[2] | 1 | /* File : ga.cpp
|
---|
| 2 | * Authors : Rick van der Zwet & Thomas Steenbergen
|
---|
| 3 | * S-number : 0433373 / 0117544
|
---|
| 4 | * Version : $Id: ga.cpp 612 2008-05-13 22:25:56Z rick $
|
---|
| 5 | * Licence : BSD
|
---|
| 6 | * Description : 4th Assignment AI 2008: Genetic Algoithm
|
---|
| 7 | */
|
---|
| 8 |
|
---|
| 9 | #include <iostream>
|
---|
| 10 | #include <climits>
|
---|
| 11 | #include <ctime>
|
---|
| 12 | #include <cstdlib>
|
---|
| 13 | #include <fstream>
|
---|
| 14 | #include <math.h>
|
---|
| 15 | #include <string>
|
---|
| 16 | #include <sysexits.h>
|
---|
| 17 |
|
---|
| 18 | using namespace std;
|
---|
| 19 |
|
---|
| 20 | /*NOTE: Graph can only have this many nodes */
|
---|
| 21 | #define MAX_NODES 50
|
---|
| 22 | #define MAX_ARCHS 250
|
---|
| 23 |
|
---|
| 24 | /*NOTE: Maximum numbers of newly generated children */
|
---|
| 25 | #define MAX_POP 20
|
---|
| 26 |
|
---|
| 27 | /*NOTE: The chance to which we mutate a given point */
|
---|
| 28 | #define MUT_LEV 50
|
---|
| 29 |
|
---|
| 30 | /*NOTE: The maximum number of generations that the algorithm runs */
|
---|
| 31 | #define DEFAULT_LOOPS 100000
|
---|
| 32 |
|
---|
| 33 | #define DEFAULT_FILENAME "input.txt"
|
---|
| 34 | #define MAX_COORDINATES 1000
|
---|
| 35 |
|
---|
| 36 |
|
---|
| 37 | struct arch {
|
---|
| 38 | int a, b;
|
---|
| 39 | double distance;
|
---|
| 40 |
|
---|
| 41 | arch() {
|
---|
| 42 | a = -1;
|
---|
| 43 | b = -1;
|
---|
| 44 | distance = -1;
|
---|
| 45 | }
|
---|
| 46 | };
|
---|
| 47 |
|
---|
| 48 | /* Coordinate of point in graph */
|
---|
| 49 | struct point {
|
---|
| 50 | int x, y; /* X,Y coordinates */
|
---|
| 51 |
|
---|
| 52 | point(){
|
---|
| 53 | x = -1;
|
---|
| 54 | y = -1;
|
---|
| 55 | }
|
---|
| 56 | };
|
---|
| 57 |
|
---|
| 58 | /* Comparision between 2 points */
|
---|
| 59 | bool operator==(point &a, point &b) {
|
---|
| 60 | if ( (a.x == b.x) && (a.y == b.y))
|
---|
| 61 | return true;
|
---|
| 62 | else
|
---|
| 63 | return false;
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | struct graph {
|
---|
| 67 | point nodes[MAX_NODES]; /* Location of nodes */
|
---|
| 68 | int fitness; /* Overall fitness graph */
|
---|
| 69 | int fitnessDistance;
|
---|
| 70 | int fitnessIntersection;
|
---|
| 71 |
|
---|
| 72 | graph() {
|
---|
| 73 | fitness = -1;
|
---|
| 74 | fitnessDistance = -1;
|
---|
| 75 | fitnessIntersection = -1;
|
---|
| 76 | }
|
---|
| 77 | };
|
---|
| 78 |
|
---|
| 79 | /*
|
---|
| 80 | * BEGIN Global variables
|
---|
| 81 | */
|
---|
| 82 |
|
---|
| 83 | arch archs[MAX_ARCHS]; /* arch listing in graph */
|
---|
| 84 | int num_archs = -1; /* Number of archs in graph */
|
---|
| 85 | int num_nodes = -1; /* Number of nodes in graph */
|
---|
| 86 | int max_cord = -1; /* Domain e.g. maximum coord of X, Y*/
|
---|
| 87 | int lon_con = -1; /* Longest connection of two points */
|
---|
| 88 | int distances [MAX_NODES][MAX_NODES]; /* Distances between node i and j */
|
---|
| 89 | graph population[MAX_POP]; /* Graph list */
|
