Appendix A

e Coprocessor instructions perform operations in the coprocessors.
Coprocessor loads and stores are I-type. Coprocessor computationa) instruc-
tions have coprocessor-dependent formats (see the FPU instructions).
Coprocessor zero (CPO) instructions manipulate the memory management
and exception handling facilities of the processor.

¢ Special instructions perform a variety of tasks, including movement of data
between special and general registers, trap, and breakpoint. They are always
R-type.

Instruction Formats

Every CPU instruction consists of a single word (32 bits) aligned on a word boundary and the
major instruction formats are shown in Figure A-1.

is a 6-bit operation code

is & S-0it source register specifier
18 a b~bit target (source/destination)
reqister or branch condition
immediate] is a 16~bitimmediate, branch dis—
placement or address displacement

target is a 26-bit jump target address

rd is a 5-bit destination register specifier
shamt is a 5+bit shift amount

funct is a 6-bit function field

Figure A-1. CPU Instruction Formats

A-2 MIPS RISC Architecture

CPU Instruction Set Delails

Instruction Notation Conventions

In this appendix, all variable subficldsin an instruction format (such as rs, rt, immediate, etc.)
are shown in lower-case names.

For the sake of clarity, we sometimes use an alias for a variable subfield in the formats of spe-
cific instructions. For example, we use rs = base in the format for load and store instructions.
Such an alias is always lower case, since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at the end of this Appen-
dix, and the bit encoding also accompanies each instruction.

In the instruction descriptions that follow, the Operation section describes the operation per-
formed by each instruction using a high-level language notation. Special symbols used in the
notation are described in Table A-1.

MIPS RISC Architecture

Appendix A

Assignment

Bit string concatenation

Replication of bit value x into a y-bit string. Note that x is always a single-bit value.

\«v
Xy Won_n.w_ﬂ, of bits y _W.B...oz Zol bit string x. Little-endian bit notation is always used. H yis less
+this expression is an empty (zero langth) bit string.
+ Two's comglement or floating point addition
- Two's complement or floating point subtraction
x Two's complement or ‘_on.io point multiplication
div Two's complement integer division
mod Two's complement modulo
/ Floating point division
< Two's complement less than comparison
and Bitwise logic AND
or Bitwise logic OR
xor Bitwise logic XOR
nor Bitwise logic NOR
GPR(x] General Registar x. The content of GPR[0) is always zero. Attempts to alter the content of
GPR[0] have no eifect.
CPR{z,x] Coprocessor unit 2, general register x
CCR(z.x) Coprocessor unit 2, control register x
(B8]0 4| Coprocessor unit z condition signal.
BigEndianMem Big-endian mode as configured at reset (0 —> Little, 1 ~> Big). Specifies the endianess of the memory

S.o:m”.uo {see LoadMemory and StoreMemoty), and the endianess of Kerne! and Supervisor mode
execution.

ReverseEndian

Signal to reverse the o:&u..aoam of load and store instructions. This feature is available in User mode
only, and is efiected by setting the REbit of the Status register. Thus ReverseEndian may be computed
as (SRa and User mode). R3000A, R4000 and R6000 only.

BigEndianCPU

The endianess for load w.:n store instructions (0 —> Little, 1 ~>Big). In User mode, this endianess
may be reversed by sefting SRa. Thus BigEndianCPU may ba computed as BigEndianMem XOR
ReverseEndian,

Libit

Bt of state o specily synchronization instructions. Sel by LL, cleared by RFE, ERET and Invalidate,
and read by SC. (R4000/R6000 only)

Tei

Indicates the time steps betwean operations. Each of the slatements within a fime step are defined 1o
be executed in sequential order (as modified by conditional and loop constructs). Operations which

are marked T+ ara oxecuted at instruction cycle i relative to the start of execution of the instruction.

ﬁ:cm. an instruction which starts at time j axecutes operations marked T+ attime i + j

The interpretation of the ordpr of execution between two instructions of two operations which execute

at the same time should be pessimistic; the order is not defined.

A4

MIPS RISC Architecture

CPU Instruction Set Details

Instruction Notation Examples

The following examples illustrate the application of some of the instruction notation conven-
tions:

Example #1:

Sixteen zero bits are concatenated with an immediate

value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to Generai Purpose Register
n

Example #2:

(immediates)™ || immediatess.o

Bit 15 (the sign bit) of an immediate value is extended for

16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign .
extended vaiue.

Load and Store Instructions

In the R2000/R3000 implementation of the ISA, all Joads are implemented with a delay of one
instruction. That is, the instruction immediately following a load cannot use the contents of
the register which will be loaded with the data being fetched from storage. An exception is the
target register for the Load Word Left and Load Word Rightinstructions, which may be speci-
fied as the same register uscd as the destination of a load instruction that immediatcly pre-

cedes it.

In the R4000/R6000 implementation, the instruction immediately following a load may use
the contents of the register loaded. In such cases, the hardware interlocks, requiring additional
real cycles, so scheduling load delay slots is still desirable — although not required for func-

tional code.

Two special instructions are provided in the RAMO/REOK) implementation of the ISA, Load
Linked and Store Conditional. These instructions are used in carcfully coded sequences 1o
provide one of several synchronization primitives, including test-and-set, bit-level locks,
semaphores, and sequencersfevent counts.

In the load/store operation descriptions, the functions listed in Table A-2 are used w summa-
rize the handling of virtual addresses and physical memory.

MIPS RISC Architecture

Table A-2. Load/Store Common Functions

AddressTranslation Uses the TLB o find the physical address given the virtual ad-
dress, The function fails and an exception is taken if the page
containing the virtual address is not present in the TLB.

LoadMemory Uses the cache and main memory to find the contents of the
word containing the specified physical address. The low or-
der two bits of the address and the access type field indicates
which of each of the four bytes within the data word need to
be retumed. Ifthe cache is enabled for this access, the entire
word is returned and loaded into the cache.

StoreMemory Uses the cache, write buffer and main memory 10 store the
word or part of word specified as data in the word containing
the specified physical address. The low order two bits of the
address and the access type field indicates which of each of
the four bytes within the data word should be stored.

