1 | /* File : ga.cpp
|
---|
2 | * Authors : Rick van der Zwet & Thomas Steenbergen
|
---|
3 | * S-number : 0433373 / 0117544
|
---|
4 | * Version : $Id: ga.cpp 612 2008-05-13 22:25:56Z rick $
|
---|
5 | * Licence : BSD
|
---|
6 | * Description : 4th Assignment AI 2008: Genetic Algoithm
|
---|
7 | */
|
---|
8 |
|
---|
9 | #include <iostream>
|
---|
10 | #include <climits>
|
---|
11 | #include <ctime>
|
---|
12 | #include <cstdlib>
|
---|
13 | #include <fstream>
|
---|
14 | #include <math.h>
|
---|
15 | #include <string>
|
---|
16 | #include <sysexits.h>
|
---|
17 |
|
---|
18 | using namespace std;
|
---|
19 |
|
---|
20 | /*NOTE: Graph can only have this many nodes */
|
---|
21 | #define MAX_NODES 50
|
---|
22 | #define MAX_ARCHS 250
|
---|
23 |
|
---|
24 | /*NOTE: Maximum numbers of newly generated children */
|
---|
25 | #define MAX_POP 20
|
---|
26 |
|
---|
27 | /*NOTE: The chance to which we mutate a given point */
|
---|
28 | #define MUT_LEV 50
|
---|
29 |
|
---|
30 | /*NOTE: The maximum number of generations that the algorithm runs */
|
---|
31 | #define DEFAULT_LOOPS 100000
|
---|
32 |
|
---|
33 | #define DEFAULT_FILENAME "input.txt"
|
---|
34 | #define MAX_COORDINATES 1000
|
---|
35 |
|
---|
36 |
|
---|
37 | struct arch {
|
---|
38 | int a, b;
|
---|
39 | double distance;
|
---|
40 |
|
---|
41 | arch() {
|
---|
42 | a = -1;
|
---|
43 | b = -1;
|
---|
44 | distance = -1;
|
---|
45 | }
|
---|
46 | };
|
---|
47 |
|
---|
48 | /* Coordinate of point in graph */
|
---|
49 | struct point {
|
---|
50 | int x, y; /* X,Y coordinates */
|
---|
51 |
|
---|
52 | point(){
|
---|
53 | x = -1;
|
---|
54 | y = -1;
|
---|
55 | }
|
---|
56 | };
|
---|
57 |
|
---|
58 | /* Comparision between 2 points */
|
---|
59 | bool operator==(point &a, point &b) {
|
---|
60 | if ( (a.x == b.x) && (a.y == b.y))
|
---|
61 | return true;
|
---|
62 | else
|
---|
63 | return false;
|
---|
64 | }
|
---|
65 |
|
---|
66 | struct graph {
|
---|
67 | point nodes[MAX_NODES]; /* Location of nodes */
|
---|
68 | int fitness; /* Overall fitness graph */
|
---|
69 | int fitnessDistance;
|
---|
70 | int fitnessIntersection;
|
---|
71 |
|
---|
72 | graph() {
|
---|
73 | fitness = -1;
|
---|
74 | fitnessDistance = -1;
|
---|
75 | fitnessIntersection = -1;
|
---|
76 | }
|
---|
77 | };
|
---|
78 |
|
---|
79 | /*
|
---|
80 | * BEGIN Global variables
|
---|
81 | */
|
---|
82 |
|
---|
83 | arch archs[MAX_ARCHS]; /* arch listing in graph */
|
---|
84 | int num_archs = -1; /* Number of archs in graph */
|
---|
85 | int num_nodes = -1; /* Number of nodes in graph */
|
---|
86 | int max_cord = -1; /* Domain e.g. maximum coord of X, Y*/
|
---|
87 | int lon_con = -1; /* Longest connection of two points */
|
---|
88 | int distances [MAX_NODES][MAX_NODES]; /* Distances between node i and j */
|
---|
89 | graph population[MAX_POP]; /* Graph list */
|
---|
90 |
|
---|
91 | /*
|
---|
92 | * END Global variables
|
---|
93 | */
|
---|
94 |
|
---|
95 |
|
---|
96 |
|
---|
97 | /* Calculates the distance between two points
|
---|
98 | * Distance (A,B) = d((x1,y1),(x2,y2))=SQRT((x1-x2)^2+(y1-y2)^2)
|
---|
99 | */
|
---|
100 | double calcDistance(point A, point B) {
|
---|
101 | double dist = 0;
|
---|
102 | dist = sqrt(pow((A.x - B.x),2) + pow((A.y - B.y),2));
|
---|
103 | return dist;
|
---|
104 | }
|
---|
105 |
|
---|
106 | /* How well is the scaling of the branches ofthis graph weel
|
---|
107 | * versus the input graph. The more it deviates of the orginal the higher
|
---|
108 | * the fitness number.
