
CS252 S05 1

Computer Architecture

2007-2008

Organization (www.liacs.nl/ca)

People
– Lecturer: Lex Wolters
– Assignment leader: Harmen van der Spek
– Assistant: Van Thieu Vu
– Student assistants: Eyal Halm & Joris Huizer

Lectures (3 EC)
– Wednesday 11.15-13.00h till Dec 5th (except Oct 3rd)
– Book: Hennessy & Patterson, fourth edition!
– Exam: date unknown yet

Assignment (4 EC)
– Parts 1 (10%), 2a (30%), 2b (30%), 3 (30%): strict deadlines
– Assistance (room 306):

» Wed 13.45-15.30h (scheduled): this afternoon Intro part 1
» Mon, Tue, Thu 15.30-16.30h

Lecture 1 - Introduction

Slides are used during lectures by
David Patterson, Berkeley, spring 2006

Outline
• Computer Science at a Crossroads
• Computer Architecture v. Instruction Set Arch.
• What Computer Architecture brings to table

Break

• Old Conventional Wisdom: Power is free, Transistors expensive
• New Conventional Wisdom: “Power wall” Power expensive, Xtors free

(can put more on chip than can afford to turn on)
• Old CW: Sufficiently increasing Instruction Level Parallelism via

compilers, innovation (Out-of-order, speculation, VLIW, …)
• New CW: “ILP wall” law of diminishing returns on more HW for ILP
• Old CW: Multiplies are slow, Memory access is fast
• New CW: “Memory wall” Memory slow, multiplies fast

(200 clock cycles to DRAM memory, 4 clocks for multiply)
• Old CW: Uniprocessor performance 2X / 1.5 yrs
• New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall

– Uniprocessor performance now 2X / 5(?) yrs

⇒ Sea change in chip design: multiple “cores”
(2X processors per chip / ~ 2 years)
» More simpler processors are more power efficient

Crossroads: Conventional Wisdom in Comp. Arch

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Crossroads: Uniprocessor Performance

• VAX : 25% / year 1978 to 1986
• RISC + x86: 52% / year 1986 to 2002
• RISC + x86: ??% / year 2002 to present

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006

CS252 S05 2

Sea Change in Chip Design
• Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• Processor is the new transistor?

• RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm
– Caches via DRAM or 1 transistor SRAM?

Déjà vu all over again?

• Multiprocessors imminent in 1970s, ‘80s, ‘90s, …
• “… today’s processors … are nearing an impasse as

technologies approach the speed of light..”
David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer was premature
⇒ Custom multiprocessors strove to lead uniprocessors
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to
multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2004)
• Difference is all microprocessor companies switch to

multiprocessors (AMD, Intel, IBM, Sun; all new Apples 2 CPUs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs
⇒ Biggest programming challenge: 1 to 2 CPUs

Problems with Sea Change

• Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, … not
ready to supply Thread Level Parallelism or Data
Level Parallelism for 1000 CPUs / chip

• Architectures not ready for 1000 CPUs / chip
Unlike Instruction Level Parallelism, cannot be solved by just by
computer architects and compiler writers alone, but also cannot
be solved without participation of computer architects

• The 4th edition of the textbook ‘Computer
Architecture: A Quantitative Approach’ explores
shift from Instruction Level Parallelism to Thread
Level Parallelism / Data Level Parallelism

Outline
• Computer Science at a Crossroads
• Computer Architecture v. Instruction Set Arch.
• What Computer Architecture brings to table

Instruction Set Architecture: Critical Interface

instruction set

software

hardware

• Properties of a good abstraction
– Lasts through many generations (portability)
– Used in many different ways (generality)
– Provides convenient functionality to higher levels
– Permits an efficient implementation at lower levels

Example: MIPS
0r0

r1
°
°
°
r31
PC
lo
hi

Programmable storage
232 x bytes
31 x 32-bit GPRs (R0=0)
32 x 32-bit FP regs (paired DP)
HI, LO, PC

Data types ?
Format ?
Addressing Modes?

Arithmetic logical
Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI
SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access
LB, LBU, LH, LHU, LW, LWL,LWR
SB, SH, SW, SWL, SWR

Control
J, JAL, JR, JALR
BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

CS252 S05 3

Instruction Set Architecture
“... the attributes of a [computing] system as seen by
the programmer, i.e. the conceptual structure and
functional behavior, as distinct from the organization
of the data flows and controls the logic design, and
the physical implementation.”