The access type field indicates the size of the data item to be loaded or stored as shown in
Table A-3. Regardless of access type or byte-numbering order (endianness), the address
specifies the byte which has the smallest byte address of the bytes in the addressed field. Fora
Big-endian machine, this is the leftmost byte and contains the sign fora 2’s-complement num-

ber; for a Little-endian machine, this is the rightmost byte and contains the lowest precision
byte.

Table A-3. Access Type Specifications for Loads!Stores

M :

DOUBLEWORD 7 doubleword (64 bits)
SEPTIBYTE 6 seven bytes (56 bits)
SEXTIBYTE . 5 six bytes (48 bits)
QUINTIBYTE 4 five bytes (40 bits)
WORD 3 word (32 bits)
TRIPLEBYTE 2 triple-byte (24 bits)
HALFWORD 1 haltword (18 bits)
BYTE 0 byte (B bits)

The bytes within the addressed doubleword which are used can be determined directly from
the access type and the three low order bits of the address, as shown in Chapter 3.

A-6 MIPS RISC Architecture

CPU Instruction Set Details

Jump and Branch Instructions

All jump and branch instructions are implemented with a delay of exactly one instruction.
Thatis, the instruction immediately following a jump or branch (i.c., occupying the delay slot)
is always exccuted while the target instruction is being fetched from storage. Itis not valid for
a delay slot to be occupied itself by a jump or branch instruction: however, this error is not
detected, and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction during a delay slot,
the hardware sets the EPC register to point at the jump or branch instruction which precedes it.
When the code is restarted, both the jump or branch instructions and the instruction in the de-
lay slot are reexecuted.

Because jump and branch instructions may be restarted after exceptions or interrupts, they
must be restartable. Therefore, when a jump or branch instruction stores a return link value,
register 31 (the register in which the link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and Link Register instruc-
tion must use a register whose two low order bits are zero, If these low order bits are not zero,
an address exception will occur when the jump target instruction is subsequently fetched.

Coprocessor Instructions

The MIPS architecture provides four coprocessor units, or classes. Coprocessors are alternate
execution units, which have separate register files from the CPU. R-Series coprocessors have
2 register spaces, each with 32 32-bit registers. The first space, coprocessor general registers,
may be directly loaded from memory and stored into memory, and their contents may be
transferred between the coprocessor and processor. The second, coprocessor control regis-
ters, may only have their contents transferred directly between the coprocessor and processor.
Coprocessor instructions may alter registers in either space.

Normally, by convention, Coprocessor Control Register O is interpreted as a Coprocessor Im-
plementation And Revision register. However, the system control coprocessor (CP0O) :u..n,,.
Coprocessor General Register 15 for the processor/coprocessor revision register. The regis-
ter’s low order byte (bits 7..0) is interpreted as a coprocessor unit revision number. The mn.nn_a
byte (bits 15..8) is interpreted as a coprocessor unit implementation descriptor. The revision
number is a value of the form y. x where y is a major revision number in bits 7.4 and x is a
minor revision number in bits 3..0.

The contents of the high order halfword of the register are not defined (curremly read as 0 and
should be O when written).

MIPS RISC Architecture

»ppendix A

System Control Oo.u_.oommmo_. (CPO) Instructions

.:.nR are some special limitations imposed on operations involving CPO that is incorporated
within the CPU. Although load and store instructions to transfer data to and from coproces-
sors .m:n_ move control to/from coprocessor instructions are generally permitted by the MIPS
»3::.02:8. CPOis given a somewhat protected status since it has responsibility for exception
handling and memory management. Therefore, the move to/from coprocessor instructions
are the only valid mechanism for reading from and writing to the CPO registers.

Several coprocessor operation instructions are defined for CPO 1o directly read, write, and

probe .Fw entries and to modify the operating modes in preparation for returning to User
mode or interrupt-cnabled states.

A-8 MIPS RISC Architecture

CPU Instruction Set Details

ADD ADD

Format:
ADD rd,rs,it
Description:

‘The contents of general register rs and the contents of general register rf are added to form a
32-bit result. The result is placed into general register rd.

An overflow exception occurs if the two highest order carry-out bits differ (2’s-complement
overflow). The destination register rd is not modified when an integer overflow exception

occurs.

Operation:

T: GPRA[rd] «GPRrs] + GPR[r]

Exceptions:

Overflow exception

MIPS RISC Architecture

>—U-UH Add Immediate

ADDI

001000

Format:
ADDI rt,rs immediate
Description:

The :«w&: immediate is sign-extended'and added to the contents of general register rs to form
2 32-bit result. The result is placed into general register rt.

An overflow exception occurs if the two highest order carry-out bits differ (2’s-complement

overflow). The destination register rt is not modified when an integer overflow exception
occurs,

Operation:

T: GPR[rt] - GPR[rs] +(immediatess)'® || immediatess.o

Exceptions;

Overflow exception .

A-10 MIPS RISC Architecture

CPU Instruction Set Details

Add Immediate Unsigned >—U—v~c

‘o

ADDIU

001001

Format:
ADDIU n,rs,immediate
Description:

The 16-bit immediate is sign-exiended and added 1o the contents of general register rs to form
a 32-bit result. The result is placed into general register rr. No integer overflow exception oc-
curs under any circumstances.

The only difference between this instruction and the ADDI instruction is that ADDIU never
causes an overflow exception.

Operation:
T: GPR[r] « GPR|rs] + (immediaters)'® }} immediates o
Exceptions:
None.
MIPS RISC Architecture A-11

ADDU ADD Unsigned

Format:
ADDU rd,rs,n
Description:

The contents of general register s and the contents of general register rt are added to form a
32-bit result. The result is placed into general register rd.

No overflow exception occurs under any circumstances.

The only difference between this instruction and the ADD instruction is that ADDU never
causes an overflow exception.

Operation:

T: GPR[rd) « GPRIrs] + GPR[r]

Exceptions:

None.

A-12 MIPS RISC Architecture

CPU Instruction Set Details

And >Zc

S

sEEci EXFAEA

Format:
AND rd,rs,rt

Description:
The contents of general register rs are combined with the contents of general register riin
bit-wise logical AND operation. The result is placed into gencral register rd.

Opcration:

T: GPR[rd) «- GPRIrs] and GPR[rt]

Exceptions:

None.