---|
| 90 |
|
---|
| 91 | /*
|
---|
| 92 | * END Global variables
|
---|
| 93 | */
|
---|
| 94 |
|
---|
| 95 |
|
---|
| 96 |
|
---|
| 97 | /* Calculates the distance between two points
|
---|
| 98 | * Distance (A,B) = d((x1,y1),(x2,y2))=SQRT((x1-x2)^2+(y1-y2)^2)
|
---|
| 99 | */
|
---|
| 100 | double calcDistance(point A, point B) {
|
---|
| 101 | double dist = 0;
|
---|
| 102 | dist = sqrt(pow((A.x - B.x),2) + pow((A.y - B.y),2));
|
---|
| 103 | return dist;
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | /* How well is the scaling of the branches ofthis graph weel
|
---|
| 107 | * versus the input graph. The more it deviates of the orginal the higher
|
---|
| 108 | * the fitness number.
|
---|
| 109 | */
|
---|
| 110 | int fitnessDistance(graph& A) {
|
---|
| 111 | int i,j;
|
---|
| 112 | int org_dist = 0; // distance between 2 points in input graph
|
---|
| 113 | double new_dist = 0; // distance between 2 points in population graph
|
---|
| 114 | double diff_dist = 0; // absolute difference
|
---|
| 115 | int tmp_fitness = 0;
|
---|
| 116 |
|
---|
| 117 | for (i=0; i< num_nodes; i++) {
|
---|
| 118 | for (j=i+1; j< num_nodes; j++) {
|
---|
| 119 | org_dist = distances[i][j];
|
---|
| 120 | if (org_dist != 0){
|
---|
| 121 | new_dist = calcDistance(A.nodes[i],A.nodes[j]);
|
---|
| 122 | diff_dist = fabs(new_dist - org_dist);
|
---|
| 123 | tmp_fitness += diff_dist;
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | return(tmp_fitness);
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | /* Output point itself */
|
---|
| 132 | void printPoint(point &A) {
|
---|
| 133 | cerr << A.x << "," << A.y;
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | /* Calculates whether the line A-B crosses with line C-D and wether in
|
---|
| 137 | * domain if so a it returns the point of intersection else return point
|
---|
| 138 | * [-1,-1] All explained in:
|
---|
| 139 | * http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=geometry2
|
---|
| 140 | * http://en.wikipedia.org/wiki/Line-line_intersection
|
---|
| 141 | */
|
---|
| 142 | bool calcIntersection(point A, point B, point C, point D, point& tmp) {
|
---|
| 143 | double K, L, M;
|
---|
| 144 | double S, T, R;
|
---|
| 145 | double det;
|
---|
| 146 | bool result;
|
---|
| 147 | double distance_a_b;
|
---|
| 148 |
|
---|
| 149 | // rewrite line A-B into formula form: Kx + Ly = M
|
---|
| 150 | K = B.y - A.y;
|
---|
| 151 | L = A.x - B.x;
|
---|
| 152 | M = K * A.x + L * A.y;
|
---|
| 153 |
|
---|
| 154 | // rewrite line C-D into formula form: Sx + Ty = R
|
---|
| 155 | S = D.y - C.y;
|
---|
| 156 | T = C.x - D.x;
|
---|
| 157 | R = S * C.x + T * C.y;
|
---|
| 158 |
|
---|
| 159 | // Now we calculate the intersection between the lines
|
---|
| 160 | det = K*T - S*L;
|
---|
| 161 |
|
---|
| 162 | if(det == 0){
|
---|
| 163 | /* Lines A-B & C-D are parallel, checking wether they are on top of
|
---|
| 164 | * each other
|
---|
| 165 | */
|
---|
| 166 | tmp.x = -1;
|
---|
| 167 | tmp.y = -1;
|
---|
| 168 | result = false;
|