– Amdahl, Blaauw, and Brooks, 1964
SOFTWARESOFTWARE

-- Organization of Programmable
Storage

-- Data Types & Data Structures:
Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

ISA vs. Computer Architecture
• Old definition of computer architecture

= instruction set design
– Other aspects of computer design called implementation
– Insinuates implementation is uninteresting or less challenging

• Our view is computer architecture >> ISA
• Architect’s job much more than instruction set

design; technical hurdles today more challenging
than those in instruction set design

• Since instruction set design not where action is,
some conclude computer architecture (using old
definition) is not where action is

– We disagree on conclusion
– Agree that ISA not where action is (ISA in appendix B)

Comp. Arch. is an Integrated Approach

• What really matters is the functioning of the complete
system

– hardware, runtime system, compiler, operating system, and
application

– In networking, this is called the “End to End argument”

• Computer architecture is not just about transistors,
individual instructions, or particular implementations

– E.g., Original RISC projects replaced complex instructions with a
compiler + simple instructions

Computer Architecture is Design and Analysis

Design

Analysis

Architecture is an iterative process:
• Searching the space of possible designs
• At all levels of computer systems

Creativity

Good IdeasGood Ideas
Mediocre IdeasBad Ideas

Cost /
Performance
Analysis

Outline
• Computer Science at a Crossroads
• Computer Architecture v. Instruction Set Arch.
• What Computer Architecture brings to table

What Computer Architecture brings to Table
• Other fields often borrow ideas from architecture
• Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantity, and summarize relative performance
– Define and quantity relative cost
– Define and quantity dependability
– Define and quantity power

• Culture of anticipating and exploiting advances in
technology

• Culture of well-defined interfaces that are carefully
implemented and thoroughly checked

CS252 S05 4

1) Take Advantage of Parallelism
• Increasing throughput of server computer via

multiple processors or multiple disks
• Detailed HW design

– Carry lookahead adders uses parallelism to speed up computing
sums from linear to logarithmic in number of bits per operand

– Multiple memory banks searched in parallel in set-associative
caches

• Pipelining: overlap instruction execution to reduce
the total time to complete an instruction sequence.

– Not every instruction depends on immediate predecessor ⇒
executing instructions completely/partially in parallel possible

– Classic 5-stage pipeline:
1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Limits to pipelining

• Hazards prevent next instruction from executing
during its designated clock cycle

– Structural hazards: attempt to use the same hardware to do
two different things at once

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps).

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

2) The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

• Last 30 years, HW relied on locality for memory perf.

P MEM$

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

L2 Cache
cache cntl
64-128 bytesBlocks

3) Focus on the Common Case
• Common sense guides computer design

– Since its engineering, common sense is valuable
• In making a design trade-off, favor the frequent

case over the infrequent case
– E.g., Instruction fetch and decode unit used more frequently

than multiplier, so optimize it 1st
– E.g., If database server has 50 disks / processor, storage

dependability dominates system dependability, so optimize it 1st
• Frequent case is often simpler and can be done

faster than the infrequent case
– E.g., overflow is rare when adding 2 numbers, so improve

performance by optimizing more common case of no overflow
– May slow down overflow, but overall performance improved by

optimizing for the normal case
• What is frequent case and how much performance

improved by making case faster => Amdahl’s Law

CS252 S05 5

4) Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction Fraction

1
ExTime
ExTime Speedup

+−
==

1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1 Speedup =

() ⎥
⎦

⎤
⎢
⎣

⎡
+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime ExTime 1

Amdahl’s Law example
• New CPU 10X faster
• I/O bound server, so 60% time waiting for I/O

()

()
56.1

64.0
1

10
0.4 0.4 1

1

Speedup
Fraction Fraction 1

1 Speedup

enhanced

enhanced
enhanced

overall

==
+−

=

+−
=

• Apparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster

5) Processor performance equation

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

What is a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-flight

issues + gate delays
– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

Break

Outline
• Technology Trends: Culture of tracking,

anticipating and exploiting advances in
technology

• Careful, quantitative comparisons:
1. Define, quantity, and summarize relative performance
2. Define and quantity relative cost
3. Define and quantity dependability
4. Define and quantity power

CS252 S05 6

Moore’s Law: 2X transistors / “year”

• “Cramming More Components onto Integrated Circuits”
– Gordon Moore, Electronics, 1965

• # on transistors / cost-effective integrated circuit double every N months (12 ≤ N ≤ 24)