MIPS RISC Architecture

ndix A

>ZU~ And Immediate

CPU Instruction Set Details

Branch On Equal .

BEQ

Formal:
ANDI rrs,immediate
Description:

The 16-bit immediate is zero-extended and combined with the contents of general register ry
in a bit-wise logical AND operation. The result is placed into general register rr.

Operation:

T GPR[rt] ¢~ 0'¢ || (immediate and GPR|rs]:s.o)

Exceptions:

None.

A-14 MIPS RISC Architecture

Format:
BEQ rs,1t,0ffset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay
slot and the 16-bit offser, shifted left two bits and sign-extended to 32 bits. The contents of

general register rs and the contents of general register
cqual, then the program branches to the target addres

Operation:

rt are compared. If the tworegisters are
s, with a delay of one instruction.

T: target « (oMsetis)™ || oftset || 0
condition ¢ (GPR|[rs] = GPR{r))
T+1: if condition then
PC ¢ PC 4+ target

endif
Exceptions:
None.
MIPS RISC Architecture

A-23

\ CPU Instruction Set Details

Branch On Not Equal mwzm

BNE nt offset s
000101

Format:

BNE rs,n,offset
Description:

A branch target address is computed from the sum of the address of the instruction in the delay
slot and the 16-bit offser, shifted left two bits and sign-extended to 32 bits. The contents of
general register rs and the contents of general register rz are compared. If the tworegisters are
not equal, then the program branches to the target address, with a delay of one instruction.

Operation:

T: target « (offsetis)™ || offset || 02
condition « (GPR(rs} # GPR[r])
T+1: if condition then
PC « PC + target
endif

Exceptions:

None.

MIPS RISC Architecture A-37

CPU Instruction St Detaits

]
Breakpoint W—Nm>~ﬂ

Format:

BREAK '
Description:

A breakpoint trap occurs, immediately and unconditionally transferrin g control to the excep-
tion handler. -

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Operation:

T:. BreakpointException

Exceptions:

Breakpoint exception

MIPS RISC Architecture A-39

\ ndix A

Appe

J
000010

Format:
J target
Description:

The 26-bit target address is shifted left two bits and combined with the Em: order four UM; o.m
the address of the delay slot. The program unconditionally jumps to this calculated address
with a delay of one instruction.

Operation:

T: temp « target

T+1. PC« PCaiazs |l temp |) 02
Exceptions:
None.

MIPS RISC Architecture
A-50

CPUY Instruction Set Detajrs

JAL

Format:

JAL target
Description:

The 26-bit target address is shif ted |
the address of the delay slot, The p
with a delay of one instruction, The
the link register, r37.

eft two bits and combined with the high order four bits of
rogram ::no:&:og:w.mcanu to this calculated address
address of the instruction after the delay slot js placed in

Operation:
T: temp « target
GPR{31]« PC + 8
T+1: PCePCam [} temp | 02
Exceplions;
None. .
MIPS RISC Architecture

4 A-51

Appendix A

.u. >rz + Jump And Link Register

Format:

JALR s
JALR rd, s \

Description:

The program unconditionally jumps to the address contained in general register rs, with a de-
lay of one instruction. The address of the instruction after the delay slot is placed in general
register rd. The default value of 4, if omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction does not have the
same effect when reexecuted. However, an attempt to execute this instruction is not trapped,
and the result of executing such an instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register instruction must specify a
target register (rs) whose two low order bits are zero. If these low order bits are not zero, an
address exception will occur when the jump targer instryction is subsequently fetched.

Operation:

T: temp « GPR [rs]
GPR[rd] « PC + 8
T+1: PC « temp

Exceptions:

None.

A-52 MIPS RISC Architeclure

10

\ CPU instruction Sey Details

Jump Register

Format:
JR 15

Description:

Operation:

temp « GPRrs)
PC temp
Exceptions:
None.
MIPS RISC Architecture

A-513

Appendix A

J
LB Load Byte

LB
100000

Format:
LB rtoffset(base)

Description:

The 16-bit offser is sign-extended and added to the contents of general register base to form a
virtual address. The contents of the byte at the memory location specified by the effective ad-
dress are sign-extended and loaded into general register rr.

In R2000/R 3000 implementations, the contents of general Rm_..mﬁn rtare undefined for time T
of the instruction immediately following this load instruction,

R2000/R3000 Operation:

T: vAddr « ((offsetss)'® || offsetis.o) + GPR[base}
(pAddr, uncached) « AddressTranslation (vAddr, DATA)
mem « LoadMemory {uncached, BYTE, pAddr, vAddr, DATA)
byte « vAddri.o xor BigEndianCPL? -
GPR[n} « undefined

T+1: GPR{r] « (MeMz.swm)? || MEM7.atre.stme

A-54 MIPS RISC Architecture

Appendix A
CPU Instruction Set Details -

R4000/R6000 Operation;

rownwﬁn rmw d Load Byte Unsigned
T vAddre {(offsetu)'® || offsetsso
1) + GPRbase
{pAddr, uncached) AddressTranslation ?LE_,. DATA)

(continued) LB
LBU 1t offset v
100100 ; w
PAddr « PAddresze - 1.2 || { pAddr. Xor ReverseEndian?)

mem « romazmaoQ (uncached, BYTE .
. , PAddr, rormet
byle « vAddr o xor BigEndianCPU? prCEl vAddn DATA

GPRIN] « (Mmemy.enme) || LS LBU rt,offset{base)
Description:
Exceptions: The 16-bit offset is sign-extended and added to the contents of general register base to form a
L) virtual address. The contents of the byte at the memory location specified by the effective ad-
,:zw .-.nm:.oxnnv:o: dress are zero-extended and loaded into general register re. In R2000/R3000 implementa-
B B invalid exception tions, the contents of general register rt are undefined for time T of the instruction immedi-
1S error exception ately following this load instruction.
Address error exception
R2000/R3000 Operation: .
T vAddr « ((offsetis)'® |j offsetis.o) + GPR[base]
(pAddr, uncached) « AddressTranslation (vAddr, DATA)
mem ¢« LoadMemory (uncached, BYTE, pAddr, vAdde, DATA)
byte e vAddri.c xor BigEndianCPU?
GPR[rt} « undefined
T+1: GPR[A] « 0** || MeMr.avys.atye
R4000/R6000 Operation:
T vAddr « ((offsetis)' |] offsetis.c) + GPR[base]
{pAddr, uncached) « AddressTranslation (vAddr, DATA)
PAddr « pAddresize - 1. 2 || {PAddri.e xor ReverseEndian?)
mem « LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte « vAddri.o xor BigEndianCPLP? |
GPR[rt} « 0% || memz.e: bye.s ore
Exceptions:
TLB refill exception TLB invalid exception
Bus error exception Address error exception
1IPS RISC Architecture A-56 MIPS RISC Architecture

A-55

[\

CPU Instruction Set Details

Load Halfword Mk:

LH

100001

By

Format:
LH rt,offset(base)

Description:

The 16-bit offser is si gn-extended and added to the contents of general register base to form a
virtual address. The contents of the halfword at the memory location specified by the effective
address are sign-extended and loaded into general register rr.