|
---|
109 | */
|
---|
110 | int fitnessDistance(graph& A) {
|
---|
111 | int i,j;
|
---|
112 | int org_dist = 0; // distance between 2 points in input graph
|
---|
113 | double new_dist = 0; // distance between 2 points in population graph
|
---|
114 | double diff_dist = 0; // absolute difference
|
---|
115 | int tmp_fitness = 0;
|
---|
116 |
|
---|
117 | for (i=0; i< num_nodes; i++) {
|
---|
118 | for (j=i+1; j< num_nodes; j++) {
|
---|
119 | org_dist = distances[i][j];
|
---|
120 | if (org_dist != 0){
|
---|
121 | new_dist = calcDistance(A.nodes[i],A.nodes[j]);
|
---|
122 | diff_dist = fabs(new_dist - org_dist);
|
---|
123 | tmp_fitness += diff_dist;
|
---|
124 | }
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | return(tmp_fitness);
|
---|
129 | }
|
---|
130 |
|
---|
131 | /* Output point itself */
|
---|
132 | void printPoint(point &A) {
|
---|
133 | cerr << A.x << "," << A.y;
|
---|
134 | }
|
---|
135 |
|
---|
136 | /* Calculates whether the line A-B crosses with line C-D and wether in
|
---|
137 | * domain if so a it returns the point of intersection else return point
|
---|
138 | * [-1,-1] All explained in:
|
---|
139 | * http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=geometry2
|
---|
140 | * http://en.wikipedia.org/wiki/Line-line_intersection
|
---|
141 | */
|
---|
142 | bool calcIntersection(point A, point B, point C, point D, point& tmp) {
|
---|
143 | double K, L, M;
|
---|
144 | double S, T, R;
|
---|
145 | double det;
|
---|
146 | bool result;
|
---|
147 | double distance_a_b;
|
---|
148 |
|
---|
149 | // rewrite line A-B into formula form: Kx + Ly = M
|
---|
150 | K = B.y - A.y;
|
---|
151 | L = A.x - B.x;
|
---|
152 | M = K * A.x + L * A.y;
|
---|
153 |
|
---|
154 | // rewrite line C-D into formula form: Sx + Ty = R
|
---|
155 | S = D.y - C.y;
|
---|
156 | T = C.x - D.x;
|
---|
157 | R = S * C.x + T * C.y;
|
---|
158 |
|
---|
159 | // Now we calculate the intersection between the lines
|
---|
160 | det = K*T - S*L;
|
---|
161 |
|
---|
162 | if(det == 0){
|
---|
163 | /* Lines A-B & C-D are parallel, checking wether they are on top of
|
---|
164 | * each other
|
---|
165 | */
|
---|
166 | tmp.x = -1;
|
---|
167 | tmp.y = -1;
|
---|
168 | result = false;
|
---|
169 |
|
---|
170 | distance_a_b = calcDistance(A,B);
|
---|
171 | if ((calcDistance(A,C) + calcDistance(B,C) == distance_a_b)) {
|
---|
172 | tmp.x = C.x;
|
---|
173 | tmp.y = C.y;
|
---|
174 | result = false;
|
---|
175 | } else if ((calcDistance(A,D) + calcDistance(B,D) == distance_a_b)) {
|
---|
176 | tmp.x = D.x;
|
---|
177 | tmp.y = D.y;
|
---|
178 | result = false;
|
---|
179 | }
|
---|
180 |
|
---|
181 | } else {
|
---|
182 | tmp.x = (T*M - L*R)/det;
|
---|
183 | tmp.y = (K*R - S*M)/det;
|
---|
184 | result = true;
|
---|
185 |
|
---|
186 | /* Verify intersection in domain */
|
---|
187 | if (tmp.x < 0 || tmp.x >= max_cord || tmp.y < 0 || tmp.y >= max_cord) {
|
---|
188 | result = false;
|
---|
189 | }
|
---|
190 |
|
---|
191 | /* Verify intersection not a actual end point */
|
---|
192 | if ((tmp == A || tmp == B) && (tmp == C || tmp == D)) {
|
---|
193 | result = false;
|
---|
194 | }
|
---|
195 | }
|
---|
196 |
|
---|
197 | return result;
|
---|
198 | }
|
---|
199 |
|
---|
200 | bool calcIntersection(point A, point B, point C, point D) {
|
---|
201 | point tmp;
|
---|
202 | return calcIntersection(A, B, C, D, tmp);
|
---|
203 | }
|
---|
204 |
|
---|
205 | /*
|
---|
206 | * The number of intersections a graph. How more intersections the higher
|
---|
207 | * the fitness number.