Tracking Technology Performance Trends

• Drill down into 4 technologies:
– Disks
– Memory
– Network
– Processors

• Compare ~1980 Archaic vs. ~2000 Modern
– Performance Milestones in each technology

• Compare for Bandwidth vs. Latency improvements
in performance over time

• Bandwidth: number of events per unit time
– E.g., Mbits / second over network, Mbytes / second from disk

• Latency: elapsed time for a single event
– E.g., one-way network delay in microseconds,

average disk access time in milliseconds

Disks
Archaic Modern

• Seagate 373453, 2003
• 15000 RPM (4X)
• 73.4 GBytes (2500X)
• Tracks/Inch: 64000 (80X)
• Bits/Inch: 533,000 (60X)
• Four 2.5” platters

(in 3.5” form factor)
• Bandwidth:

86 MBytes/sec (140X)
• Latency: 5.7 ms (8X)
• Cache: 8 MBytes

• CDC Wren I, 1983
• 3600 RPM
• 0.03 GBytes capacity
• Tracks/Inch: 800
• Bits/Inch: 9550
• Three 5.25” platters

• Bandwidth:
0.6 MBytes/sec

• Latency: 48.3 ms
• Cache: none

Latency Lags Bandwidth (for last ~20 years)

• Performance Milestones

• Disk: 3600, 5400, 7200, 10000,
15000 RPM (8x, 143x)
(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Disk

(Latency improvement
= Bandwidth improvement)

Memory
Archaic Modern

• 1980 DRAM
(asynchronous)

• 0.06 Mbits/chip
• 64,000 xtors, 35 mm2

• 16-bit data bus per
module, 16 pins/chip

• 13 Mbytes/sec
• Latency: 225 ns
• (no block transfer)

• 2000 Double Data Rate Synchr.
(clocked) DRAM

• 256.00 Mbits/chip (4000X)
• 256,000,000 xtors, 204 mm2

• 64-bit data bus per
DIMM, 66 pins/chip (4X)

• 1600 Mbytes/sec (120X)
• Latency: 52 ns (4X)
• Block transfers (page mode)

Latency Lags Bandwidth (last ~20 years)
• Performance Milestones

• Memory Module: 16bit plain
DRAM, Page Mode DRAM, 32b,
64b, SDRAM,
DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 10000,
15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Memory
Disk

(Latency improvement
= Bandwidth improvement)

CS252 S05 7

LANs
Archaic Modern

• Ethernet 802.3
• Year of Standard: 1978
• 10 Mbits/s

link speed
• Latency: 3000 µsec
• Shared media
• Coaxial cable

• Ethernet 802.3ae
• Year of Standard: 2003
• 10,000 Mbits/s (1000X)

link speed
• Latency: 190 µsec (15X)
• Switched media
• Category 5 copper wire

Coaxial Cable:

Copper core
Insulator

Braided outer conductor
Plastic Covering

Copper, 1mm thick,
twisted to avoid antenna effect

Twisted Pair:
"Cat 5" is 4 twisted pairs in bundle

Latency Lags Bandwidth (last ~20 years)

• Performance Milestones

• Ethernet: 10Mb, 100Mb,
1000Mb, 10000 Mb/s (16x,1000x)

• Memory Module: 16bit plain
DRAM, Page Mode DRAM, 32b,
64b, SDRAM,
DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 10000,
15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

CPUs
Archaic Modern

• 1982 Intel 80286
• 12.5 MHz
• 2 MIPS (peak)
• Latency 320 ns
• 134,000 xtors, 47 mm2

• 16-bit data bus, 68 pins
• Microcode interpreter,

separate FPU chip
• (no caches)

• 2001 Intel Pentium 4
• 1500 MHz (120X)
• 4500 MIPS (peak) (2250X)
• Latency 15 ns (20X)
• 42,000,000 xtors, 217 mm2

• 64-bit data bus, 423 pins
• 3-way superscalar,

Dynamic translate to RISC,
Superpipelined (22 stage),
Out-of-Order execution

• On-chip 8KB Data caches,
96KB Instr. Trace cache,
256KB L2 cache

Latency Lags Bandwidth (last ~20 years)

• Performance Milestones
• Processor: ‘286, ‘386, ‘486,

Pentium, Pentium Pro,
Pentium 4 (21x,2250x)

• Ethernet: 10Mb, 100Mb,
1000Mb, 10000 Mb/s (16x,1000x)

• Memory Module: 16bit plain
DRAM, Page Mode DRAM, 32b,
64b, SDRAM,
DDR SDRAM (4x,120x)