If the least significant bit of the ef] fective address is Non-zero, an address eror exception oc-
Curs.

In R2000/R 3000 implementations, the contents of general register rsare undefined for time T
of the instruction immediately following this load instruction,

R2000/R3000 Operation:

T vAddr« ((offsetis)' || offsetis.) + GPR[base]
(pAddr, uncached) « AddressTrans!ation (vAddr, DATA)
mem « LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte « vAddrio xor (BigEndianCPUy Il 0)
GPR[r] « undefined
T+1: GPR[) « {MeMis.aom)'® || MeMis.atye. svyte

MIPS RISC Architecture A-59

Appendix A

J

LH (continued)

R400{(/R6000 Operation:

: s)'¢ || offsetis.o) + GPR[base]
k N%M%P?cu_ﬁmﬂmw T__>an6mmdm:m_mzo: (vAddr, U>S o)
pAddr - pAddresize-1.2 || { pAddrie xolmaéamm:a_mnhr AT
mem « LoadMemory (uncached, HALFWORD, pAddr, v. ,
byte « vAddrni.o xor (BigEndianCPU |f 0)
GPR[M] ¢ (MeMis.abye) *® || MeM1s.0tme. o tne

Exceptions:

TLB refill exception

TLB invalid exception .
Bus error exception

Address error exception

MIPS RISC Architecture

A-60

CPU Instruction Set Details

Load Halfword Unsigned r:c

)

Format:
LHU n,offset(base)

Description:

The 16-bit offser is sign-extended and added to the contents of general register base to form a
virtual address. The contents of the half word at the memory location specified by the effective
address are zero-extended and loaded into general register rr.

If the least significant bit of the effective address is non-zero, an address error exception oc-
curs.

In R2000/R3000 implementations, the contents of general register rt are undefined for time T
of the instruction immediately following this load instruction.

R2000/R3000 Operation:

T vAddr « ({offseti)™ Il oftsetis.o) + GPR[base]
(pAddr, uncached) « AddressTranslation (vAddr, DATA)

mem « LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte « vAddn o xor (BigEndianCPU) 0)
GPR[r] « undefined

T+1: GPR[r) «- 0'® Il MeMis.atyte sope

MIPS RISC Architecture A-61

Appendix A

]

Load Halfword Unsigned
LHU (continued)

R4000/R6000 Operation:

T. vAddr « ((offsetis)' [| offsetisc) + ovm_ummm_
(pAddr, uncached) « AddressTranslation (vAddr, DATA)

i 0})
Addresus -1 .2 || (pAddri.e xor (ReverseEndian |}
ﬂ)on% ”n_.%maZmﬂMQ.Eanmo:a. HALFWORD, pAddr, vAddr, DATA)

byte « vAddrn.o xor (BigEndianCPU || 0)
GPRIrt] « 0" || memis.atyte svye

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS RISC Architecture
A-62

CPU Instruction Set Details

Load Upper Immediate H\CH

LUl rt immediate
001111

Format:

LUI n,immediate
Description:

The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of zeros. The result is
placed into gencral register rr.

Operation:

T: GPRIft] « immediate || 0"

Exceptions:

None.

MIPS RISC Architecture A-65

Appendix A

/
—.LS Load Word

Format: '

LW n,offset(base)
Description:

The 16-bit offser is sign-extended and added to the contents of general register base to forma
virtual address. The contents of the word at the memory location specified by the effective
address are loaded into general register rt.

If cither of the two least significant bits of the effective address is non-zero, an address error
exception occurs, i

In R2000/R3000 implementations, the contents of general register rt are undefined for time T
of the instruction immediately following this load instruction.

R2000/R3000 Operation:

T: vAddr « ((offsetis)'® [l offsetis.o) + GPR[base)
(PAddr, uncached) « AddressTransiation (vAddr, DATA)
mem « LoadMemory (uncached, WORD, PAddr, vAddr, DATA)
GPR{rt] «- undefined .

T+1: GPR[r] « mem

A-66 . MIPS RISC Architecture

CPU Instruction Set Details

Load Word
(continued) Lw

R4000/R6000 Operation:

T vAddr « ((offsetss)" Il offsetis.c) + GPR{base]
{pAddr, uncached) « AddressTranslation (vAddr, DATA)
mem « LoadMemory (uncached, WORD, PAddr, vAddr, DATA)
GPR[] « mem

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS RISC Architecture A-67

Appendix A

LWL Load Word Left

. N : [- .
LWL offset
100010

Format:

LWL rt,offset(base)
Description:

This instruction can be used in combination with the LWR instruction to load a register with
four consecutive bytes from memory, when the bytes cross a boundary between two words.
LWL loads the left portion of the register from the appropriate part of the high-order word;
LWR loads the right portion of the register from the appropriate part of the low order word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of general register
base to form a virtual address which can specify an arbitrary byte. Itreads bytes only from the
word in memory which contains the specified starting byte. From one 10 four bytes will be
loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the hi ghorder
(left-most) byte of the register; then it proceeds toward the low order byte of the word in mem-
ory and the low order byte of the register, loading bytes from memory into the register until it
reaches the low order byte of the word in memory. The least significant (right-most) byte(s) of
the register will not be changed.

memory
~ (big-endian) . register
address 4
addressO | o [before _ AL B1 Cl DJ s
\ LWL $24,1(30)
AN
~N after
~

A-70 MIPS RISC Architecture

CPU Instruction Set Details Appendix A

!...il... "
Load Word Left LWL WL

. L Load Word Left
(continued) " (continued)
The contents of general register rt are internally bypassed within the processor so that no NOP Given a word in a register and a word in memory, the operation of LWL is as follows:

is needed between an immediately preceding load instruction which specifiesregister rrand a
following LWL (or LWR) instruction which also specifies register r1.

