1 | %
|
---|
2 | % $Id: report.tex 571 2008-04-20 17:31:04Z rick $
|
---|
3 | %
|
---|
4 |
|
---|
5 | \documentclass[12pt,a4paper]{article}
|
---|
6 |
|
---|
7 | \frenchspacing
|
---|
8 | \usepackage[english,dutch]{babel}
|
---|
9 | \selectlanguage{dutch}
|
---|
10 | \usepackage{graphicx}
|
---|
11 | \usepackage{url}
|
---|
12 | \usepackage{multicol}
|
---|
13 | \usepackage{fancybox}
|
---|
14 | \usepackage{amssymb,amsmath}
|
---|
15 | \usepackage{subfig}
|
---|
16 | \usepackage{tikz}
|
---|
17 | \usetikzlibrary{scopes}
|
---|
18 | \usetikzlibrary{positioning}
|
---|
19 |
|
---|
20 | \author{Rick van der Zwet, Universiteit Leiden}
|
---|
21 | \title{BDD synthese}
|
---|
22 | \author{Rick van der Zwet\\
|
---|
23 | \texttt{<hvdzwet@liacs.nl>}}
|
---|
24 | \date{\today}
|
---|
25 |
|
---|
26 | \begin{document}
|
---|
27 |
|
---|
28 | \maketitle
|
---|
29 |
|
---|
30 | \section{Inleiding}
|
---|
31 | De hierin besproken inhoud is een samenvatting gemaakt van pagina 86--88 en de
|
---|
32 | daarin genoemde opgave 60 en 63 uit het college boek~\cite{DK2009} na
|
---|
33 | aanleiding van het vak Seminar Combinatorial Algorithms 2010~\cite{SCA2010}.
|
---|
34 | \begin{figure}[htbp]
|
---|
35 | \begin{tikzpicture}[on grid]
|
---|
36 | \tikzstyle{true}=[]
|
---|
37 | \tikzstyle{false}=[dashed]
|
---|
38 | \tikzstyle{state}=[circle, draw]
|
---|
39 | \tikzstyle{leaf}=[rectangle, draw]
|
---|
40 | \begin{scope}[xshift=0cm,node distance=10mm and 10mm]
|
---|
41 | \node (1) [state]{1};
|
---|
42 | \node (2) [state, below=of 1]{2};
|
---|
43 | \node (3) [state, below=of 2]{3};
|
---|
44 | \node (4) [state, below=of 3]{4};
|
---|
45 | \node (F) [leaf, below left=of 4]{$\bot$};
|
---|
46 | \node (T) [leaf, below right=of 4]{$\top$};
|
---|
47 | \path[-]
|
---|
48 | (1) edge[false] (2)
|
---|
49 | (1) edge[true, bend left=45] (3)
|
---|
50 | (2) edge[false, bend right=45] (F)
|
---|
51 | (2) edge[true] (3)
|
---|
52 | (3) edge[false] (4)
|
---|
53 | (3) edge[true, bend left=45] (T)
|
---|
54 | (4) edge[true] (T)
|
---|
55 | (4) edge[false] (F)
|
---|
56 | ;
|
---|
57 | \draw[left, inner sep=6mm]
|
---|
58 | (1) node {$\alpha$}
|
---|
59 | (2) node {$\beta$}
|
---|
60 | (3) node {$\gamma$}
|
---|
61 | (4) node {$\delta$}
|
---|
62 | ;
|
---|
63 | \end{scope}
|
---|
64 |
|
---|
65 | \begin{scope}[xshift=9cm,node distance=10mm and 10mm]
|
---|
66 | \node (1) [state]{1};
|
---|
67 | \node (2-1) [state, below left=of 1]{2};
|
---|
68 | \node (2-2) [state, below right=of 1]{2};
|
---|
69 | \node (3) [state, below left=of 2-2]{3};
|
---|
70 | \node (4-1) [state, below left=of 3]{4};
|
---|
71 | \node (4-2) [state, below right=of 3]{4};
|
---|
72 | \node (F) [leaf, below=of 4-1]{$\bot$};
|
---|
73 | \node (T) [leaf, below=of 4-2]{$\top$};
|
---|
74 | \path[-]
|
---|
