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Minimum domination set

Domination set
GPU Inner Workings

Domination set
Capture them all

@ Use the least amount of items to cover a whole board

o |tem based characteristics made whole set
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Domination set

GPU Inner Workings
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Minimum domination set

Domination set
GPU Inner Workings

Board Layout

@ streams: pipelines available on the GPU - a collection of
records requiring similar computation.

@ kernel: function that is applied to each element of a stream.
In the GPU streaming model, textures, geometry, and the

framebuffer are seen as streams while vertex and fragment
programs are seen as kernels.
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Minimum domination set

Domination set
GPU Inner Workings

Qutlined Figure

CPU

Instruct the processing

—
Copy processing datal

GPU Yl
(GeForce BR00) ) I

Execute parallel
in each core

Processing flow
on CUDA
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Algoritm
Computing the piece configuration

Basic Algoritm

01: finished=false

02: do

03: ..computes a piece configuration which may be a
minimally dominating set

04: ..Rendered in the framebuffer

05: ..if (All pixels are marked)

06: ....finished=true

07: ..fi

08: while (finished=false)

LIACS
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Algoritm
Computing the piece configuration

Method

@ Exhaustive manner
@ Piece configuration stored on the CPU as linked links

@ Lower bound and Upper bound is respected
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GPU Optimalizations

@ GPU supports textures, every piece is a texture

@ Render points on the CPU and offload to the GPU to map
texture on specific place

Bishop

@ Simple approch

@ Sum all pixels of n*n board and match if-sum=nx*n
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GPU Optimalizations

Colour Channels

Board Set I’"":':':l:llllrz
Sum
Final
Framebuffer
@ GPU is able to process all colours at the times
LIACS
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GPU Optimalizations

Grid Framebuffer

@ GPU has many CPU’s called kernels
o Each kernel can process it's own little block of information

@ Putting multiple possible solutions in one bloc
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Main Results
Discussion

Results

Conclusions and Future Work

GPU vs. CPU Minimum Domination of Queen’s Graph
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Figure: .

Execution times (log scale) of CPU and GPU based minimum
domination implementations computing y(Qp). As n increases, the
GPU'’s speed advantage over the CPU become more evident.
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Main Results

Discussion
Results

Conclusions and Future Work [2]

e Domination texture good mapping between CPU world and
GPU world

o Flexible texture definition without any impact
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Main Results

Discussion
Results

Discussion

e No significant speedup, claim that n > 13 GPU is ‘much’ faster

@ No scaleable
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Summary

e First GPU algoritm for solving minimum domination described
at the time

@ Using texture mapping to build bridges between the CPU
world and GPU world

@ Outlook

o Make it scale so its decision algoritms is much smarter
o Build a framework to allow easy and proper testing for various
combinations
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