[2] | 1 | /*
|
---|
| 2 | * Rick van der Zwet
|
---|
| 3 | * 0433373
|
---|
| 4 | * OS Assigment 3
|
---|
| 5 | * Licence: BSD
|
---|
| 6 | * $Id: nn.c 557 2008-04-08 22:57:09Z rick $
|
---|
| 7 | */
|
---|
| 8 |
|
---|
| 9 | #include <sysexits.h>
|
---|
| 10 | #include <stdio.h>
|
---|
| 11 | #include <stdlib.h>
|
---|
| 12 | #include <math.h>
|
---|
| 13 | #include <time.h>
|
---|
| 14 |
|
---|
| 15 | /* NOTE: All first knobs are bias knobs or hidden stale knobs
|
---|
| 16 | * - Validation is done using rounding, please make outputs discrete or
|
---|
| 17 | * alter validation function
|
---|
| 18 | */
|
---|
| 19 |
|
---|
| 20 | /* Allow uniform and easy calls at functions */
|
---|
| 21 | #define TRUE 1
|
---|
| 22 | #define FALSE 0
|
---|
| 23 |
|
---|
| 24 |
|
---|
| 25 | /* Network variables */
|
---|
| 26 | /*NOTE: first node is 'hidden' bias knob */
|
---|
| 27 | #ifndef INPUT_SIZE
|
---|
| 28 | #define INPUT_SIZE 11
|
---|
| 29 | #endif
|
---|
| 30 |
|
---|
| 31 | /*NOTE: first node is 'hidden' bias knob */
|
---|
| 32 | #ifndef HIDDEN_SIZE
|
---|
| 33 | #define HIDDEN_SIZE 11
|
---|
| 34 | #endif
|
---|
| 35 |
|
---|
| 36 | /*NOTE: first node is 'hidden' 'lame' knob */
|
---|
| 37 | #ifndef OUTPUT_SIZE
|
---|
| 38 | #define OUTPUT_SIZE 11
|
---|
| 39 | #endif
|
---|
| 40 |
|
---|
| 41 | /* Learn speed alpha of network */
|
---|
| 42 | #ifndef LEARN_SPEED
|
---|
| 43 | #define LEARN_SPEED 0.5
|
---|
| 44 | #endif
|
---|
| 45 |
|
---|
| 46 | /* After QUALITY_ROUND trainingset check quality of network */
|
---|
| 47 | #define QUALITY_ROUND 100
|
---|
| 48 |
|
---|
| 49 | /* Training set, to be used to train network */
|
---|
| 50 | char * file_training = "data/training.txt";
|
---|
| 51 | /* Validation set, to be used to test end result of network */
|
---|
| 52 | char * file_validate = "data/validate.txt";
|
---|
| 53 | /* Quality set, to be used to do quick testing whether network is
|
---|
| 54 | * improving
|
---|
| 55 | */
|
---|
| 56 | char * file_quality = "data/quality.txt";
|
---|
| 57 |
|
---|
| 58 | /* Globally defined arrays, which represent the network */
|
---|
| 59 | double hidden[HIDDEN_SIZE];
|
---|
| 60 | double input[INPUT_SIZE];
|
---|
| 61 | double output[OUTPUT_SIZE];
|
---|
| 62 | double target[OUTPUT_SIZE];
|
---|
| 63 | double weight_HtoO[HIDDEN_SIZE][OUTPUT_SIZE];
|
---|
| 64 | double weight_ItoH[INPUT_SIZE][HIDDEN_SIZE];
|
---|
| 65 |
|
---|
| 66 | #define WEIGHT_NOT_USED -99999
|
---|
| 67 |
|
---|
| 68 | void stdInit() {
|
---|
| 69 | int i;
|
---|
| 70 | /* Should never change, been using */
|
---|
| 71 | for (i = 0; i < INPUT_SIZE; i++)
|
---|
| 72 | weight_ItoH[i][0] = WEIGHT_NOT_USED;
|
---|
| 73 | for (i = 0; i < HIDDEN_SIZE; i++)
|
---|
| 74 | weight_HtoO[i][0] = WEIGHT_NOT_USED;
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 |
|
---|
| 78 | /* Random init of weights */
|
---|
| 79 | void randInit() {
|
---|
| 80 | int i,j;
|
---|
| 81 |
|
---|
| 82 | /* Different numbers every call */
|
---|
| 83 | srandom(time(NULL));
|
---|
| 84 |
|
---|
| 85 | for (i = 0; i < INPUT_SIZE; i++)
|
---|
| 86 | for ( j = 1; j < HIDDEN_SIZE; j++) {