---|
| 169 |
|
---|
| 170 | distance_a_b = calcDistance(A,B);
|
---|
| 171 | if ((calcDistance(A,C) + calcDistance(B,C) == distance_a_b)) {
|
---|
| 172 | tmp.x = C.x;
|
---|
| 173 | tmp.y = C.y;
|
---|
| 174 | result = false;
|
---|
| 175 | } else if ((calcDistance(A,D) + calcDistance(B,D) == distance_a_b)) {
|
---|
| 176 | tmp.x = D.x;
|
---|
| 177 | tmp.y = D.y;
|
---|
| 178 | result = false;
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 | } else {
|
---|
| 182 | tmp.x = (T*M - L*R)/det;
|
---|
| 183 | tmp.y = (K*R - S*M)/det;
|
---|
| 184 | result = true;
|
---|
| 185 |
|
---|
| 186 | /* Verify intersection in domain */
|
---|
| 187 | if (tmp.x < 0 || tmp.x >= max_cord || tmp.y < 0 || tmp.y >= max_cord) {
|
---|
| 188 | result = false;
|
---|
| 189 | }
|
---|
| 190 |
|
---|
| 191 | /* Verify intersection not a actual end point */
|
---|
| 192 | if ((tmp == A || tmp == B) && (tmp == C || tmp == D)) {
|
---|
| 193 | result = false;
|
---|
| 194 | }
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | return result;
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | bool calcIntersection(point A, point B, point C, point D) {
|
---|
| 201 | point tmp;
|
---|
| 202 | return calcIntersection(A, B, C, D, tmp);
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 | /*
|
---|
| 206 | * The number of intersections a graph. How more intersections the higher
|
---|
| 207 | * the fitness number.
|
---|
| 208 | */
|
---|
| 209 | int fitnessIntersection(graph& A) {
|
---|
| 210 | int i,j;
|
---|
| 211 | int tmp_fitness = 0;
|
---|
| 212 |
|
---|
| 213 | for (i = 0; i < num_archs; i++) {
|
---|
| 214 | for (j = i + 1; j < num_archs; j++) {
|
---|
| 215 | if ( calcIntersection(A.nodes[archs[i].a],
|
---|
| 216 | A.nodes[archs[i].b],
|
---|
| 217 | A.nodes[archs[j].a],
|
---|
| 218 | A.nodes[archs[j].b])) {
|
---|
| 219 | tmp_fitness++;
|
---|
| 220 | }
|
---|
| 221 | }
|
---|
| 222 | }
|
---|
| 223 | return(tmp_fitness);
|
---|
| 224 | }
|
---|
| 225 |
|
---|
| 226 |
|
---|
| 227 | /* Calculates the fitness of every graph in the population */
|
---|
| 228 | void calcFitness(graph& A) {
|
---|
| 229 | A.fitnessIntersection = fitnessIntersection(A);
|
---|
| 230 | A.fitnessDistance = fitnessDistance(A);
|
---|
| 231 | A.fitness = A.fitnessDistance + A.fitnessIntersection;
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 | void crossover(graph& A, graph& B){
|
---|
| 235 | /* XXX: Find clever way to combine the different graphs to be able
|
---|
| 236 | * to make new ones. Three to expiriment with:
|
---|
| 237 | * - uniform crossover
|
---|
| 238 | * - single-point crossover
|
---|
| 239 | * - partially mapped crossover
|
---|
| 240 | * All explained in: http://www.liacs.nl/~kosters/AI/genetisch.pdf
|
---|
| 241 | */
|
---|
| 242 |
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | // Combine two graphs using single point crossover
|
---|
| 246 | // A single random point is chosen in a graph's node
|
---|
| 247 | // array dividing it into two halves e.g. the head and the tail.