No address exceptions due to alignment are possible.

In R2000/R 3000 implementations, the contents of general register rf are undefined for time T
of the instruction immediately following this load instruction.

R2000/R3000 Operation:

T: vAddr « {(offsetis)'®|| offsetis.o) + GPR[base}
(pAddr, uncached) « AddressTranslation (vAddr, DATA}
byte « vAddr.o xor BigEndianCPU?
if BigEndianMem = 0 then
PAddr « pAddra .|| 02
endif
mem « LoadMemory {uncached, byte, pAddr, vAddr, DATA)

T+1: GPR[M] « meMr.stpe.o || GPR[s-stye.0

LEM BigEndianMem = 0
BEM BigEndianMem = 1

. Type AccessType sent to memory
R4000/ :
4000/R6000 Operation Offset PAddrz 0 sent to memory
T: vAddr « ((offsetis)" || otfsetis.o) + GPR[base] Exceptions:
(PAddr, uncached) « AddressTranslation (vAddr, DATA)
PAddr - pAddresze-1.2 || (pAddrs.o xor ReverseEndian? TLB refill exception \
byte « vAddri.e xor BigEndianCPU? TLB invalid exception '

if BigEndianMem = 0 then

Bus error exception
PAQdr « pAddresze-1.2]} 02 P

endit Address error exception

mem « Load Memory (uncached, byte, pAddr, vAddr, DATA)
GPR[r] « memz.awye.s || GPR[rt}s-atyte.0

MIPS RISC Architecture A-71 A-72 MIPS RISC Architecture

Tappendix A

rsx Load Word Right

Format:

LWR rt,offset(base)
Description:

This instruction can be used in combination with the LWL instruction to load a register with
four consecutive bytes from memory, when the bytes cross a boundary between two words.
LWR loads the right portion of the register from the appropriate part of the low order word;
LWL loads the Ieft portion of the register from the appropriate part of the high order word.

The LWR instruction adds its sign-extended 16-bit offser to the contents of general register
base to form a virtual address which can specify an arbitrary byte. Itreads bytes only from the
word in memory which contains the specified starting byte. From one to four bytes will be
loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the low order
(right-most) byte of the register; then it proceeds toward the high order byte of the word in
memory and the high order byte of the register, loading bytes from memory into the register
until it reaches the high order byte of the word in memory. The most si gnificant (left-most)
byte(s) of the register will not be changed.

memory
(big-endiari) register

2 3 before | Al BT ¢ D] 524

address a‘
address 0

. LWR $24,4(30)

A-74 MIPS RISC Architecture

CPU Instruction Set Details

!
Load Word Right . LWR

(continued)

The contents of general register r7 are internally bypassed within the processor so that no NOP
is needed between an immediately preceding load instruction which specifies register rrand a
following LWR (or LWL) instruction which also specifies register rr.

No address exceptions due to alignment are possible.

In R2000/R 3000 implementations, the contents of general register e are undefined for time T
of the instruction immediately followin g this load instruction,

R2000/R3000 Operation:

T: vAddr « ((offsetis)'® || offselis o) + GPR[base] *
(pAddr, uncached) « AddressTranslation (vAddr, DATA)
byte « vAddr.o xor BigEndianCPU? i}
it BigEndianMem = 1 then
PAddr « pAddry 2|} 07
endif
mem ¢« LoadMemory (uncached, WORD-byte, PAddr, vAddr, DATA)
T+1: GPR[r{] « GPR[M}s1.2-0'bpe [| memar suye

R4000/R6000 Operation;

T vAddr « ({offsetss)' || offsetss.o} + GPR[base}
(PAddr, uncached) « AddressTranslation (vAddr, DATA)
PAddr « pAddresue-1.2 || (pAddr 5 xor RevereEndian?)
byte «- vAddn.o xor BigEndianCPL?
if BigEndianMem = 1 then
PAddr « pAddresize-1.2]} 02
endif
mem « LoadMemory (uncached, WORD-byte, pAddr, vAddr, DATA)

GPRIr) « GPR]rM]21.2-8%pe || MeMa abye

MIPS RISC Architeclure A-75

18

Appendix A

}
LWR Load Word Right
(continued)

Given a word in a register and a word in memory, the operation of LWR is as follows:

_ .- BIgEndlanCPU s
Offset: [= .+) B
e [LEM . BEM | Destination | Type

0 MNOP 0 0 EFGM 0
1 EMNO 1 0 EF MN 1
2 EFMN 2 0 EMNO 2
3 EFGM 3 0 MNOP 3

LEM BigEndianMem = 0

BEM BigEndianMem = 1

Type AccessType sent to memory
Offses pAddrz ¢ sent to memory

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

A-76 MIPS RISC Architecture

Format:
NOR rd,rs,it

Description:

The contents of general register rs are combined with the contents of general register rt in a
bit-wise logical NOR operation. The result is placed into general register rd.

Operation:

T: GPR[rd] « GPR{rs] nor GPR[r]

Exceptions:
None.

A-88 MIPS RISC Architecture

CPU Instruction Set Details

SPECIAL
000000

Format:
OR rd,rs,nt

Description:

The contents of general register s are combined with the contents of general register 71 in o
bit-wise logical OR operation. The result is placed into gencral register rd. -

Operation:
T GPRrd} ¢~ GPR[rs] or GPR[1]
Exceptions:
None.
MIPS RISC Architecture A-89

20

O~N~ Or Immediate

NN
001101

Format:
ORI rt,rs,immediate
Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs
in a bit-wise logical OR operation. The result is placed into general register rt.

Operation:

T GPR[] « GPR[rs}.1e || (immediate or GPR{rs)is.o)

Exceptions:
None.

A-90 MIPS RISC Architecture

Appendix A \

mw Store Byte

Format:
SB rt,offset(base)

Description:

The 16-bit offser is sign-extended and added to the contents of general register base to form a
virtual address. The least significant byte of register rt is stored at the effective address.

