source: liacs/TPFL2010/assignment3/report.tex@ 254

Last change on this file since 254 was 254, checked in by Rick van der Zwet, 14 years ago

Nu met de goede grafiek.

File size: 4.3 KB
RevLine 
[2]1%
2% $Id: report.tex 571 2008-04-20 17:31:04Z rick $
3%
4
5\documentclass[12pt,a4paper]{article}
6
7\frenchspacing
8\usepackage[english,dutch]{babel}
9\selectlanguage{dutch}
[224]10\usepackage[pdftex]{graphicx}
[2]11\usepackage{url}
12\usepackage{amssymb,amsmath}
[224]13\usepackage{float}
[226]14\usepackage{tikz}
[227]15\usepackage{fixltx2e}
[254]16\usepackage{rotating}
[2]17
[226]18\usetikzlibrary{arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri}
19
20
21
22\setlength\parindent{0pt}
23\setlength\parskip{\baselineskip}
[224]24\floatstyle{ruled}
25\newfloat{algoritm}{thp}{lop}
26\floatname{algoritm}{Algoritme}
27
[242]28\title{Opdracht 3 \\
[224]29\large{Topics on Parsing and Formal Languages - fall 2010}}
[2]30\author{Rick van der Zwet\\
[224]31 \texttt{<hvdzwet@liacs.nl>}}
[2]32\date{\today}
33
[224]34
[2]35\begin{document}
[224]36\newcommand{\DFA}{\emph{DFA}~}
37\newcommand{\qed}{\hfill \ensuremath{\Box}}
[238]38\newcommand{\all}{\Sigma^*}
[253]39\newcommand{\sep}{~|~}
[2]40\maketitle
[224]41\begin{abstract}
42Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek
[242]43\cite{JS2009} gebruikt bij het college. In deze opdracht zullen vijf opgaven
[253]44(1, 5, 6, 8, 14) van hoofdstuk 5 behandeld worden.
[224]45\end{abstract}
[2]46
[242]47\section{Opgave 5.1}
[253]48De gramatica $G$ bestaat uit de volgende producties:
49\begin{equation}
50\begin{array}{l}
51S \rightarrow AB \sep b \\
52A \rightarrow BC \sep a \\
53B \rightarrow AS \sep CB \sep b \\
54C \rightarrow SS \sep a \\
55\end{array}
56\end{equation}
[224]57
[253]58Gebruikmakend van het CYK algoritme gaan we aantonen dat $x = babbbab \in L(G)$
59zit. De ondersteunende tabel is van de grootte $6\times6$ omdat dit de lengte
60van het woord $x$ is. In tabel~\ref{tb:cyk} staat cel $i,j$ voor welke
61transities er gevolgt moet worden om het subwoord $x[i..j]$ te vormen.
[224]62
[253]63
[254]64\begin{sidewaystable}[htbp]
[253]65\center
[254]66\begin{tabular}{|c||c|c|c|c|c|c|}
[253]67\hline
68
[254]69i\textbackslash j & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \hline
70 1 & \begin{tabular}{l} S \\B \\ \end{tabular} & \begin{tabular}{l} A: (B,C,1) \\ \end{tabular} & \begin{tabular}{l} C: (S,S,1) \\S: (A,B,2) \\B: (A,S,2) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,1) \\B: (C,B,3) \\C: (S,S,3) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,4) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,1),(B,C,3) \\C: (S,S,1),(S,S,3) \\S: (A,B,2),(A,B,4),(A,B,5) \\B: (C,B,3),(A,S,4),(C,B,4),(A,S,5) \\ \end{tabular} \\ \hline
71 2 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} A \\C \\ \end{tabular} & \begin{tabular}{l} S: (A,B,2) \\B: (A,S,2),(C,B,2) \\ \end{tabular} & \begin{tabular}{l} C: (S,S,3) \\ \end{tabular} & \begin{tabular}{l} $\emptyset$ \end{tabular} & \begin{tabular}{l} S: (A,B,2) \\B: (C,B,2),(C,B,4) \\A: (B,C,3) \\C: (S,S,3) \\ \end{tabular} \\ \hline
72 3 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} S \\B \\ \end{tabular} & \begin{tabular}{l} C: (S,S,3) \\ \end{tabular} & \begin{tabular}{l} $\emptyset$ \end{tabular} & \begin{tabular}{l} A: (B,C,3) \\C: (S,S,3) \\B: (C,B,4) \\ \end{tabular} \\ \hline
73 4 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} S \\B \\ \end{tabular} & \begin{tabular}{l} A: (B,C,4) \\ \end{tabular} & \begin{tabular}{l} C: (S,S,4) \\S: (A,B,5) \\B: (A,S,5) \\ \end{tabular} \\ \hline
74 5 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} A \\C \\ \end{tabular} & \begin{tabular}{l} S: (A,B,5) \\B: (A,S,5),(C,B,5) \\ \end{tabular} \\ \hline
75 6 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} S \\B \\ \end{tabular} \\ \hline
[253]76
77\end{tabular}
[254]78\caption{$CYK(L(G),a)$. Algoritme in \cite{JS2009}[pg.~142]}
79\end{sidewaystable}
[253]80
[242]81\section{Opgave 5.5}
[224]82
[226]83
[242]84\section{Opgave 5.6}
[226]85
86
[242]87\section{Opgave 5.8}
[226]88
89
[242]90\section{Opgave 5.14}
[226]91
92
[224]93\begin{thebibliography}{1}
94\bibitem[JS2009]{JS2009}Jeffrey Shallit, \emph{A second course in formal
95languages and automata theory }, \emph{Cambridge University Press}, 2009.
[2]96\end{thebibliography}
97\newpage
98\end{document}
Note: See TracBrowser for help on using the repository browser.