endif } //////////////////////////////////////////////////////////////////////////////// #if CXIMAGEJPG_SUPPORT_EXIF bool CxImageJPG::DecodeExif(CxFile * hFile) { m_exif = new CxExifInfo(&m_exifinfo); if (m_exif){ long pos=hFile->Tell(); m_exif->DecodeExif(hFile); hFile->Seek(pos,SEEK_SET); return m_exif->m_exifinfo->IsExif; } else { return false; } } #endif //CXIMAGEJPG_SUPPORT_EXIF //////////////////////////////////////////////////////////////////////////////// #if CXIMAGE_SUPPORT_DECODE //////////////////////////////////////////////////////////////////////////////// bool CxImageJPG::Decode(CxFile * hFile) { bool is_exif = false; #if CXIMAGEJPG_SUPPORT_EXIF is_exif = DecodeExif(hFile); #endif CImageIterator iter(this); /* This struct contains the JPEG decompression parameters and pointers to * working space (which is allocated as needed by the JPEG library). */ struct jpeg_decompress_struct cinfo; /* We use our private extension JPEG error handler. */ struct jpg_error_mgr jerr; jerr.buffer=info.szLastError; /* More stuff */ JSAMPARRAY buffer; /* Output row buffer */ int row_stride; /* physical row width in output buffer */ /* In this example we want to open the input file before doing anything else, * so that the setjmp() error recovery below can assume the file is open. * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that * requires it in order to read binary files. */ /* Step 1: allocate and initialize JPEG decompression object */ /* We set up the normal JPEG error routines, then override error_exit. */ cinfo.err = jpeg_std_error(&jerr.pub); jerr.pub.error_exit = ima_jpeg_error_exit; /* Establish the setjmp return context for my_error_exit to use. */ if (setjmp(jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. * We need to clean up the JPEG object, close the input file, and return. */ jpeg_destroy_decompress(&cinfo); return 0; } /* Now we can initialize the JPEG decompression object. */ jpeg_create_decompress(&cinfo); /* Step 2: specify data source (eg, a file) */ //jpeg_stdio_src(&cinfo, infile); CxFileJpg src(hFile); cinfo.src = &src; /* Step 3: read file parameters with jpeg_read_header() */ (void) jpeg_read_header(&cinfo, TRUE); /* Step 4 handle decoder options*/ if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & DECODE_GRAYSCALE) != 0) cinfo.out_color_space = JCS_GRAYSCALE; if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & DECODE_QUANTIZE) != 0) { cinfo.quantize_colors = TRUE; cinfo.desired_number_of_colors = GetJpegQuality(); } if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & DECODE_DITHER) != 0) cinfo.dither_mode = m_nDither; if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & DECODE_ONEPASS) != 0) cinfo.two_pass_quantize = FALSE; if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & DECODE_NOSMOOTH) != 0) cinfo.do_fancy_upsampling = FALSE; //: Load true color images as RGB (no quantize) /* Step 4: set parameters for decompression */ /* if (cinfo.jpeg_color_space!=JCS_GRAYSCALE) { * cinfo.quantize_colors = TRUE; * cinfo.desired_number_of_colors = 128; *} */ // // Set the scale cinfo.scale_denom = GetJpegScale(); // Borrowed the idea from GIF implementation if (info.nEscape == -1) { // Return output dimensions only jpeg_calc_output_dimensions(&cinfo); head.biWidth = cinfo.output_width; head.biHeight = cinfo.output_height; info.dwType = CXIMAGE_FORMAT_JPG; jpeg_destroy_decompress(&cinfo); return true; } /* Step 5: Start decompressor */ jpeg_start_decompress(&cinfo); /* We may need to do some setup of our own at this point before reading * the data. After jpeg_start_decompress() we have the correct scaled * output image dimensions available, as well as the output