|
---|
| 87 | weight_ItoH[i][j] = (double)(random() % 100) / 100;
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | for (i = 0; i < HIDDEN_SIZE; i++)
|
---|
| 91 | for (j = 1; j < OUTPUT_SIZE; j++)
|
---|
| 92 | weight_HtoO[i][j] = (double)(random() % 100) / 100;
|
---|
| 93 |
|
---|
| 94 | stdInit();
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | /* Fixed init of weights */
|
---|
| 98 | void fixedInit() {
|
---|
| 99 | int i,j;
|
---|
| 100 | for (i = 0; i < INPUT_SIZE; i++)
|
---|
| 101 | for ( j = 1; j < HIDDEN_SIZE; j++) {
|
---|
| 102 | weight_ItoH[i][j] = 0.5;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | for (i = 0; i < HIDDEN_SIZE; i++)
|
---|
| 106 | for (j = 1; j < OUTPUT_SIZE; j++)
|
---|
| 107 | weight_HtoO[i][j] = 0.5;
|
---|
| 108 |
|
---|
| 109 | stdInit();
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | /* Define exact wights, used for debugging calculations
|
---|
| 113 | * other flags INPUT = 2, HIDDEN = 2, OUTPUT = 1
|
---|
| 114 | */
|
---|
| 115 | void debugInit() {
|
---|
| 116 | stdInit();
|
---|
| 117 | weight_ItoH[0][1] = 1;
|
---|
| 118 | weight_ItoH[0][2] = 1;
|
---|
| 119 | weight_ItoH[1][1] = 0.62;
|
---|
| 120 | weight_ItoH[1][2] = 0.42;
|
---|
| 121 | weight_ItoH[2][1] = 0.55;
|
---|
| 122 | weight_ItoH[2][2] = -0.17;
|
---|
| 123 |
|
---|
| 124 | weight_HtoO[0][1] = 1;
|
---|
| 125 | weight_HtoO[1][1] = 0.35;
|
---|
| 126 | weight_HtoO[2][1] = 0.81;
|
---|
| 127 | }
|
---|
| 128 |
|
---|
| 129 | /* calculate Aj's and Ai's (outputs) */
|
---|
| 130 | void nnCalc() {
|
---|
| 131 | int i,j;
|
---|
| 132 | double total;
|
---|
| 133 | for (i = 1; i < HIDDEN_SIZE; i++) {
|
---|
| 134 | total = 0;
|
---|
| 135 | for (j = 0; j < INPUT_SIZE; j++)
|
---|
| 136 | total += weight_ItoH[j][i] * input[j];
|
---|
| 137 | hidden[i] = 1 / ( 1 + exp(total * (-1)));
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | for (i = 1; i < OUTPUT_SIZE; i++) {
|
---|
| 141 | total = 0;
|
---|
| 142 | for (j = 0; j < HIDDEN_SIZE; j++)
|
---|
| 143 | total += weight_HtoO[j][i] * hidden[j];
|
---|
| 144 | output[i] = 1 / ( 1 + exp(total * (-1)));
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | }
|
---|
| 148 |
|
---|
| 149 | /* train network, NOTE: nnCalc needs to be called first */
|
---|
| 150 | void nnTrain() {
|
---|
| 151 | int i,j;
|
---|
| 152 | double hidden_delta[HIDDEN_SIZE];
|
---|
| 153 | double output_delta[OUTPUT_SIZE];
|
---|
| 154 | double output_error[OUTPUT_SIZE];
|
---|
| 155 | double hidden_sum_delta[HIDDEN_SIZE];
|
---|
| 156 |
|
---|
| 157 | for (i = 1; i < OUTPUT_SIZE; i++) {
|
---|
| 158 | output_error[i] = target[i] - output[i];
|
---|
| 159 | output_delta[i] = output_error[i] * output[i] * (1 - output[i]);
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | for (i = 0; i < HIDDEN_SIZE; i++) {
|
---|
| 163 | hidden_sum_delta[i] = 0;
|
---|
| 164 | for (j = 1; j < OUTPUT_SIZE; j++)
|
---|
| 165 | hidden_sum_delta[i] += weight_HtoO[i][j] * output_delta[j];
|
---|
| 166 | hidden_delta[i] = hidden[i] * (1 - hidden[i]) *
|
---|
| 167 | hidden_sum_delta[i];