75 | (1) edge[false] (2-1)
|
---|
76 | (1) edge[true] (2-2)
|
---|
77 | (2-1) edge[false] (3)
|
---|
78 | (2-1) edge[true, bend left=70] (T)
|
---|
79 | (2-2) edge[false, bend left=45] (T)
|
---|
80 | (2-2) edge[true] (3)
|
---|
81 | (3) edge[false] (4-1)
|
---|
82 | (3) edge[true] (4-2)
|
---|
83 | (4-1) edge[false] (T)
|
---|
84 | (4-1) edge[false] (F)
|
---|
85 | (4-2) edge[false] (T)
|
---|
86 | (4-2) edge[true] (F)
|
---|
87 | ;
|
---|
88 | \draw[left, inner sep=4mm]
|
---|
89 | (1) node {$\omega$}
|
---|
90 | (2-1) node {$\chi$}
|
---|
91 | (2-2) node {$\psi$}
|
---|
92 | (3) node {$\varphi$}
|
---|
93 | (4-1) node {$\tau$}
|
---|
94 | (4-2) node {$\upsilon$}
|
---|
95 | ;
|
---|
96 | \end{scope}
|
---|
97 |
|
---|
98 | \begin{scope}[xshift=5cm,yshift=-5cm, node distance=15mm and 20mm]
|
---|
99 | \node (1) [state]{1};
|
---|
100 | \node (2-1) [state, below left=of 1]{2};
|
---|
101 | \node (2-2) [state, below right=of 1]{2};
|
---|
102 | \node (3-1) [state, below left=of 2-1]{3};
|
---|
103 | \node (3-2) [state, below left=of 2-2]{3};
|
---|
104 | \node (3-3) [state, below right=of 2-2]{3};
|
---|
105 | \node (4-1) [state, below left=of 3-1]{4};
|
---|
106 | \node (4-2) [state, below=of 3-1]{4};
|
---|
107 | \node (4-3) [state, below left=of 3-2]{4};
|
---|
108 | \node (4-4) [state, below left=of 3-3]{4};
|
---|
109 | \node (4-5) [state, below right=of 3-3]{4};
|
---|
110 | \node (FT) [leaf, below=of 4-1]{};
|
---|
111 | \node (FF) [leaf, below right=of 4-2]{};
|
---|
112 | \node (TT) [leaf, below=of 4-4]{};
|
---|
113 | \node (TF) [leaf, below=of 4-5]{};
|
---|
114 | \path[-]
|
---|
115 | (1) edge[false] (2-1)
|
---|
116 | (1) edge[true] (2-2)
|
---|
117 | (2-1) edge[false] (3-1)
|
---|
118 | (2-1) edge[true] (3-2)
|
---|
119 | (2-2) edge[false] (3-2)
|
---|
120 | (2-2) edge[true] (3-3)
|
---|
121 | (3-1) edge[false] (4-1)
|
---|
122 | (3-1) edge[true] (4-2)
|
---|
123 | (3-2) edge[false] (4-3)
|
---|
124 | (3-2) edge[true,bend left=90] (TT)
|
---|
125 | (3-3) edge[false] (4-4)
|
---|
126 | (3-3) edge[true] (4-5)
|
---|
127 | (4-1) edge[false] (FF)
|
---|
128 | (4-1) edge[true] (FT)
|
---|
129 | (4-2) edge[false] (FT)
|
---|
130 | (4-2) edge[true] (FF)
|
---|
131 | (4-3) edge[false] (FT)
|
---|
132 | (4-3) edge[true] (TT)
|
---|
133 | (4-4) edge[false] (FF)
|
---|
134 | (4-4) edge[true] (TT)
|
---|
135 | (4-5) edge[false] (TT)
|
---|
136 | (4-5) edge[true] (TF)
|
---|
137 | ;
|
---|
138 | \draw[left, inner sep=6mm]
|
---|
139 | (1) node {$\alpha \diamond \omega$}
|
---|
140 | (2-1) node {$\beta \diamond \chi$}
|
---|
141 | (2-2) node {$\gamma \diamond \psi$}
|
---|
142 | (3-1) node {$\bot \diamond \varphi$}
|
---|
143 | (3-2) node {$\gamma \diamond \top$}
|
---|
144 | (3-3) node {$\gamma \diamond \varphi$}
|
---|