colormap * if we asked for color quantization. */ //Create the image using output dimensions //Create(cinfo.image_width, cinfo.image_height, 8*cinfo.output_components, CXIMAGE_FORMAT_JPG); Create(cinfo.output_width, cinfo.output_height, 8*cinfo.output_components, CXIMAGE_FORMAT_JPG); if (!pDib) longjmp(jerr.setjmp_buffer, 1); // check if the image has been created if (is_exif){ #if CXIMAGEJPG_SUPPORT_EXIF if ((m_exifinfo.Xresolution != 0.0) && (m_exifinfo.ResolutionUnit != 0)) SetXDPI((long)(m_exifinfo.Xresolution/m_exifinfo.ResolutionUnit)); if ((m_exifinfo.Yresolution != 0.0) && (m_exifinfo.ResolutionUnit != 0)) SetYDPI((long)(m_exifinfo.Yresolution/m_exifinfo.ResolutionUnit)); #endif } else { switch (cinfo.density_unit) { case 0: // [andy] fix for aspect ratio... if((cinfo.Y_density > 0) && (cinfo.X_density > 0)){ SetYDPI((long)(GetXDPI()*(float(cinfo.Y_density)/float(cinfo.X_density)))); } break; case 2: // [andy] fix: cinfo.X/Y_density is pixels per centimeter SetXDPI((long)floor(cinfo.X_density * 2.54 + 0.5)); SetYDPI((long)floor(cinfo.Y_density * 2.54 + 0.5)); break; default: SetXDPI(cinfo.X_density); SetYDPI(cinfo.Y_density); } } if (cinfo.out_color_space==JCS_GRAYSCALE){ SetGrayPalette(); head.biClrUsed =256; } else { if (cinfo.quantize_colors){ SetPalette(cinfo.actual_number_of_colors, cinfo.colormap[0], cinfo.colormap[1], cinfo.colormap[2]); head.biClrUsed=cinfo.actual_number_of_colors; } else { head.biClrUsed=0; } } /* JSAMPLEs per row in output buffer */ row_stride = cinfo.output_width * cinfo.output_components; /* Make a one-row-high sample array that will go away when done with image */ buffer = (*cinfo.mem->alloc_sarray) ((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1); /* Step 6: while (scan lines remain to be read) */ /* jpeg_read_scanlines(...); */ /* Here we use the library's state variable cinfo.output_scanline as the * loop counter, so that we don't have to keep track ourselves. */ iter.Upset(); while (cinfo.output_scanline < cinfo.output_height) { if (info.nEscape) longjmp(jerr.setjmp_buffer, 1); // - cancel decoding (void) jpeg_read_scanlines(&cinfo, buffer, 1); // info.nProgress = (long)(100*cinfo.output_scanline/cinfo.output_height); // Step 6a: CMYK->RGB */ if ((cinfo.num_components==4)&&(cinfo.quantize_colors==FALSE)){ BYTE k,*dst,*src; dst=iter.GetRow(); src=buffer[0]; for(long x3=0,x4=0; x3<(long)info.dwEffWidth && x4 Step 7A: Swap red and blue components // not necessary if swapped red and blue definition in jmorecfg.h;ln322 if ((cinfo.num_components==3)&&(cinfo.quantize_colors==FALSE)){ BYTE* r0=GetBits(); for(long y=0;y - cancel decoding RGBtoBGR(r0,3*head.biWidth); r0+=info.dwEffWidth; } } /* Step 8: Release JPEG decompression object */ /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_decompress(&cinfo); /* At this point you may want to check to see whether any corrupt-data * warnings occurred (test whether jerr.pub.num_warnings is nonzero). */ /* And we're done! */ return true; } //////////////////////////////////////////////////////////////////////////////// #endif //CXIMAGE_SUPPORT_DECODE //////////////////////////////////////////////////////////////////////////////// #if CXIMAGE_SUPPORT_ENCODE //////////////////////////////////////////////////////////////////////////////// bool CxImageJPG::Encode(CxFile * hFile) { if (EncodeSafeCheck(hFile)) return false; if (head.biClrUsed!