Operation:

T: vAddr « ((offsetis)'® |} offsetis.o) + GPRbase]
(pAddr, uncached) « AddressTranslation (vAddr, DATA)
pAddr « pAddresize -1 .2 || (pAddrio xor Reverse Endian?)
byte « vAddrie xor BigEndianCPU? *
data « GPR[M]s1-spe 0 |} 0"
StoreMemory {uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exceplion

Address error exception

A-92 MIPS RISC Architecture

21

\ CPU Instruction Set Details

Store Halfword mm

Format:
SH rt,offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a
32-bit unsigned effective address. The least significant halfword of register 1 is stored at the
cffective address. If the least significant bit of the effective address is non-zero, an address
error exception occurs.

Operation:

T: vAddr « ({offsetis)® || offsetss.o) + GPR[base)
(pAddr, uncached) « AddressTranslation (vAddr, DATA)
PAdCr « pAddresze- 1.2 || (pAddro xor (ReverseEndian?|| 0))
byte « vAddrio xor(BigEndianCPU |} 0)
data « GPR{[rtlar-svye.o || 07
StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception

Address error exception

MIPS RISC Architecture A-97

S H\M\ : _ Shift Left Logical

.) . ¢ AN . i
s SLL B
000000 J§

3

SPECIAL
000000

Format:
SLL rd,mt,sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low order
bits. The 32-bit result is placed in register rd.

Operation:

T GPR(rd] < GPR(rts1- a0 | 0**

Exceptions:
None.

A-98 MIPS RISC Architecture

'Shift Left Logical Variable

CPU Instruction Set Detairs

Format:
SLLV rd,rt.rs h

Description:

The contents of general register rr are shifted left by the number of bits specified by the-low
order five bits contained as contents of general register rs, inserting zeros into the low order
bits. The result is placed in register rd.

Operation:
T: S« O_u?mr o
GPR[rd]e~ GPR[rt]140 || 0*
Exceptions:
None. ,
MIPS RISC Architecture *) A-99 23

o

mra—.. Set On Less Than

SPECIAL
000000

%

Format:
SLT rd,rs,t

Description:

The contents of general register rt are subtracted from the contents of general register rs. Con-
sidering both quantities as signed 32-bit integers, if the contents of general register rs are less
than the contents of general register r1, the result is set to one, otherwise the result is set 10 zero.
The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even
if the subtraction used during the comparison overflows.

Operation:
T: it GPR[rs] < GPR]rt] then
GPR[rd] « 0¥ | 1
else
GPR{rd] « 0%
endit
Exceptions:
None.
A-100 MIPS RISC Architecture

CPU Instruction Set Detajis

Set On Less Than Immediate

SLTI

immediate

Format:
SLTI nt,rs,immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of gencral register rs.
Considering both quantities as signed integers, if rs is less than the sign-extended immediate,
the resultis set toone, otherwise the result is set 1o zero. The result is placed into general regis-
ter r1.

No integer overflow exception occurs under any circumstances. The comparison is valid even
if the subtraction used during the comparison overflows,

Operation:
T if GPR[rs] < (immediatess)'® |} immediates o then
GPR[rt] « 0 i 1
else
GPR[A] «- 0%
endif
Exceplions:
None. '
MIPS RISC-Architecture - A-101

24

7w A

mr.ﬁmc Set On Less Than

Immediate Unsigned
001011

Format:
SLTIU n,rs,immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs.
Considering both quantities as unsigned integers, if 7s is less than the sign-extended immedi-
ate, the result is set to one, otherwise the result is set to zero, The result is placed into general
register ri.

No integer overflow exception occurs under any circumstances. The comparison is valid even
if the subtraction used during the comparison overflows.

Operation:
T: (0| GPRIrs]) < 0 i {(immediatess)'® || immediatess.o) then
GPRIrt] « 0 |] 1
else
GPR[r} « 0%
endif
Exceptions:
None.
A-102 MIPS RISC Architecture

CPU Instruction Set Details

Set On Less Than Unsigned MHLHJC

Format:

SLTU rd,rs,nt
Description:

The contents of general register rr are subtracted from the contents of general register rs, Con-
sidering both quantities as unsigned integers, if the contents of general register rs are less than
the contents of general register rt, the result is set to one, otherwise the result is set to zero. The
result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even
if the subtraction used during the comparison overfiows.

Operation:

T: i (01IGPRJrs)) < (O[] GPR[rt]) then
GPR[rd] « 0% || 1 .

else
GPRIrd] « 0%
endit
Exceptions:
None.
MIPS RISC Architecture A-103

25

\ﬂh\ma\xh

SRA Shift Right Arithmetic

SPECIAL rt SRA
000000 000011
Format:
SRA rd,rt,sa
Description:

The contents of general register rr are shifted right by sa bits, sign-extending the high order
bits. The 32-bit result is placed in register rd.

Operation:

T: GPR[rd] ¢ (GPR[rt})™ || GPR[] 51.sa

Exceptions:

None.

A-104 MIPS RISC Architecture

CPU Instruction Set Detaits

Shift Right Arithmetic Variable

SRAYV

Format:
SRAV rd,nt,rs
Description:

The contents of general register rr are shifted right by the number of bits specified by the low
order five bits of general register rs, sign-extending the high order bits. The result is placed in
register rd.

Operation:
T: se& GPR[rsk.o
GPR{rd] ¢ (GPR{rt}a1)* || GPR[rt]ar s _
Exceplions:
None.
MIPS RISC Architecture A-105

X%MHQ...X A

Shift Right Logical

CPU Instruction Set Details

Shift Right Logical Variable mwrd\

Format:
SRL rd,n,sa
Description:

The contents of general register 71 are shifted ri
order bits. The result is placed in register rd.

Operation:

ght by sa bits, inserting zeros into the high

T GPRIrd] « 0% || GPR[}r..

Exceptions:

None.

A-106

MIPS RISC Architecture

Format:

SRLV rd,rt,rs
Description: .

The contents of general register rt are shifted right by the numbser of bits specified by the low
order five bits of general register rs, insenting zeros into the high order bits. The 32-bitresult is
placed in register rd.