|
---|
208 | */
|
---|
209 | int fitnessIntersection(graph& A) {
|
---|
210 | int i,j;
|
---|
211 | int tmp_fitness = 0;
|
---|
212 |
|
---|
213 | for (i = 0; i < num_archs; i++) {
|
---|
214 | for (j = i + 1; j < num_archs; j++) {
|
---|
215 | if ( calcIntersection(A.nodes[archs[i].a],
|
---|
216 | A.nodes[archs[i].b],
|
---|
217 | A.nodes[archs[j].a],
|
---|
218 | A.nodes[archs[j].b])) {
|
---|
219 | tmp_fitness++;
|
---|
220 | }
|
---|
221 | }
|
---|
222 | }
|
---|
223 | return(tmp_fitness);
|
---|
224 | }
|
---|
225 |
|
---|
226 |
|
---|
227 | /* Calculates the fitness of every graph in the population */
|
---|
228 | void calcFitness(graph& A) {
|
---|
229 | A.fitnessIntersection = fitnessIntersection(A);
|
---|
230 | A.fitnessDistance = fitnessDistance(A);
|
---|
231 | A.fitness = A.fitnessDistance + A.fitnessIntersection;
|
---|
232 | }
|
---|
233 |
|
---|
234 | void crossover(graph& A, graph& B){
|
---|
235 | /* XXX: Find clever way to combine the different graphs to be able
|
---|
236 | * to make new ones. Three to expiriment with:
|
---|
237 | * - uniform crossover
|
---|
238 | * - single-point crossover
|
---|
239 | * - partially mapped crossover
|
---|
240 | * All explained in: http://www.liacs.nl/~kosters/AI/genetisch.pdf
|
---|
241 | */
|
---|
242 |
|
---|
243 | }
|
---|
244 |
|
---|
245 | // Combine two graphs using single point crossover
|
---|
246 | // A single random point is chosen in a graph's node
|
---|
247 | // array dividing it into two halves e.g. the head and the tail.
|
---|
248 | // Then heads are swapped between parents A & B
|
---|
249 | void crossSingle(graph& A, graph& B){
|
---|
250 | point tmp;
|
---|
251 | unsigned int cut;
|
---|
252 | unsigned int i;
|
---|
253 |
|
---|
254 | cut = rand() % num_nodes;
|
---|
255 | for (i=0; i< cut;i++) {
|
---|
256 | tmp = A.nodes[i];
|
---|
257 | A.nodes[i] = B.nodes[i];
|
---|
258 | B.nodes[i] = tmp;
|
---|
259 | }
|
---|
260 | }
|
---|
261 |
|
---|
262 | // Combine two graphs using uniform crossover
|
---|
263 | // The points are swapped with a fixed probability of 0.5.