|
---|
| 248 | // Then heads are swapped between parents A & B
|
---|
| 249 | void crossSingle(graph& A, graph& B){
|
---|
| 250 | point tmp;
|
---|
| 251 | unsigned int cut;
|
---|
| 252 | unsigned int i;
|
---|
| 253 |
|
---|
| 254 | cut = rand() % num_nodes;
|
---|
| 255 | for (i=0; i< cut;i++) {
|
---|
| 256 | tmp = A.nodes[i];
|
---|
| 257 | A.nodes[i] = B.nodes[i];
|
---|
| 258 | B.nodes[i] = tmp;
|
---|
| 259 | }
|
---|
| 260 | }
|
---|
| 261 |
|
---|
| 262 | // Combine two graphs using uniform crossover
|
---|
| 263 | // The points are swapped with a fixed probability of 0.5.
|
---|
| 264 | void crossUniform(graph& A, graph& B){
|
---|
| 265 | point tmp;
|
---|
| 266 | int i, rnd;
|
---|
| 267 |
|
---|
| 268 | for (i=0; i< num_nodes;i++) {
|
---|
| 269 | rnd = rand()% 2;
|
---|
| 270 | if (rnd == 1){
|
---|
| 271 | tmp.x = A.nodes[i].x;
|
---|
| 272 | A.nodes[i].x = B.nodes[i].x;
|
---|
| 273 | B.nodes[i].x = tmp.x;
|
---|
| 274 | }
|
---|
| 275 | rnd = rand()% 2;
|
---|
| 276 | if (rnd == 1){
|
---|
| 277 | tmp.y = A.nodes[i].y;
|
---|
| 278 | A.nodes[i].y = B.nodes[i].y;
|
---|
| 279 | B.nodes[i].y = tmp.y;
|
---|
| 280 | }
|
---|
| 281 | }
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 |
|
---|
| 285 | // Copies the contents of graph A to graph B
|
---|
| 286 | void copyGraph(graph & A, graph& B){
|
---|
| 287 | int i;
|
---|
| 288 |
|
---|
| 289 | for (i=0; i< num_nodes;i++) {
|
---|
| 290 | B.nodes[i] = A.nodes[i];
|
---|
| 291 | }
|
---|
| 292 | B.fitness = A.fitness;
|
---|
| 293 | B.fitnessIntersection = A.fitnessIntersection;
|
---|
| 294 | B.fitnessDistance = A.fitnessDistance;
|
---|
| 295 | }
|
---|
| 296 |
|
---|
| 297 | /* Mutate random point in a graph and change it to random value
|
---|
| 298 | * within the domain of points
|
---|
| 299 | */
|
---|
| 300 | void mutateGraph (int mutationLevel, graph& A){
|
---|
| 301 | int i,x,y;
|
---|
| 302 |
|
---|
| 303 | if ((rand() % 100) > mutationLevel) {
|
---|
| 304 | return;
|
---|
| 305 | }
|
---|
| 306 |
|
---|
| 307 | i = rand() % num_nodes;
|
---|
| 308 | x = (rand()% max_cord)+1;
|
---|
| 309 | y = (rand()% max_cord)+1;
|
---|
| 310 |
|
---|
| 311 | A.nodes[i].x = x;
|
---|
| 312 | A.nodes[i].y = y;
|
---|
| 313 | }
|
---|
| 314 |
|
---|
| 315 | /* To do selection we use roulettewheel selection, only we
|
---|
| 316 | * invert adjust the regular algorithm so it prefers
|
---|
| 317 | * the lowest fitness numbers e.g. the biggest slice of
|
---|
| 318 | * piece is now the least attractive.