Operation:
T. se& GPrshoe
GPR[rd] «~ 0* }{.GPR[rt}x .,
Exceptions:
None.
MIPS RISC Architecture : A-107

27

SUB Subtract

2

SPECIAL
000000

Format:
SUB rd,rs.it
Description:

The contents of general register rt are subtracted from the contents of gencral register rs 10
form a result. The result is placed into general register rd.

The only difference between this instruction and the SUBU instruction is that SUBU never
traps on overflow.

An integer overflow exception takes place if the carries out of bits 30 and 31 differ (2’s-com-
plement overflow). The destination register rd is not modified when an integer overflow ex-
ception oceurs.

Operation:

T: GPRIrd] « GPR[rs] - GPR[r]

Exceptions:

Integer overflow exception -

A-108 MIPS RISC Architecture

CPU Instruction Set Details

Subtract Unsigned . mc—wc

Format:
SUBU rd,rs,nt
Description: , '

The contents of general register rt are subtracted from the contents of general register rs 1o
form a result. The result is placed into general regisier rd.

The only difference between this instruction and the SUB instruction is that SUBU never traps
on overflow. No integer overflow exception occurs under any circumstances.

Operation:
T: GPR[rd] « GPRIrs] - GPR|rt|
Exceptions:
None. K
MIPS RISC Architecture A-109

28

ms Store Word

101011

Format:
SW n,offset(base)
Description:

.ﬁ:n 16-bit affses is sign-extended and added 1o the contents of general register base to form a
virtual address. The contents of general register rt are stored at the memory location specified
by the effective address. .

If either of the two least significant bits of the effective address are non-zero, an address error
exception occurs,

Operation:

T vAQdr e~ ({offsehs)' || offsetis.o) + GPR[base]
(PAddr, uncached) « AddressTranslation (vAddr, DATA)
data « GPRIr]
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA) .

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

A-110 : : MIPS RISC Architecture

Appendix A

SWL Store Word Left

SWL it offset
101010

Format:

SWL n,offset(base)

Description:

This instruction can be used with the SWR instruction to store the contents of a register into
four consecutive bytes of memory, when the bytes cross a boundlary between two words.
SWL stores the left portion of the register into the appropriate part of the high order word of
memory; SWR stores the right portion of the register into the appropriate part of the low order
word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of general register
base to form a virtual address which may specify an arbitrary byte, It alters only the word in
memory which contains that byte. From one to four bytes will be stored, depending on the
starting byte specified.

Conceptually, it starts at the most significant byte of the register and copies it to the specified
byte in memory; then it proceeds toward the low order byte of the register and the low order
byte of the word in memory, copying bytes from register to memory until it reaches the low
order byte of the word in memory.

No address exceptions due to alignment are possible.

memory
(big-cndiari) register
address4] 4 5 6 7 b
addressO | 0 1 2 3 efore
SWL $24,1(30)
address 4
address0 | 0 k&9 after _ 7
- -

A-112 MIPS RISC Architecture

29

CPU Instruction Set Details

Store Word Left SWL
(continued)

Operation:

T: vAddr « ((offsetis)' || offset 1s.0) + GPR[base]
(pAddr, uncached) « AddressTranslation (vAddr, DATA)
PAGAr « pAddresze-1.2 || (PAddn.0 Xor ReverseEndian?)
byte « vAddri.e xor BigEndianCPU?
it BigEndianMem = 0 then
pAddr « pAddresux -1.2|| 07

endif
data « 0**™ || GPR[r}1 240
StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

Given a word in a register and a word in memory, the operation of SWL is as follows:

CPU Instruction Set Details

Store Word Right , msuﬂ

Format:

SWR nt,offset(base)
Description:

This instruction can be used with the SWL instruction to store the contents of a register into
four consecutive bytes of memory, when the bytes cross a boundary between two words.
SWR stores the right portion of the register into the appropriate part of the low order word:
SWL stores the left portion of the register into the appropriate part of the low order word of
memory. |

The SWR instruction adds its sign-extended 16-bit offser to the contents of general register
base to form a virtual address which may specify an arbitrary byte. It alters only the word in
memory which contains that byte. From one to four bytes will be stored, depending on the
starting byte specified.

Conceptually, it starts at the least significant (rightmost) byie of the register and copies it to
the specified byte in memory; then it proceeds toward the high order byte of the register and
the high order byte of the word in memory, copying bytes from register to memory until it
reaches the high order byte of the word in memory.

No address exceptions due to alignment are possible.

BEM Ll

0 MNOE 0 0 3 EF GH 3 0 0
1 MNEF 1 0 2 MEFG 2 0 1
2 MEFG 2 0 1 MNEF 1 0 2
3 EFGH 3 0 0 MNOE 0 0 3

LEM BigEndianMem = 0

BEM BigEndianMem = 1

Type AccessType sent to memory

Offset PAddra o sent to memory

Exceptions:

TLB refill exception TLB invalid exception TLB modification exception

Bus error exception Address error exception

MIPS RISC Architecture A-113

memory

(big-endiar) " register
address4] 4 | s [61 7 be 62
addressO | 01 11 21 3] 29°

SWR $24,4($0)
address 4 4
€ss 7
address 0 7| Yfter -
— - - -

MIPS RISC Architecture . A-115

\aﬁnma ix A

—
]
SWR Store Word Right

(continued)

Operation:

T vAddr « ((oftsetis)"* || offset u.s) + GPR{base]
(pAddr, uncached) « AddressTransiation (vAddr, DATA)
PAddr ¢ pAddresze -1.2 || (PAGGN.0 Xxor ReverseEndian?)
byte - vAddri.c xor BigEndianCPU?
If BigEndianMem = 1 then
PAddr « pAddresz .1..2]| 07
endif
data « GPR|rthi.awe. 0 || 0%
StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

Given a word in a register and a word in memory, the operation of SWR is as follows:

vAddres

wWN ~-O

LEM BigEndianMem = 0

BEM . BigEndianMem = 1

Type AccessType sent to memory
Offset pAddrz o sent to memory

Exceptions: .