|
---|
264 | void crossUniform(graph& A, graph& B){
|
---|
265 | point tmp;
|
---|
266 | int i, rnd;
|
---|
267 |
|
---|
268 | for (i=0; i< num_nodes;i++) {
|
---|
269 | rnd = rand()% 2;
|
---|
270 | if (rnd == 1){
|
---|
271 | tmp.x = A.nodes[i].x;
|
---|
272 | A.nodes[i].x = B.nodes[i].x;
|
---|
273 | B.nodes[i].x = tmp.x;
|
---|
274 | }
|
---|
275 | rnd = rand()% 2;
|
---|
276 | if (rnd == 1){
|
---|
277 | tmp.y = A.nodes[i].y;
|
---|
278 | A.nodes[i].y = B.nodes[i].y;
|
---|
279 | B.nodes[i].y = tmp.y;
|
---|
280 | }
|
---|
281 | }
|
---|
282 | }
|
---|
283 |
|
---|
284 |
|
---|
285 | // Copies the contents of graph A to graph B
|
---|
286 | void copyGraph(graph & A, graph& B){
|
---|
287 | int i;
|
---|
288 |
|
---|
289 | for (i=0; i< num_nodes;i++) {
|
---|
290 | B.nodes[i] = A.nodes[i];
|
---|
291 | }
|
---|
292 | B.fitness = A.fitness;
|
---|
293 | B.fitnessIntersection = A.fitnessIntersection;
|
---|
294 | B.fitnessDistance = A.fitnessDistance;
|
---|
295 | }
|
---|
296 |
|
---|
297 | /* Mutate random point in a graph and change it to random value
|
---|
298 | * within the domain of points
|
---|
299 | */
|
---|
300 | void mutateGraph (int mutationLevel, graph& A){
|
---|
301 | int i,x,y;
|
---|
302 |
|
---|
303 | if ((rand() % 100) > mutationLevel) {
|
---|
304 | return;
|
---|
305 | }
|
---|
306 |
|
---|
307 | i = rand() % num_nodes;
|
---|
308 | x = (rand()% max_cord)+1;
|
---|
309 | y = (rand()% max_cord)+1;
|
---|
310 |
|
---|
311 | A.nodes[i].x = x;
|
---|
312 | A.nodes[i].y = y;
|
---|
313 | }
|
---|
314 |
|
---|
315 | /* To do selection we use roulettewheel selection, only we
|
---|
316 | * invert adjust the regular algorithm so it prefers
|
---|
317 | * the lowest fitness numbers e.g. the biggest slice of
|
---|
318 | * piece is now the least attractive.
|
---|
319 | */
|
---|
320 | int selectGraph() {
|
---|
321 | int i;
|
---|
322 | int choice = -1;
|
---|
323 | int combined_fitness;
|
---|
324 | int fitness_reverse[MAX_POP];
|
---|
325 | int max_fitness = INT_MIN;
|
---|
326 | int min_fitness = INT_MAX;
|
---|
327 | int total_fitness = 0;
|
---|
328 | int wheelnumber;
|
---|
329 |
|
---|
330 | /* Find minimum/maximum */
|
---|
331 | min_fitness = population[0].fitness;
|
---|
332 | max_fitness = population[MAX_POP - 1].fitness;
|
---|
333 |
|
---|
334 | /* Set balanced fitness */
|
---|
335 | combined_fitness = min_fitness + max_fitness;
|
---|
336 | for(i=0; i< MAX_POP; i++) {
|
---|
337 | fitness_reverse[i] = combined_fitness - population[i].fitness;
|
---|
338 | total_fitness += fitness_reverse[i];
|
---|
339 | }
|
---|
340 |
|
---|
341 | /* Get random number of wheel */
|
---|
342 | wheelnumber = rand() % total_fitness;
|
---|
343 |
|
---|
344 | /* Find matching graph */
|
---|
345 | total_fitness = 0;
|
---|
346 | for(i=0; i< MAX_POP; i++) {
|
---|
347 | total_fitness += fitness_reverse[i];
|
---|
348 | if (total_fitness > wheelnumber) {
|
---|
349 | choice = i;
|
---|
350 | break;
|
---|
351 | }
|
---|
352 | }
|
---|
353 |
|
---|
354 | return (choice);
|
---|
355 | }
|
---|
356 |
|
---|
357 | /* Set the values of a given graph to random numbers
|
---|
358 | * In other word those graphs who aint fit enough
|
---|
359 | * for the next round will be discarded.