145 | (4-1) node {$\bot \diamond \tau$}
|
---|
146 | (4-2) node {$\bot \diamond \upsilon$}
|
---|
147 | (4-3) node {$\delta \diamond \top$}
|
---|
148 | (4-4) node {$\delta \diamond \tau$}
|
---|
149 | (4-5) node {$\top \diamond \upsilon$}
|
---|
150 | (FF) node {$\bot \diamond \bot$}
|
---|
151 | (FT) node {$\bot \diamond \top$}
|
---|
152 | (TF) node {$\top \diamond \bot$}
|
---|
153 | (TT) node {$\top \diamond \top$}
|
---|
154 | ;
|
---|
155 | \end{scope}
|
---|
156 |
|
---|
157 | \end{tikzpicture}
|
---|
158 | \caption{Voorbeeld: twee \emph{BDD}s die samengesmolten worden door gebruik te
|
---|
159 | maken van formule~\ref{melt-eq}. Let wel op dat dit voorbeeld geen ontbrekende
|
---|
160 | laag van nodes heeft, waardoor nodes van alle niveaus beschikbaar zijn. Op het
|
---|
161 | moment dat de $\diamond$ ingevuld gaat worden is het ook zaak om de bladeren
|
---|
162 | (zie vergelijking~\ref{bladeren}) te vereenvoudigen} \end{figure}
|
---|
163 |
|
---|
164 | \section{Introductie BDD}
|
---|
165 | Synthese van een Binary Decision Diagram \emph{BDD} is het belangrijke
|
---|
166 | \emph{BDD} algoritme~\cite[pg 86]{DK2009}. Welke in essentie een \emph{BDD}
|
---|
167 | functie,$f$, pakt en deze combineert met een andere \emph{BDD} functie,$g$,
|
---|
168 | zodanig dat er een nieuwe \emph{BDD} ontstaat voor de nieuwe functie.
|
---|
169 | Bijvoorbeeld $f \wedge g$ of $f \oplus g$.
|
---|
170 | De reden dat dit zo belangrijk is komt met het feit dat het combineren van
|
---|
171 | \emph{BDD}s aan de basis staat aan het uitdrukken van complexe systemen dmv van
|
---|
172 | gecombineerde simpele functies. In sectie~\ref{werking} zal deze techniek
|
---|
173 | uitgelegd worden, het zogenoemde \emph{smelten} (\emph{melding}) welke in
|
---|
174 | sectie~\ref{voorbeeld} dit toegepast zal worden in een concreet voorbeelden.
|
---|
175 |
|
---|
176 | \section{Samenvoegen van \emph{BDD}}
|
---|
177 | \label{werking}
|
---|
178 | De term voor het samenvoegen \emph{BDD} structuren zullen we smelten
|
---|
179 | (\emph{melding}) noemen. Er werkt volgens de volgende principes. Men neme
|
---|
180 | $\alpha = (v,l,h)"$ en $\alpha' = (v',l',h')$. De $\alpha \diamond \alpha'$, de
|
---|
181 | "\emph{emulsie}" (\emph{meld}) van $\alpha$ en $\alpha'$, is dan als volgt
|
---|
182 | gedefinieerd als $\alpha$ ad $\alpha'$ niet beiden bladeren (\emph{sinks}) zijn:
|
---|
183 | \begin{equation}
|
---|
184 | \label{melt-eq}
|
---|
185 | \alpha \diamond \alpha' = \left\{
|
---|
186 | \begin{array}{l l}
|
---|
187 | (v, l \diamond l'), h \diamond h'), & \mathrm{als~} v = v'; \\
|
---|
188 | (v, l \diamond \alpha'), h \diamond \alpha'), & \mathrm{als~} v < v'; \\
|
---|
189 | (v, \alpha \diamond l'), \alpha \diamond h'), & \mathrm{als~} v > v'. \\
|
---|
190 | \end{array} \right.