|
---|
| 319 | */
|
---|
| 320 | int selectGraph() {
|
---|
| 321 | int i;
|
---|
| 322 | int choice = -1;
|
---|
| 323 | int combined_fitness;
|
---|
| 324 | int fitness_reverse[MAX_POP];
|
---|
| 325 | int max_fitness = INT_MIN;
|
---|
| 326 | int min_fitness = INT_MAX;
|
---|
| 327 | int total_fitness = 0;
|
---|
| 328 | int wheelnumber;
|
---|
| 329 |
|
---|
| 330 | /* Find minimum/maximum */
|
---|
| 331 | min_fitness = population[0].fitness;
|
---|
| 332 | max_fitness = population[MAX_POP - 1].fitness;
|
---|
| 333 |
|
---|
| 334 | /* Set balanced fitness */
|
---|
| 335 | combined_fitness = min_fitness + max_fitness;
|
---|
| 336 | for(i=0; i< MAX_POP; i++) {
|
---|
| 337 | fitness_reverse[i] = combined_fitness - population[i].fitness;
|
---|
| 338 | total_fitness += fitness_reverse[i];
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | /* Get random number of wheel */
|
---|
| 342 | wheelnumber = rand() % total_fitness;
|
---|
| 343 |
|
---|
| 344 | /* Find matching graph */
|
---|
| 345 | total_fitness = 0;
|
---|
| 346 | for(i=0; i< MAX_POP; i++) {
|
---|
| 347 | total_fitness += fitness_reverse[i];
|
---|
| 348 | if (total_fitness > wheelnumber) {
|
---|
| 349 | choice = i;
|
---|
| 350 | break;
|
---|
| 351 | }
|
---|
| 352 | }
|
---|
| 353 |
|
---|
| 354 | return (choice);
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 | /* Set the values of a given graph to random numbers
|
---|
| 358 | * In other word those graphs who aint fit enough
|
---|
| 359 | * for the next round will be discarded.
|
---|
| 360 | */
|
---|
| 361 | void setRandGraph(graph& A) {
|
---|
| 362 | int i;
|
---|
| 363 | for (i=0; i< num_nodes;i++) {
|
---|
| 364 | A.nodes[i].x = (rand()%max_cord)+1;
|
---|
| 365 | A.nodes[i].y = (rand()%max_cord)+1;
|
---|
| 366 | }
|
---|
| 367 |
|
---|
| 368 | calcFitness(A);
|
---|
| 369 | }
|
---|
| 370 |
|
---|
| 371 | /* Create a graph and set nodes to certain location */
|
---|
| 372 | graph initGraph() {
|
---|
| 373 | graph A;
|
---|
| 374 | setRandGraph(A);
|
---|
| 375 | return A;
|
---|
| 376 | }
|
---|
| 377 |
|
---|
| 378 | // Generates a population of MAX_POP graphs with random coordinates
|
---|
| 379 | void initPopulation () {
|
---|
| 380 | int i;
|
---|
| 381 |
|
---|
| 382 | for (i=0; i< MAX_POP;i++) {
|
---|
| 383 | population[i] = initGraph();
|
---|
| 384 | }
|
---|
| 385 | }
|
---|
| 386 | // Using bubblesort we sort the graphs in the population on fitness
|
---|
| 387 | void sortPopulation () {
|
---|
| 388 | graph tmp;
|
---|
| 389 | int i, j;
|
---|
| 390 | for (j = 1; j < MAX_POP; j++ ) {
|
---|
| 391 | for (i = 0; i < MAX_POP-j; i++ ) {
|
---|
| 392 | if (population[i].fitness > population[i+1].fitness) {
|
---|
| 393 | tmp = population[i];
|
---|
| 394 | population[i] = population[i+1];
|
---|
| 395 | population[i+1] = tmp;
|
---|
| 396 | }
|
---|
| 397 | }
|
---|
| 398 | }
|
---|
| 399 | }
|
---|
| 400 |
|
---|