|
---|
360 | */
|
---|
361 | void setRandGraph(graph& A) {
|
---|
362 | int i;
|
---|
363 | for (i=0; i< num_nodes;i++) {
|
---|
364 | A.nodes[i].x = (rand()%max_cord)+1;
|
---|
365 | A.nodes[i].y = (rand()%max_cord)+1;
|
---|
366 | }
|
---|
367 |
|
---|
368 | calcFitness(A);
|
---|
369 | }
|
---|
370 |
|
---|
371 | /* Create a graph and set nodes to certain location */
|
---|
372 | graph initGraph() {
|
---|
373 | graph A;
|
---|
374 | setRandGraph(A);
|
---|
375 | return A;
|
---|
376 | }
|
---|
377 |
|
---|
378 | // Generates a population of MAX_POP graphs with random coordinates
|
---|
379 | void initPopulation () {
|
---|
380 | int i;
|
---|
381 |
|
---|
382 | for (i=0; i< MAX_POP;i++) {
|
---|
383 | population[i] = initGraph();
|
---|
384 | }
|
---|
385 | }
|
---|
386 | // Using bubblesort we sort the graphs in the population on fitness
|
---|
387 | void sortPopulation () {
|
---|
388 | graph tmp;
|
---|
389 | int i, j;
|
---|
390 | for (j = 1; j < MAX_POP; j++ ) {
|
---|
391 | for (i = 0; i < MAX_POP-j; i++ ) {
|
---|
392 | if (population[i].fitness > population[i+1].fitness) {
|
---|
393 | tmp = population[i];
|
---|
394 | population[i] = population[i+1];
|
---|
395 | population[i+1] = tmp;
|
---|
396 | }
|
---|
397 | }
|
---|
398 | }
|
---|
399 | }
|
---|
400 |
|
---|
401 | /* Opens input file with adjacency-matrix which contains data about the
|
---|
402 | * number of nodes (N) on the first line and the values of the
|
---|
403 | * connections between those nodes in a N x N matrix in the following
|
---|
404 | * lines
|
---|
405 | */
|
---|
406 | void openFile(char * inputFile) {
|
---|
407 | ifstream input;
|
---|
408 | int i, j;
|
---|
409 | input.open(inputFile, ios::in);
|
---|
410 |
|
---|
411 | if (input) {
|
---|
412 | cerr << "Opening "<< inputFile << "..." << endl;
|
---|
413 | input >> num_nodes;
|
---|
414 | if (num_nodes <= 0) {
|
---|
415 | input.close();
|
---|
416 | cerr << "Error: Invalid data format!" << endl;
|
---|
417 | exit(EX_DATAERR);
|
---|
418 | } else if (num_nodes < MAX_NODES) {
|
---|
419 | for (i=0; i< num_nodes; i++) {
|
---|
420 | for (j=0; j< num_nodes; j++) {
|
---|
421 | input >> distances[i][j];
|
---|
422 | if (input.eof()) {
|
---|
423 | cerr << "Error: Invalid data format!" <<endl;
|
---|
424 | exit(EX_DATAERR);
|
---|
425 | }
|
---|
426 | if (distances[i][j] > lon_con){
|
---|
427 | lon_con = distances[i][j];
|
---|
428 | }
|
---|
429 | }
|
---|
430 | }
|
---|
431 | } else {
|
---|
432 | input.close();
|
---|
433 | cerr << "Error: Number of nodes in "<< inputFile;
|
---|
434 | cerr << " exceeds maximum number of nodes" << endl;
|
---|
435 | exit(EX_DATAERR);
|
---|
436 | }
|
---|
437 | } else {
|
---|
438 | input.close();
|
---|
439 | cerr << "Error: Couldn't open file " << inputFile << endl;
|
---|
440 | exit(EX_NOINPUT);
|
---|
441 | }
|
---|
442 |
|
---|
443 | /* Transform 2d structure to 1d archs to allow easy computations */
|
---|
444 | num_archs = 0;
|
---|
445 | for (i = 0; i < num_nodes; i++) {
|
---|
446 | for (j = i+1; j < num_nodes; j++) {
|
---|
447 | if (distances[i][j] > 0) {
|
---|
448 | archs[num_archs].a = i;
|
---|
449 | archs[num_archs].b = j;
|
---|
450 | archs[num_archs].distance = distances[i][j];