|
---|
191 | \end{equation}
|
---|
192 |
|
---|
193 | De oplettende lezer (voor de rest, voorbeeld figuur~\ref{voorbeeldSamenvoegen}) zal
|
---|
194 | zien dat je door het samenvoegen van de bladeren er in plaats van de twee bladeren
|
---|
195 | $\top$ en $\bot$, er nu vier bladeren mogelijk zijn:
|
---|
196 | \begin{equation}
|
---|
197 | \label{bladeren}
|
---|
198 | \begin{array}{l l l l}
|
---|
199 | \bot \diamond \bot, & \bot \diamond \top, & \top \diamond \bot, & \top \diamond \top\\
|
---|
200 | \end{array}
|
---|
201 | \end{equation}
|
---|
202 | Om er weer een 'valide' \emph{BDD} van te maken zullen deze bladeren vervangen
|
---|
203 | worden door het uitgerekende blad. Als bijvoorbeeld de $\diamond$ operatie een
|
---|
204 | $EN$ operatie was, wordt de blad-rij in~\ref{bladeren} vervangen door de rij
|
---|
205 | $\bot, \bot, \bot, \top$. Nu is het zaak de \emph{BDD} te vereenvoudigen, om zo
|
---|
206 | duplicaat bladeren te snoeien (\emph{pruning}).
|
---|
207 |
|
---|
208 | De kracht van deze aanpak zit hem in de zogenoemde generieke $\diamond$
|
---|
209 | operatie. Het maakt niet uit welke booleaanse operatie er gebruikt wordt aan
|
---|
210 | het eind van de rit. De gegeneerde gesmolten \emph{BDD} is geldig voor allen.
|
---|
211 |
|
---|
212 | Kijkend naar de limieten moet geoordeeld worden kan hetzelfde altijd bereikt
|
---|
213 | worden door in het slechte geval de \emph{BDD}s achter elkaar te plakken welke
|
---|
214 | dan in dit geval $B(f)B(g)$ knopen oplevert. Voorbeeld~\ref{voorbeeldPlakken}
|
---|
215 | is hier een geval van. In het meer algemene geval geldt meestal $B(f) + B(g)$.
|
---|
216 | Deze grenzen worden in voorbeeld~\ref{voorbeeldSamenvoegen} aangescherpt.
|
---|
217 |
|
---|
218 | Het smelten ligt aan de basis van de daadwerkelijke synthese. Een simpele
|
---|
219 | variant kan gemaakt worden met algoritme $R$. Maak eerst een reeks van
|
---|
220 | alle knopen $\alpha$ in $B(f)$ en $\alpha'$ in $B(g)$ met knoop $\alpha
|
---|
221 | \diamond \alpha'$ in rij $\alpha$ en column $\alpha'$. Vervang de bladeren
|
---|
222 | (\ref{bladeren}) door $\bot$ en $\top$. En voor algoritme $R$ uit op $f \diamond
|
---|
223 | g$. Op het eerste gezicht lijkt algoritme $R$ er ongeveer $B(f)B(g)$ over te
|
---|
224 | doen, maar doordat je onbereikbare knopen niet hoeft te evalueren zal je
|
---|
225 | uitkomen op $B(f \diamond g)$.
|
---|
226 |
|
---|
227 | Deze 'truc' zorgt ervoor dat de tijd binnen de perken blijft, maar er is dan
|
---|
228 | nog niets gezegd over de hoeveelheid geheugen er nodig is. Omdat er nu
|
---|
229 | $B(f)B(g)$ knopen in geheugen gehouden moet wordt zal dit problemen opleveren
|
---|
230 | bij kleine en grotere algoritmen. Om deze efficiëntie aan te pakken is
|
---|
231 | algoritme $S$ \footnote{Algoritme $S$ wordt niet in deze samenvatting gehandeld
|
---|
232 | de vak-website~\cite{SCA2010} heeft een verwijzing van de samenvatting van dit
|
---|
233 | algoritme} ontworpen.