| 401 | /* Opens input file with adjacency-matrix which contains data about the
|
---|
| 402 | * number of nodes (N) on the first line and the values of the
|
---|
| 403 | * connections between those nodes in a N x N matrix in the following
|
---|
| 404 | * lines
|
---|
| 405 | */
|
---|
| 406 | void openFile(char * inputFile) {
|
---|
| 407 | ifstream input;
|
---|
| 408 | int i, j;
|
---|
| 409 | input.open(inputFile, ios::in);
|
---|
| 410 |
|
---|
| 411 | if (input) {
|
---|
| 412 | cerr << "Opening "<< inputFile << "..." << endl;
|
---|
| 413 | input >> num_nodes;
|
---|
| 414 | if (num_nodes <= 0) {
|
---|
| 415 | input.close();
|
---|
| 416 | cerr << "Error: Invalid data format!" << endl;
|
---|
| 417 | exit(EX_DATAERR);
|
---|
| 418 | } else if (num_nodes < MAX_NODES) {
|
---|
| 419 | for (i=0; i< num_nodes; i++) {
|
---|
| 420 | for (j=0; j< num_nodes; j++) {
|
---|
| 421 | input >> distances[i][j];
|
---|
| 422 | if (input.eof()) {
|
---|
| 423 | cerr << "Error: Invalid data format!" <<endl;
|
---|
| 424 | exit(EX_DATAERR);
|
---|
| 425 | }
|
---|
| 426 | if (distances[i][j] > lon_con){
|
---|
| 427 | lon_con = distances[i][j];
|
---|
| 428 | }
|
---|
| 429 | }
|
---|
| 430 | }
|
---|
| 431 | } else {
|
---|
| 432 | input.close();
|
---|
| 433 | cerr << "Error: Number of nodes in "<< inputFile;
|
---|
| 434 | cerr << " exceeds maximum number of nodes" << endl;
|
---|
| 435 | exit(EX_DATAERR);
|
---|
| 436 | }
|
---|
| 437 | } else {
|
---|
| 438 | input.close();
|
---|
| 439 | cerr << "Error: Couldn't open file " << inputFile << endl;
|
---|
| 440 | exit(EX_NOINPUT);
|
---|
| 441 | }
|
---|
| 442 |
|
---|
| 443 | /* Transform 2d structure to 1d archs to allow easy computations */
|
---|
| 444 | num_archs = 0;
|
---|
| 445 | for (i = 0; i < num_nodes; i++) {
|
---|
| 446 | for (j = i+1; j < num_nodes; j++) {
|
---|
| 447 | if (distances[i][j] > 0) {
|
---|
| 448 | archs[num_archs].a = i;
|
---|
| 449 | archs[num_archs].b = j;
|
---|
| 450 | archs[num_archs].distance = distances[i][j];
|
---|
| 451 | num_archs++;
|
---|
| 452 | }
|
---|
| 453 | }
|
---|
| 454 | }
|
---|
| 455 | }
|
---|
| 456 |
|
---|
| 457 | // Prints the adjacency-matrix of openFile() to the screen
|
---|
| 458 | void printDistances() {
|
---|
| 459 | int i, j;
|
---|
| 460 |
|
---|
| 461 | cout << " " << endl;
|
---|
| 462 | for (i=0; i< num_nodes; i++) {
|
---|
| 463 | for (j=0; j< num_nodes; j++) {
|
---|
| 464 | cout << distances[i][j]<< " ";
|
---|
| 465 | }
|
---|
| 466 | cout << endl;
|
---|
| 467 | }
|
---|
| 468 | cout << " " << endl;
|
---|
| 469 | }
|
---|
| 470 |
|
---|
| 471 | /* Prints the coordinates of every point in a graph to the screen in
|
---|
| 472 | * graphviz compatible output
|
---|
| 473 | * cat <<EOF | neato -Tpng -oga.png && open ga.png
|
---|
| 474 | */
|
---|
| 475 | void printGraph(graph& A) {
|
---|
| 476 | int i;
|
---|
| 477 |
|
---|
| 478 | cout << "graph G { node [shape=circle,"