|
---|
451 | num_archs++;
|
---|
452 | }
|
---|
453 | }
|
---|
454 | }
|
---|
455 | }
|
---|
456 |
|
---|
457 | // Prints the adjacency-matrix of openFile() to the screen
|
---|
458 | void printDistances() {
|
---|
459 | int i, j;
|
---|
460 |
|
---|
461 | cout << " " << endl;
|
---|
462 | for (i=0; i< num_nodes; i++) {
|
---|
463 | for (j=0; j< num_nodes; j++) {
|
---|
464 | cout << distances[i][j]<< " ";
|
---|
465 | }
|
---|
466 | cout << endl;
|
---|
467 | }
|
---|
468 | cout << " " << endl;
|
---|
469 | }
|
---|
470 |
|
---|
471 | /* Prints the coordinates of every point in a graph to the screen in
|
---|
472 | * graphviz compatible output
|
---|
473 | * cat <<EOF | neato -Tpng -oga.png && open ga.png
|
---|
474 | */
|
---|
475 | void printGraph(graph& A) {
|
---|
476 | int i;
|
---|
477 |
|
---|
478 | cout << "graph G { node [shape=circle,"
|
---|
479 | << "fontname=\"Lucida Console\",margin=0,0];" << endl;
|
---|
480 | for (i=0; i< num_nodes; i++) {
|
---|
481 | cout << "C" << i << "[pos=\"" << A.nodes[i].x * 28 << "," <<
|
---|
482 | A.nodes[i].y * 28 << "!\", label=\"C" << i << "\"];" << endl;
|
---|
483 | }
|
---|
484 | for (i=0; i < num_archs; i++) {
|
---|
485 | cout << "C" << archs[i].a << " -- C" << archs[i].b << ";" << endl;
|
---|
486 | }
|
---|
487 | cout << "}" << endl;
|
---|
488 | }
|
---|
489 |
|
---|
490 |
|
---|
491 | // Prints every graph stored in array population
|
---|
492 | void printPopulation () {
|
---|
493 | int i;
|
---|
494 | cerr << " " << endl;
|
---|
495 | for (i=0; i< MAX_POP; i++) {
|
---|
496 | cerr << i << " => ";
|
---|
497 | printGraph(population[i]);
|
---|
498 | }
|
---|
499 | cerr << " " << endl;
|
---|
500 | }
|
---|
501 |
|
---|
502 |
|
---|
503 | /* Implementation of Steady State Evolution Algorithm based on p.119 AI
|
---|
504 | * Book */
|
---|
505 | int main(int argc, char * argv[]) {
|
---|
506 | int i,j;
|
---|
507 | int org_dist, new_dist;
|
---|
508 | int select_one, select_two;
|
---|
509 | int loopCounter;
|
---|
510 | unsigned int randomSeed;
|
---|
511 |
|
---|
512 | graph min;
|
---|
513 | graph child_one, child_two;
|
---|
514 |
|
---|
515 | // use random seed to create x,y coordinates of a point
|
---|
516 | randomSeed = (unsigned)time(0);
|
---|
517 | randomSeed = 0;
|
---|
518 | srand(randomSeed);
|
---|
519 | /* Debug static seed */
|
---|
520 | // srand(0);
|
---|
521 |
|
---|
522 | // Open the file that contains data about
|
---|
523 | // the number odf branches and which branches are
|
---|
524 | // connected with each other
|
---|
525 | if (argc >= 2) {
|
---|
526 | openFile(argv[1]);
|
---|
527 | } else {
|
---|
528 | cerr << "Usage: " << argv[0] << " <filename> <loopCount>" << endl;
|
---|
529 | exit(EX_USAGE);
|
---|
530 | }
|
---|
531 |
|
---|
532 | if (argc == 3) {
|
---|
533 | loopCounter = atoi(argv[2]);
|
---|
534 | } else {
|
---|
535 | loopCounter = DEFAULT_LOOPS;
|
---|
536 | }
|
---|
537 |
|
---|
538 | /* To optimize the speed of the genetic algoritm we limit the domain
|
---|
539 | * of the points */
|
---|
540 | if ((lon_con * num_nodes) < MAX_COORDINATES){
|
---|
541 | max_cord = lon_con * num_nodes;
|
---|
542 | } else {
|
---|
543 | max_cord = MAX_COORDINATES;