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | for (i = 0; i < HIDDEN_SIZE; i++)
|
---|
| 171 | for (j = 1; j < OUTPUT_SIZE; j++) {
|
---|
| 172 | weight_HtoO[i][j] = weight_HtoO[i][j] + LEARN_SPEED *
|
---|
| 173 | hidden[i] * output_delta[j];
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | for (i = 0; i < INPUT_SIZE; i++)
|
---|
| 177 | for (j = 1; j < HIDDEN_SIZE; j++) {
|
---|
| 178 | weight_ItoH[i][j] = weight_ItoH[i][j] + LEARN_SPEED *
|
---|
| 179 | input[i] * hidden_delta[j];
|
---|
| 180 | }
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | /* Verify wether target, matches output */
|
---|
| 184 | int nnValidate() {
|
---|
| 185 | int i;
|
---|
| 186 | //printf ("Rounding: %lf - %lf\n",output[1], target[1]);
|
---|
| 187 | for (i = 1; i < OUTPUT_SIZE; i++)
|
---|
| 188 | if (round(output[i]) != round(target[i]))
|
---|
| 189 | return FALSE;
|
---|
| 190 | return TRUE;
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 | /* Pretty print of output */
|
---|
| 194 | void nnOutput() {
|
---|
| 195 | int i;
|
---|
| 196 | for(i = 0; i < INPUT_SIZE; i++)
|
---|
| 197 | printf("%lf, ", input[i]);
|
---|
| 198 | printf("= %lf - %lf - ", output[1], target[1]);
|
---|
| 199 | if (nnValidate() == TRUE)
|
---|
| 200 | printf("OK");
|
---|
| 201 | else
|
---|
| 202 | printf("ERROR");
|
---|
| 203 | printf("\n");
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | /* Pretty print of hidden knobs */
|
---|
| 207 | void nnHiddenOutput() {
|
---|
| 208 | int i;
|
---|
| 209 | for(i = 0; i < HIDDEN_SIZE; i++)
|
---|
| 210 | printf("%lf, ", hidden[i]);
|
---|
| 211 | printf(" - HIDDEN\n");
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 |
|
---|
| 215 | /* Pretty print of all weights */
|
---|
| 216 | void nnNeuronOutput() {
|
---|
| 217 | int i,j;
|
---|
| 218 | for (i = 0; i < INPUT_SIZE; i++)
|
---|
| 219 | for(j = 0; j < HIDDEN_SIZE; j++)
|
---|
| 220 | if (weight_ItoH[i][j] != WEIGHT_NOT_USED)
|
---|
| 221 | printf("weight_ItoH[%i][%i] = %lf\n", i, j,
|
---|
| 222 | weight_ItoH[i][j]);
|
---|
| 223 | printf("---\n");
|
---|
| 224 | for (i = 0; i < HIDDEN_SIZE; i++)
|
---|
| 225 | for(j = 0; j < OUTPUT_SIZE; j++)
|
---|
| 226 | if (weight_ItoH[i][j] != WEIGHT_NOT_USED)
|
---|
| 227 | printf("weight_HtoO[%i][%i] = %lf\n", i, j,
|
---|
| 228 | weight_HtoO[i][j]);
|
---|
| 229 | }
|
---|
| 230 |
|
---|
| 231 | int nnReadInput(FILE * handle) {
|
---|
| 232 | int i = 1;
|
---|
| 233 | double finput;
|
---|
| 234 | while (fscanf(handle, "%lf", &finput) != EOF) {
|
---|
| 235 | if (i < INPUT_SIZE)
|
---|
| 236 | input[i] = finput;
|
---|
| 237 | else if (i < (INPUT_SIZE + OUTPUT_SIZE))
|
---|
| 238 | target[i - INPUT_SIZE] = finput;
|
---|
| 239 |
|
---|
| 240 | /* Calc next input */
|
---|
| 241 | i++;
|
---|
| 242 | /* Skip hidden output knob */
|
---|
| 243 | if (i == INPUT_SIZE)
|
---|
| 244 | i++;
|
---|
| 245 | if (i == (INPUT_SIZE + OUTPUT_SIZE))
|
---|
| 246 | return TRUE;
|
---|
| 247 | }
|
---|
| 248 |
|
---|
| 249 | /* Input not complete */
|
---|
| 250 | return FALSE;
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 | /* Verify quality of current network */