TLB refill exception TLB invalid exception TLB modification exception

Bus error exception Address error exception

A-116 : MIPS RISC Architecture

CPU Instruction Set bﬂ.&.ﬁ

Exclusive Or xow

Format:

XOR rd,rs,it
Description:

The contents of gencral register rs are combined with the contents of general register rrin a
bit-wise logical exclusive OR operation. The result is placed into general register rd.

Operation:

T: GPR{rd] « GPR{rs] xor GPR[r1}

Exceptions:

None.

MIPS RISC Architecture A-137

31

%QEQ_\X A

MO mﬂm Exclusive Or Immediate

EIEIEN
001110

Format:
XORI rrs,immediate
Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs
in a bit-wise logical exclusive-OR operation. The result is placed into general register rr.

Operation:

T: GPRIrt] « GPR[rs] xor (0 '* |} immediate)

Exceptions:

None.

A-138 MIPS RISC Architecture

CPU Instruction Set Detajls

CPU Instruction Opcode Bit Encoding

The remainder of this Appendix presents the opcode bit encoding for the CPU instruction set
(ISA and extensions), as implemented by the R2000/3000 (Figure A-1), R4000 (Figure A-2),
and R6000 (Figure A-3).

28.26 Opcode
31.29 9] i 3 4 3] 7
o | spEciAL | REGIMM J JAL BEQ BNE BLEZ BGTZ
1 ADDI | ADDIU SLTI SLTIU
2 COP! cor? [)
3 R TN *
4 L LWL LW
5 SH SWL SW
6 LWC} LWC2 LWCI
7 cacil swen SWC2 SWC3 K
2.0 SPECIAL function
5.3 0) 2 3 4 s 6 7
0 SLL * SRL__ | SRA SLLV I srav
1 IR JALR itk .0 % . SYSCALL *
2 MFHI MTHI MFLO MTLO % * -
3 MULT | MULTU DIV DIVU T . , %
4 ADD ADDY sus SUBU AND [or™ T xor | nowr
5 * . * SLT SLTU * * *
6 % ¥ * . % ok W o K
7 * * & * - . % * *
18.16 REGIMM rt
20..16 [] i 2 3 4 s 6 7
0 BLTZ | BGEZ |y 1 Y Y Y Y
! Y Y Y b Y Y Y Y
2 BLTZAL | BGRzAL | - ¥ Y Y 1 Y Y
3 T i Y 7 Y T Y Y
23.21 COPzrs
25.24 [) 1 2 3) 5 6 7
0 ME y 1 e ¥y 1 Mt } Y T o [%
1 BC Y Y X Y b d Y Y
2 co
3
18..16 nﬁv—uh rt
20..19 0 1 2 3 4 5 6 7
o Bk b ower [¥ Y Y Y Y Y
| Y ¥ Y Y Y Y ¥ Y
5 v Y Y Y Y Y Y Y
] Y Y Y Y 1 Y T Y
Figure A-1. R2000/R3000 Opcode Bit Encoding
MIPS RISC Architecture A-139

Appendix A

CP0 Function

UN—OUN‘-‘OM

A-142

Figure A-2. R4000 Opcode Bit Encoding (cont.)

Operation codes marked with an asterisk cause reserved instruction excep-
tions in all current implementations and are reserved for future versions of the
architecture.

Operation codes marked with an alpha cause reserved instruction exceptions
in R2000/R3000 implementations, and are valid for R4000 implementations.

Operation codes marked with a beta are not valid for R2000/R 3000 implemen-
tations, and are valid for R4000/R6000 implementations. R2000/R3000 im-
plementations do not take a reserved instruction exception on these opcodes.

Operation codes marked with a gamma are not valid for R2000/R3000 imple-
mentations, and for R4000 implementations cause a reserved instruction ex-
ception. They are reserved for future versions of the architecture.

Operation codes marked with a delta are valid only for R4000 processors with
CPO enabled, and cause a reserved instruction exception on other processors.

Opcration codes marked with an epsilon are valid only for R2000, R3000 and
R4000 processors {processors with an on-chip associative TLB), and are not
valid on the R6000.

“Operation codes marked with a phi are invalid but do not cause reserved in-
struction exceptions in R4000 implementations.

Operation codes marked with a xi are valid on the R2000, R3000 and R6000,
but are not valid and cause a reserved instruction exception on R4000 proces-
SOrs.

Operation codes marked with a chi are valid only on R4000 processors and
Ciuse a reserved instruction exception on the R2000, R3000 and R6000),

MIPS RISC Architecture

CPU Instruction Set Details

28.26 Opcode
31.29 1] 1 2 3 4] [1
0 | SPECIAL | REGIMM J JAL BEQ BNE BLEZ BGTZ
1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LU
2 COP0 COPl COP2 COP3 BEQLa| BNBLa] BLEZLa] BoTZig
4 LB Ly LWL LW LHU LWR
5 SB SH SWL W Sty SWR b
6 LL LWCI Lwesz LWe3 LClg| LDQa
7 SC SWCH SWC2 SWC3 SDClal SDQ2af SDCIa
2.0 SPECIAL function
5.3 0 3 4
0 st I SRA SLLY
1 JR JALR SYSCALL
2 MFHI MTHI MFLO MTLO
3 MULT | MULTU DIV DIVU
4 ADD ADDU SUB SUBU
s K K SLT SLTU
6 GEa| TGEUa| TLT a] TLW o
7 ke * L IR St r T
18..16 REGIMM rt
20..19 0 i 2 3 4 3 6 7
0 BLTZ BGIZ BLTZL f{ BGEZLB| - -* * - * *
1 TGEr B TGEWR] W Bl MTUBRL i B[% | NEipgl ¥
2 BLTZAL | BGEZAL |BLTZALLBIBGEZALL . T JEr -k %
3 * * * * & * * *
23.21 COPzrs
25,24 0 | 2 3 4 5 6 7
0 ME Y | cF Y T Mt T ¥y T o | ¥
1 BC X X X Y i 2 Y Y
2 co
3
18.16 R\AVMvN rt N
20..19 1] 1 2 3 4 5 6 17
0 BCE | et | Bon. Bl serpp] ¥ Y Y Y
1 Y Y Y Y X Y Y Y
2 Y Y Y Y Y Y Y Y
3 Y Y Y Y Y Y Y Y

Figure A 3. R6000 Opcode Bit Encoding

MIPS RISC Architecture

+
f

A-143

33