|
---|
544 | }
|
---|
545 | cerr << "Domain of points is set to "
|
---|
546 | << max_cord << " x " << max_cord << endl;
|
---|
547 |
|
---|
548 | // Minimum graph to store best found solution
|
---|
549 | min.fitness = INT_MAX;
|
---|
550 |
|
---|
551 | /* Populate population, with random values */
|
---|
552 | initPopulation();
|
---|
553 |
|
---|
554 | for (i=0; i< loopCounter; i++) {
|
---|
555 | // Sort the population of graphs so that graph
|
---|
556 | // with smallest fitness is placed in population[0]
|
---|
557 | sortPopulation();
|
---|
558 |
|
---|
559 | // Store the lowest found fitness if it is better
|
---|
560 | // then the fitness we already had stored
|
---|
561 | if (min.fitness > population[0].fitness){
|
---|
562 | copyGraph(population[0],min);
|
---|
563 | }
|
---|
564 |
|
---|
565 | // Stop if optimal is found e.g fitness equals zero
|
---|
566 | if(population[0].fitness == 0){
|
---|
567 | break;
|
---|
568 | }
|
---|
569 |
|
---|
570 | // Selection reproducing parents via roulette wheel
|
---|
571 | // fittest parents get selected
|
---|
572 | select_one = selectGraph();
|
---|
573 | do {
|
---|
574 | select_two = selectGraph();
|
---|
575 | }while (select_one == select_two);
|
---|
576 |
|
---|
577 | // set points in children with crossover result of parents
|
---|
578 | copyGraph(population[select_one], child_one);
|
---|
579 | copyGraph(population[select_two], child_two);
|
---|
580 |
|
---|
581 | // Crossover the selected parents
|
---|
582 | crossUniform(child_one, child_two);
|
---|
583 |
|
---|
584 | // mutate childs with small random probability usually 50%
|
---|
585 | mutateGraph(99, child_one);
|
---|
586 | mutateGraph(99, child_two);
|
---|
587 |
|
---|
588 | // Calculate fitness of both children
|
---|
589 | calcFitness(child_one);
|
---|
590 | calcFitness(child_two);
|
---|
591 |
|
---|
592 | // Least fittest graphs in population get replaced
|
---|
593 | copyGraph(child_one,population[MAX_POP -2]);
|
---|
594 | copyGraph(child_two,population[MAX_POP -1]);
|
---|
595 | }
|
---|
596 |
|
---|
597 | cerr << "Best found coordinates after "<< i <<
|
---|
598 | " epochs for given input graph: " << endl;
|
---|
599 | printGraph(min);
|
---|
600 |
|
---|
601 | if(min.fitness != 0){
|
---|
602 | for (i=0; i< num_nodes; i++) {
|
---|
603 | for (j=i+1; j< num_nodes; j++) {
|
---|
604 | org_dist = distances[i][j];
|
---|
605 | if (org_dist != 0){
|
---|
606 | new_dist = calcDistance(min.nodes[i],min.nodes[j]);
|
---|
607 | cerr << "Distance between point C"<< i << " - C" << j << " = ";
|
---|
608 | cerr << calcDistance(min.nodes[i],min.nodes[j]) << " ";
|
---|
609 | if (new_dist != org_dist){
|
---|
610 | cerr << "SHOULD BE " << org_dist << endl;
|
---|
611 | } else {
|
---|
612 | cerr << "CORRECT" << endl;
|
---|
613 | }
|
---|
614 | }
|
---|
615 | }
|
---|
616 | }
|
---|
617 | }
|
---|
618 | cerr << "Fitness Intersection : " << min.fitnessIntersection << endl;
|
---|
619 | cerr << "Fitness Distance : " << min.fitnessDistance << endl;
|
---|
620 | cerr << "Fitness Overall : " << min.fitness << endl;
|
---|
621 | cerr << "Random seed : " << randomSeed << endl;
|
---|
622 | return(EX_OK);
|
---|
623 | }
|
---|