=0 && !IsGrayScale()){ strcpy(info.szLastError,"JPEG can save only RGB or GreyScale images"); return false; } // necessary for EXIF, and for roll backs long pos=hFile->Tell(); /* This struct contains the JPEG compression parameters and pointers to * working space (which is allocated as needed by the JPEG library). * It is possible to have several such structures, representing multiple * compression/decompression processes, in existence at once. We refer * to any one struct (and its associated working data) as a "JPEG object". */ struct jpeg_compress_struct cinfo; /* This struct represents a JPEG error handler. It is declared separately * because applications often want to supply a specialized error handler * (see the second half of this file for an example). But here we just * take the easy way out and use the standard error handler, which will * print a message on stderr and call exit() if compression fails. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ //struct jpeg_error_mgr jerr; /* We use our private extension JPEG error handler. */ struct jpg_error_mgr jerr; jerr.buffer=info.szLastError; /* More stuff */ int row_stride; /* physical row width in image buffer */ JSAMPARRAY buffer; /* Output row buffer */ /* Step 1: allocate and initialize JPEG compression object */ /* We have to set up the error handler first, in case the initialization * step fails. (Unlikely, but it could happen if you are out of memory.) * This routine fills in the contents of struct jerr, and returns jerr's * address which we place into the link field in cinfo. */ //cinfo.err = jpeg_std_error(&jerr); /* We set up the normal JPEG error routines, then override error_exit. */ cinfo.err = jpeg_std_error(&jerr.pub); jerr.pub.error_exit = ima_jpeg_error_exit; /* Establish the setjmp return context for my_error_exit to use. */ if (setjmp(jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. * We need to clean up the JPEG object, close the input file, and return. */ strcpy(info.szLastError, jerr.buffer); // jpeg_destroy_compress(&cinfo); return 0; } /* Now we can initialize the JPEG compression object. */ jpeg_create_compress(&cinfo); /* Step 2: specify data destination (eg, a file) */ /* Note: steps 2 and 3 can be done in either order. */ /* Here we use the library-supplied code to send compressed data to a * stdio stream. You can also write your own code to do something else. * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that * requires it in order to write binary files. */ //jpeg_stdio_dest(&cinfo, outfile); CxFileJpg dest(hFile); cinfo.dest = &dest; /* Step 3: set parameters for compression */ /* First we supply a description of the input image. * Four fields of the cinfo struct must be filled in: */ cinfo.image_width = GetWidth(); // image width and height, in pixels cinfo.image_height = GetHeight(); if (IsGrayScale()){ cinfo.input_components = 1; // # of color components per pixel cinfo.in_color_space = JCS_GRAYSCALE; /* colorspace of input image */ } else { cinfo.input_components = 3; // # of color components per pixel cinfo.in_color_space = JCS_RGB; /* colorspace of input image */ } /* Now use the library's routine to set default compression parameters. * (You must set at least cinfo.in_color_space before calling this, * since the defaults depend on the source color space.) */ jpeg_set_defaults(&cinfo); /* Now you can set any non-default parameters you wish to. * Here we just illustrate the use of quality (quantization table) scaling: */ //#ifdef C_ARITH_CODING_SUPPORTED if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_ARITHMETIC) != 0) cinfo.arith_code = TRUE; //#endif //#ifdef ENTROPY_OPT_SUPPORTED if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_OPTIMIZE) != 0) cinfo.optimize_coding = TRUE; //#endif if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_GRAYSCALE) != 0) jpeg_set_colorspace(&cinfo, JCS_GRAYSCALE); if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_SMOOTHING) != 