Chessboard Domination on Programmable Graphics
Hardware [CDGPU2006]

“First algorithm to determine the minimum domination number of
a chessboard graph using the GPU”

Rick van der Zwet

LIACS - Leiden University

Seminar Combinatorial Algorithms, 2010

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

Outline

@ Minimum domination set
@ Domination set
@ GPU Inner Workings

© Algoritm
@ Computing the piece configuration
@ Rendered in Framebuffer
@ Determine Domination (e.g. Mark solution)

© GPU Optimalizations

O Results

@ Main Results
@ Discussion

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

Minimum domination set

Domination set
GPU Inner Workings

Domination set
Capture them all

@ Use the least amount of items to cover a whole board

o |tem based characteristics made whole set

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

-
17
b
c
°

=
©

£
£
o
<
£
El
£
£
=

Domination set

GPU Inner Workings

bound

Queen lower

, n>1[1]

—
N

Al

n—

o y(Qn)

@ Every square either contains a queen, or can be reached by a

L
////////

e.g. least amount of pieces required)

queen (

LIACS

Chessboard Domination on GPU

Rick van der Zwet <hvdzwet®@liacs.nl>

Minimum domination set

Domination set
GPU Inner Workings

Board Layout

@ streams: pipelines available on the GPU - a collection of
records requiring similar computation.

@ kernel: function that is applied to each element of a stream.
In the GPU streaming model, textures, geometry, and the

framebuffer are seen as streams while vertex and fragment
programs are seen as kernels.

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

Minimum domination set

Domination set
GPU Inner Workings

Qutlined Figure

CPU

Instruct the processing

—
Copy processing datal

GPU Yl
(GeForce BR00)) I

Execute parallel
in each core

Processing flow
on CUDA

LIACS

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

Algoritm
Computing the piece configuration

Basic Algoritm

01: finished=false

02: do

03: ..computes a piece configuration which may be a
minimally dominating set

04: ..Rendered in the framebuffer

05: ..if (All pixels are marked)

06:finished=true

07: ..fi

08: while (finished=false)

LIACS

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

Algoritm
Computing the piece configuration

Method

@ Exhaustive manner
@ Piece configuration stored on the CPU as linked links

@ Lower bound and Upper bound is respected

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

GPU Optimalizations

@ GPU supports textures, every piece is a texture

@ Render points on the CPU and offload to the GPU to map
texture on specific place

Bishop

@ Simple approch

@ Sum all pixels of n*n board and match if-sum=nx*n
Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

GPU Optimalizations

Colour Channels

Board Set I’"":':':l:llllrz
Sum
Final
Framebuffer
@ GPU is able to process all colours at the times
LIACS

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

GPU Optimalizations

Grid Framebuffer

@ GPU has many CPU’s called kernels
o Each kernel can process it's own little block of information

@ Putting multiple possible solutions in one bloc

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

Main Results
Discussion

Results

Conclusions and Future Work

GPU vs. CPU Minimum Domination of Queen’s Graph

100000

10000 |

1000

100 |

Seconds

10 F

1k

01 F

0.01 'VVIVV” - 1 - | 1 1 1

Figure: .

Execution times (log scale) of CPU and GPU based minimum
domination implementations computing y(Qp). As n increases, the
GPU'’s speed advantage over the CPU become more evident.

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

Main Results

Discussion
Results

Conclusions and Future Work [2]

e Domination texture good mapping between CPU world and
GPU world

o Flexible texture definition without any impact

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

Main Results

Discussion
Results

Discussion

e No significant speedup, claim that n > 13 GPU is ‘much’ faster

@ No scaleable

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

Summary

e First GPU algoritm for solving minimum domination described
at the time

@ Using texture mapping to build bridges between the CPU
world and GPU world

@ Outlook

o Make it scale so its decision algoritms is much smarter
o Build a framework to allow easy and proper testing for various
combinations

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

¥ E. J. Cockayne
Chessboard domination problems
Discrete Math., 86:1320, 1990.

¥ Nathan Courni
Chessboard Domination on Programmable Graphics Hardware
ACM SE’'06 March 10-ijcel2, 2006. Melbourne, Florida, USA

LIACS

Rick van der Zwet <hvdzwet®liacs.nl> Chessboard Domination on GPU

	Minimum domination set
	Domination set
	GPU Inner Workings

	Algoritm
	Computing the piece configuration
	Rendered in Framebuffer
	Determine Domination (e.g. Mark solution)

	GPU Optimalizations
	Results
	Main Results
	Discussion

	Summary
	Appendix
	Appendix
	For Further Reading