|
---|
| 254 | double nnQualityCheck(char * file) {
|
---|
| 255 | double validate_total = 0;
|
---|
| 256 | double validate_ok = 0;
|
---|
| 257 | double validate_percent = 0;
|
---|
| 258 | FILE * handle;
|
---|
| 259 |
|
---|
| 260 | handle = fopen(file,"r");
|
---|
| 261 | while (nnReadInput(handle) == TRUE) {
|
---|
| 262 | validate_total++;
|
---|
| 263 | nnCalc();
|
---|
| 264 | if (nnValidate() == TRUE)
|
---|
| 265 | validate_ok++;
|
---|
| 266 | //else
|
---|
| 267 | // nnOutput();
|
---|
| 268 | }
|
---|
| 269 | fclose(handle);
|
---|
| 270 | validate_percent = (validate_ok / validate_total) * 100;
|
---|
| 271 | printf("Validating: %.0lf/%.0lf - %.2lf %%\n",
|
---|
| 272 | validate_ok,validate_total,validate_percent);
|
---|
| 273 |
|
---|
| 274 | return(validate_percent);
|
---|
| 275 | }
|
---|
| 276 |
|
---|
| 277 | /* Main program */
|
---|
| 278 | int main (int argc, char * argv[]) {
|
---|
| 279 | int i,training_total, training_best;
|
---|
| 280 | double quality_max, quality;
|
---|
| 281 | FILE * handle;
|
---|
| 282 |
|
---|
| 283 | /* Set the bias knob */
|
---|
| 284 | input[0] = -1;
|
---|
| 285 | hidden[0] = -1;
|
---|
| 286 |
|
---|
| 287 | /* Init set of all wights */
|
---|
| 288 | //debugInit();
|
---|
| 289 | fixedInit();
|
---|
| 290 | //randInit();
|
---|
| 291 |
|
---|
| 292 | /* Set initial quality */
|
---|
| 293 | quality_max = nnQualityCheck(file_quality);
|
---|
| 294 | training_best = 0;
|
---|
| 295 | training_total = 0;
|
---|
| 296 |
|
---|
| 297 | printf("Running neural network with following parameters\n");
|
---|
| 298 | printf("Input nodes : %i\n", INPUT_SIZE);
|
---|
| 299 | printf("Hidden nodes : %i\n", HIDDEN_SIZE);
|
---|
| 300 | printf("Output nodes : %i\n", OUTPUT_SIZE);
|
---|
| 301 | printf("Learning rate : %lf\n", LEARN_SPEED);
|
---|
| 302 | printf("Quality check : %i\n", QUALITY_ROUND);
|
---|
| 303 | printf("Initial quality : %lf %%\n", quality_max);
|
---|
| 304 | /* Start training */
|
---|
| 305 | //nnNeuronOutput();
|
---|
| 306 | i = 1;
|
---|
| 307 | handle = fopen(file_training,"r");
|
---|
| 308 | while ( nnReadInput(handle) == TRUE) {
|
---|
| 309 | training_total++;
|
---|
| 310 | nnCalc();
|
---|
| 311 | //nnOutput();
|
---|
| 312 | //nnHiddenOutput();
|
---|
| 313 |
|
---|
| 314 | if (nnValidate() == FALSE) {
|
---|
| 315 | nnTrain();
|
---|
| 316 | //nnNeuronOutput();
|
---|
| 317 | }
|
---|
| 318 |
|
---|
| 319 | /* Verifiy quality, stop training when quality is going down */
|
---|
| 320 | if ((training_total % QUALITY_ROUND) == 0) {
|
---|
| 321 | printf("Learned: %i - ", training_total);
|
---|
| 322 | quality = nnQualityCheck(file_quality);
|
---|
| 323 | if (quality > quality_max) {
|
---|
| 324 | quality_max = quality;
|
---|
| 325 | training_best = training_total;
|
---|
| 326 | }
|
---|
| 327 | }
|
---|
| 328 | }
|
---|
| 329 | fclose(handle);
|
---|
| 330 | printf("Max quality: %.2lf%% at training round: %i\n", quality_max,
|
---|
| 331 | training_best);
|
---|
| 332 | quality = nnQualityCheck(file_validate);
|
---|
| 333 | return(EX_OK);
|
---|
| 334 | }
|
---|
| 335 |
|
---|