|
---|
| 479 | << "fontname=\"Lucida Console\",margin=0,0];" << endl;
|
---|
| 480 | for (i=0; i< num_nodes; i++) {
|
---|
| 481 | cout << "C" << i << "[pos=\"" << A.nodes[i].x * 28 << "," <<
|
---|
| 482 | A.nodes[i].y * 28 << "!\", label=\"C" << i << "\"];" << endl;
|
---|
| 483 | }
|
---|
| 484 | for (i=0; i < num_archs; i++) {
|
---|
| 485 | cout << "C" << archs[i].a << " -- C" << archs[i].b << ";" << endl;
|
---|
| 486 | }
|
---|
| 487 | cout << "}" << endl;
|
---|
| 488 | }
|
---|
| 489 |
|
---|
| 490 |
|
---|
| 491 | // Prints every graph stored in array population
|
---|
| 492 | void printPopulation () {
|
---|
| 493 | int i;
|
---|
| 494 | cerr << " " << endl;
|
---|
| 495 | for (i=0; i< MAX_POP; i++) {
|
---|
| 496 | cerr << i << " => ";
|
---|
| 497 | printGraph(population[i]);
|
---|
| 498 | }
|
---|
| 499 | cerr << " " << endl;
|
---|
| 500 | }
|
---|
| 501 |
|
---|
| 502 |
|
---|
| 503 | /* Implementation of Steady State Evolution Algorithm based on p.119 AI
|
---|
| 504 | * Book */
|
---|
| 505 | int main(int argc, char * argv[]) {
|
---|
| 506 | int i,j;
|
---|
| 507 | int org_dist, new_dist;
|
---|
| 508 | int select_one, select_two;
|
---|
| 509 | int loopCounter;
|
---|
| 510 | unsigned int randomSeed;
|
---|
| 511 |
|
---|
| 512 | graph min;
|
---|
| 513 | graph child_one, child_two;
|
---|
| 514 |
|
---|
| 515 | // use random seed to create x,y coordinates of a point
|
---|
| 516 | randomSeed = (unsigned)time(0);
|
---|
| 517 | randomSeed = 0;
|
---|
| 518 | srand(randomSeed);
|
---|
| 519 | /* Debug static seed */
|
---|
| 520 | // srand(0);
|
---|
| 521 |
|
---|
| 522 | // Open the file that contains data about
|
---|
| 523 | // the number odf branches and which branches are
|
---|
| 524 | // connected with each other
|
---|
| 525 | if (argc >= 2) {
|
---|
| 526 | openFile(argv[1]);
|
---|
| 527 | } else {
|
---|
| 528 | cerr << "Usage: " << argv[0] << " <filename> <loopCount>" << endl;
|
---|
| 529 | exit(EX_USAGE);
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | if (argc == 3) {
|
---|
| 533 | loopCounter = atoi(argv[2]);
|
---|
| 534 | } else {
|
---|
| 535 | loopCounter = DEFAULT_LOOPS;
|
---|
| 536 | }
|
---|
| 537 |
|
---|
| 538 | /* To optimize the speed of the genetic algoritm we limit the domain
|
---|
| 539 | * of the points */
|
---|
| 540 | if ((lon_con * num_nodes) < MAX_COORDINATES){
|
---|
| 541 | max_cord = lon_con * num_nodes;
|
---|
| 542 | } else {
|
---|
| 543 | max_cord = MAX_COORDINATES;
|
---|
| 544 | }
|
---|
| 545 | cerr << "Domain of points is set to "
|
---|
| 546 | << max_cord << " x " << max_cord << endl;
|
---|
| 547 |
|
---|
| 548 | // Minimum graph to store best found solution
|
---|
| 549 | min.fitness = INT_MAX;
|
---|
| 550 |
|
---|
| 551 | /* Populate population, with random values */
|
---|
| 552 | initPopulation();
|
---|
| 553 |
|
---|
| 554 | for (i=0; i< loopCounter; i++) {
|
---|