0) cinfo.smoothing_factor = m_nSmoothing; jpeg_set_quality(&cinfo, GetJpegQuality(), (GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_BASELINE) != 0); //#ifdef C_PROGRESSIVE_SUPPORTED if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_PROGRESSIVE) != 0) jpeg_simple_progression(&cinfo); //#endif #ifdef C_LOSSLESS_SUPPORTED if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_LOSSLESS) != 0) jpeg_simple_lossless(&cinfo, m_nPredictor, m_nPointTransform); #endif //SetCodecOption(ENCODE_SUBSAMPLE_444 | GetCodecOption(CXIMAGE_FORMAT_JPG),CXIMAGE_FORMAT_JPG); // 2x2, 1x1, 1x1 (4:1:1) : High (default sub sampling) cinfo.comp_info[0].h_samp_factor = 2; cinfo.comp_info[0].v_samp_factor = 2; cinfo.comp_info[1].h_samp_factor = 1; cinfo.comp_info[1].v_samp_factor = 1; cinfo.comp_info[2].h_samp_factor = 1; cinfo.comp_info[2].v_samp_factor = 1; if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_SUBSAMPLE_422) != 0){ // 2x1, 1x1, 1x1 (4:2:2) : Medium cinfo.comp_info[0].h_samp_factor = 2; cinfo.comp_info[0].v_samp_factor = 1; cinfo.comp_info[1].h_samp_factor = 1; cinfo.comp_info[1].v_samp_factor = 1; cinfo.comp_info[2].h_samp_factor = 1; cinfo.comp_info[2].v_samp_factor = 1; } if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_SUBSAMPLE_444) != 0){ // 1x1 1x1 1x1 (4:4:4) : None cinfo.comp_info[0].h_samp_factor = 1; cinfo.comp_info[0].v_samp_factor = 1; cinfo.comp_info[1].h_samp_factor = 1; cinfo.comp_info[1].v_samp_factor = 1; cinfo.comp_info[2].h_samp_factor = 1; cinfo.comp_info[2].v_samp_factor = 1; } cinfo.density_unit=1; cinfo.X_density=(unsigned short)GetXDPI(); cinfo.Y_density=(unsigned short)GetYDPI(); /* Step 4: Start compressor */ /* TRUE ensures that we will write a complete interchange-JPEG file. * Pass TRUE unless you are very sure of what you're doing. */ jpeg_start_compress(&cinfo, TRUE); /* Step 5: while (scan lines remain to be written) */ /* jpeg_write_scanlines(...); */ /* Here we use the library's state variable cinfo.next_scanline as the * loop counter, so that we don't have to keep track ourselves. * To keep things simple, we pass one scanline per call; you can pass * more if you wish, though. */ row_stride = info.dwEffWidth; /* JSAMPLEs per row in image_buffer */ // "8+row_stride" fix heap deallocation problem during debug??? buffer = (*cinfo.mem->alloc_sarray) ((j_common_ptr) &cinfo, JPOOL_IMAGE, 8+row_stride, 1); CImageIterator iter(this); iter.Upset(); while (cinfo.next_scanline < cinfo.image_height) { // info.nProgress = (long)(100*cinfo.next_scanline/cinfo.image_height); iter.GetRow(buffer[0], row_stride); // not necessary if swapped red and blue definition in jmorecfg.h;ln322 if (head.biClrUsed==0){ // swap R & B for RGB images RGBtoBGR(buffer[0], row_stride); // Lance : 1998/09/01 : Bug ID: EXP-2.1.1-9 } iter.PrevRow(); (void) jpeg_write_scanlines(&cinfo, buffer, 1); } /* Step 6: Finish compression */ jpeg_finish_compress(&cinfo); /* Step 7: release JPEG compression object */ /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_compress(&cinfo); #if CXIMAGEJPG_SUPPORT_EXIF if (m_exif && m_exif->m_exifinfo->IsExif){ // discard useless sections (if any) read from original image m_exif->DiscardAllButExif(); // read new created image, to split the sections hFile->Seek(pos,SEEK_SET); m_exif->DecodeExif(hFile,EXIF_READ_IMAGE); // save back the image, adding EXIF section hFile->Seek(pos,SEEK_SET); m_exif->EncodeExif(hFile); } #endif /* And we're done! */ return true; } //////////////////////////////////////////////////////////////////////////////// #endif // CXIMAGE_SUPPORT_ENCODE //////////////////////////////////////////////////////////////////////////////// #endif // CXIMAGE_SUPPORT_JPG