|
---|
234 |
|
---|
235 |
|
---|
236 | \section{Voorbeelden}
|
---|
237 | \label{voorbeeld}
|
---|
238 | \subsection{Product groei in synthese van \emph{BDD}}
|
---|
239 | \label{voorbeeldSamenvoegen}
|
---|
240 | Het volgende voorbeeld is een uitwerking van opgave 60~\cite[pg. 130]{DK2009}
|
---|
241 | de offi\"{e}le uitwerking is te vinden op pagina 195~\cite{DK2009}
|
---|
242 |
|
---|
243 | Neem aan dat $f(x_{1},dots,x_{n})$ en $g(x_{1},dots,x_{n})$ de respectieve
|
---|
244 | \emph{profielen} (\emph{profiles})~\cite[pg 101]{DK2009} $(b_{0},dots,b_{n})$ en
|
---|
245 | $(b'_{0},dots,b_{n})$ hebben. En de respectieve \emph{quasi-profielen}
|
---|
246 | (\emph{quasi-profiles})~\cite[pg 103]{DK2009} $(q_{0},dots,q_{n})$ en
|
---|
247 | $(q'_{0},dots,q'_{n})$. Om te laten zijn dat de gesmolten $f \diamond g$ het
|
---|
248 | aantal knopen van $B(f \diamond g) \leq
|
---|
249 | \sum^{n}_{j=0}(q_{j}b'_{j}+b_{j}q'_{j}-b_{j}b'_{j})$ bevat moet gekeken worden
|
---|
250 | aan het aantal \emph{beads}~\cite[pg 72]{DK2009} dat mogelijkerwijs gemaakt
|
---|
251 | kunnen worden van de functies $f$ en $g$.
|
---|
252 |
|
---|
253 | Elke bead van de orde $n - j$ van het geordende paar $(f,g)$ zal binnen de
|
---|
254 | standaard combinatie vallen de $b_{j}b_{j}'$ geordende beats van $(f,g)$.
|
---|
255 | vallen of is er eentje uit een meer speciaal gegenereerde reeks van een
|
---|
256 | (bead,geen-bead) of (geen-bead, bead) $b_{j}(q_{j}' - b_{j}') + (q_{j} -
|
---|
257 | b{j})b_{j}'$. Zie hierbij dat van een functie het $B(quasi-profiel) \geq
|
---|
258 | B(profiel)$. En dat alle in het profiel altijd in het quasi-profiel zit. Er dus
|
---|
259 | de geen-bead kan beschrijven als de rest van de quasi-profiel minus profiel.
|
---|
260 |
|
---|
261 | Dit bij elkaar optellen levert op $b_{j}b_{j}' + b_{j}(q_{j}' - b_{j}') +
|
---|
262 | (q_{j} - b{j})b_{j}'$. Vereenvoudigen en de sommering is oefening voor de
|
---|
263 | lezer.
|
---|
264 |
|
---|
265 | \subsection{Som groei in synthese van \emph{BDD}}
|
---|
266 | \label{voorbeeldPlakken}
|
---|
267 | Het volgende voorbeeld is een uitwerking van opgave 63~\cite[pg. 131]{DK2009}
|
---|
268 | de offi\"{e}le uitwerking is te vinden op pagina 195~\cite{DK2009}
|
---|
269 |
|
---|
270 | Laat $f(x_{1},dots,x_{n}) = M_{m}(x_{1} \oplus x_{2},x_{3} \oplus
|
---|
271 | x_{4},dots,x_{2m-1} \oplus x_{2m};x_{2m+1},dots,x_{n})$ en $g(x_{1},dots,x_{n}) =
|
---|
272 | M_{m}(x_{2} \oplus x_{3},dots,x_{2m-2} \oplus x_{2m-1},x_{2m};\overline
|
---|
273 | x_{2m+1},dots,\overline x_{n})$ waar $n = 2m + 2^{m}$.