| 555 | // Sort the population of graphs so that graph
|
---|
| 556 | // with smallest fitness is placed in population[0]
|
---|
| 557 | sortPopulation();
|
---|
| 558 |
|
---|
| 559 | // Store the lowest found fitness if it is better
|
---|
| 560 | // then the fitness we already had stored
|
---|
| 561 | if (min.fitness > population[0].fitness){
|
---|
| 562 | copyGraph(population[0],min);
|
---|
| 563 | }
|
---|
| 564 |
|
---|
| 565 | // Stop if optimal is found e.g fitness equals zero
|
---|
| 566 | if(population[0].fitness == 0){
|
---|
| 567 | break;
|
---|
| 568 | }
|
---|
| 569 |
|
---|
| 570 | // Selection reproducing parents via roulette wheel
|
---|
| 571 | // fittest parents get selected
|
---|
| 572 | select_one = selectGraph();
|
---|
| 573 | do {
|
---|
| 574 | select_two = selectGraph();
|
---|
| 575 | }while (select_one == select_two);
|
---|
| 576 |
|
---|
| 577 | // set points in children with crossover result of parents
|
---|
| 578 | copyGraph(population[select_one], child_one);
|
---|
| 579 | copyGraph(population[select_two], child_two);
|
---|
| 580 |
|
---|
| 581 | // Crossover the selected parents
|
---|
| 582 | crossUniform(child_one, child_two);
|
---|
| 583 |
|
---|
| 584 | // mutate childs with small random probability usually 50%
|
---|
| 585 | mutateGraph(99, child_one);
|
---|
| 586 | mutateGraph(99, child_two);
|
---|
| 587 |
|
---|
| 588 | // Calculate fitness of both children
|
---|
| 589 | calcFitness(child_one);
|
---|
| 590 | calcFitness(child_two);
|
---|
| 591 |
|
---|
| 592 | // Least fittest graphs in population get replaced
|
---|
| 593 | copyGraph(child_one,population[MAX_POP -2]);
|
---|
| 594 | copyGraph(child_two,population[MAX_POP -1]);
|
---|
| 595 | }
|
---|
| 596 |
|
---|
| 597 | cerr << "Best found coordinates after "<< i <<
|
---|
| 598 | " epochs for given input graph: " << endl;
|
---|
| 599 | printGraph(min);
|
---|
| 600 |
|
---|
| 601 | if(min.fitness != 0){
|
---|
| 602 | for (i=0; i< num_nodes; i++) {
|
---|
| 603 | for (j=i+1; j< num_nodes; j++) {
|
---|
| 604 | org_dist = distances[i][j];
|
---|
| 605 | if (org_dist != 0){
|
---|
| 606 | new_dist = calcDistance(min.nodes[i],min.nodes[j]);
|
---|
| 607 | cerr << "Distance between point C"<< i << " - C" << j << " = ";
|
---|
| 608 | cerr << calcDistance(min.nodes[i],min.nodes[j]) << " ";
|
---|
| 609 | if (new_dist != org_dist){
|
---|
| 610 | cerr << "SHOULD BE " << org_dist << endl;
|
---|
| 611 | } else {
|
---|
| 612 | cerr << "CORRECT" << endl;
|
---|
| 613 | }
|
---|
| 614 | }
|
---|
| 615 | }
|
---|
| 616 | }
|
---|
| 617 | }
|
---|
| 618 | cerr << "Fitness Intersection : " << min.fitnessIntersection << endl;
|
---|
| 619 | cerr << "Fitness Distance : " << min.fitnessDistance << endl;
|
---|
| 620 | cerr << "Fitness Overall : " << min.fitness << endl;
|
---|
| 621 | cerr << "Random seed : " << randomSeed << endl;
|
---|
| 622 | return(EX_OK);
|
---|
| 623 | }
|
---|