|
---|
274 |
|
---|
275 | Dan is $B(f) = 2^{m+2}-1 \approx 4n$, $B(g) = 2^{m+1}-2^{m} \approx 3n$ en $B(g
|
---|
276 | \land f) = 2^{m+1}+2^{m-1}-1 \approx 2n^{2}$. Om aan deze 'magische' reeksen te
|
---|
277 | komen is het belangrijk eerst naar de profielen te kijken van $f$ en $g$ om
|
---|
278 | daarna met sommering van deze tot de antwoorden te komen. Als eerste moet
|
---|
279 | opgemerkt worden dan zoals $f$ als $g$ $2^m$-weg
|
---|
280 | multiplexers~\cite[7.1.2-(31)]{DK2009-0} zijn voor welke de profielen zijn
|
---|
281 | $(1,2,2,\dots,2^{m-1},2^{m-1},2^m,1,1,\dots,1.2)$ respectievelijk
|
---|
282 | $(0,1,2,2,\dots,2^{m-1},2^{m-1},1,1,dots,1,2$. Dit optellen en afschatten wordt
|
---|
283 | (zie ook~\cite[pg 82]{DK2009}) $B(f) = 2^{m+2} - 1 \approx 4n$ en $B(g) =
|
---|
284 | 2^{m+1} - 1 \approx 3n$ \\
|
---|
285 | \\
|
---|
286 | $B(f \land g)$ wordt aanzienlijk moeilijker. Zie dat er unieke oplossing
|
---|
287 | bestaat -de oplossing kan aan een uniek getal gekoppeld worden- door $x_1 \dots
|
---|
288 | x_{2m}$ als je $((x_1 \oplus x_2)(x_3 \oplus x_4) \dots (x_{2m-1} \oplus
|
---|
289 | x_{2m}))_{2} = p,((x_2 \oplus x_3) \dots (x_{2m-2} \oplus x_{2m-1})x_{2m})_{2}
|
---|
290 | = q$. waar $0 \leq p, q \le 2^m$ en $p=q$ dan en slechts als $x_1 = x_3 = \dots
|
---|
291 | = 2_{2m-1} = 0$. Dit zorgt dat het eerste deel -het stuk voor de punt
|
---|
292 | komma- van het profiel van $f \land g$ geschreven kan worden als $(1, 2, 4,\dots,
|
---|
293 | 2^{2m-2}, 2^{2m-1} - 2^{m-1}$.
|
---|
294 | Het tweede deel is aanzienlijk moeilijker, welke bestaat uit de sub-functies
|
---|
295 | $x_{2m+j} \land \overline x_{2m+k}$ of $\overline x_{2m+j} \land x_{2m+k}$ voor
|
---|
296 | $1 \leq j \le k \leq 2^m$ tezamen met de originelen $x_{2m+j}$ en $\overline
|
---|
297 | x_{2m+j}$ voor $2 \leq j \leq 2^m$. Welke het profiel oplevert van $(2^{m+1}-2,
|
---|
298 | 2^{m+1}-2, 2^{m+1}-4, 2^{m+1}-6, \dots, 4, 2, 2)$.
|
---|
299 | Beiden profielen bij elkaar levert op $B(f \land g) = 2^{2m+1} + 2^{m-1} -1 \approx 2n^2$
|
---|
300 |
|
---|
301 |
|
---|
302 |
|
---|
303 |
|
---|
304 |
|
---|
305 | \begin{thebibliography}{}
|
---|
306 | \bibitem[DK2009]{DK2009} D.E. Knuth. Fascicle 1. \texttt{Bitwise Tricks \&
|
---|
307 | Techniques; Binary Decision Diagrams}, volume 4 of \texttt{The Art of Computer
|
---|
308 | Programming}. Pearson Education, first edition, March 2009.
|
---|
309 | \bibitem[DK2009-Fas0]{DK2009-0} D.E. Knuth. Fascicle 0. \texttt{Bitwise Tricks \&
|
---|
310 | Techniques; Binary Decision Diagrams}, volume 4 of \texttt{The Art of Computer
|
---|
311 | Programming}. Pearson Education, first edition, March 2009.
|
---|
312 | \bibitem[SCA2010]{SCA2010} Lecture Seminar Combinatorial Algorithms,
|
---|
313 | \url{http://www.liacs.nl/~kosters/semcom/}, dr. W.A. (Walter) Kosters, LIACS,
|
---|
314 | Spring 2010
|
---|
315 |
|
---|
316 | \end{thebibliography}
|
---|
317 | \end{document}
|
---|