• Disk : 3600, 5400, 7200, 10000,
15000 RPM (8x, 143x)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Processor

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

CPU high,
Memory low
(“Memory
Wall”)

Rule of Thumb for Latency Lagging BW

• In the time that bandwidth doubles, latency
improves by no more than a factor of 1.2 to 1.4

(and capacity improves faster than bandwidth)

• Stated alternatively:
Bandwidth improves by more than the square
of the improvement in Latency

6 Reasons Latency Lags Bandwidth

1. Moore’s Law helps BW more than latency
• Faster transistors, more transistors,

more pins help Bandwidth
» MPU Transistors: 0.130 vs. 42 M xtors (300X)
» DRAM Transistors: 0.064 vs. 256 M xtors (4000X)
» MPU Pins: 68 vs. 423 pins (6X)
» DRAM Pins: 16 vs. 66 pins (4X)

• Smaller, faster transistors but communicate
over (relatively) longer lines: limits latency

» Feature size: 1.5 to 3 vs. 0.18 micron (8X,17X)
» MPU Die Size: 35 vs. 204 mm2 (ratio sqrt ⇒ 2X)
» DRAM Die Size: 47 vs. 217 mm2 (ratio sqrt ⇒ 2X)

CS252 S05 8

6 Reasons Latency Lags Bandwidth (cont’d)

2. Distance limits latency
• Size of DRAM block ⇒ long bit and word lines

⇒ most of DRAM access time
• Speed of light and computers on network
• 1. & 2. explains linear latency vs. square BW?

3. Bandwidth easier to sell (“bigger=better”)
• E.g., 10 Gbits/s Ethernet (“10 Gig”) vs.

10 µsec latency Ethernet
• 4400 MB/s DIMM (“PC4400”) vs. 50 ns latency
• Even if just marketing, customers now trained
• Since bandwidth sells, more resources thrown at bandwidth,

which further tips the balance

4. Latency helps BW, but not vice versa
• Spinning disk faster improves both bandwidth and

rotational latency
» 3600 RPM ⇒ 15000 RPM = 4.2X
» Average rotational latency: 8.3 ms ⇒ 2.0 ms
» Things being equal, also helps BW by 4.2X

• Lower DRAM latency ⇒
More access/second (higher bandwidth)

• Higher linear density helps disk BW
(and capacity), but not disk Latency

» 9,550 BPI ⇒ 533,000 BPI ⇒ 60X in BW

6 Reasons Latency Lags Bandwidth (cont’d)

5. Bandwidth hurts latency
• Queues help Bandwidth, hurt Latency (Queuing Theory)
• Adding chips to widen a memory module increases

Bandwidth but higher fan-out on address lines may
increase Latency

6. Operating System overhead hurts
Latency more than Bandwidth

• Long messages amortize overhead;
overhead bigger part of short messages

6 Reasons Latency Lags Bandwidth (cont’d) Summary of Technology Trends

• For disk, LAN, memory, and microprocessor,
bandwidth improves by square of latency
improvement

– In the time that bandwidth doubles, latency improves by no more
than 1.2X to 1.4X

• Lag probably even larger in real systems, as
bandwidth gains multiplied by replicated components

– Multiple processors in a cluster or even in a chip
– Multiple disks in a disk array
– Multiple memory modules in a large memory
– Simultaneous communication in switched LAN

• HW and SW developers should innovate assuming
Latency Lags Bandwidth

– If everything improves at the same rate, then nothing really changes
– When rates vary, require real innovation

Outline
• Technology Trends: Culture of tracking,

anticipating and exploiting advances in
technology

• Careful, quantitative comparisons:
1. Define and quantity cost
2. Define and quantity power
3. Define and quantity dependability
4. Define, quantity, and summarize relative performance

Define and quantify cost (1/3)
Three factors lower cost:
1. Learning curve – manufacturing costs decrease

over time, measured by change in yield
– % manufactured devices that survives the testing procedure

2. Volume – doubling volume cuts cost 10%
– Decrease time to get down the learning curve
– Increases purchasing and manufacturing efficiency
– Amortizes development costs over more devices

3. Commodities reduce costs by reducing margins
– Products sold by multiple vendors in large volumes that

essentially identical
– E.g. keyboards, monitors, DRAMs, disks, PCs

Most of computer cost in Integrated Circuits (ICs)

CS252 S05 9

30cm wafer containing
117 AMD Opteron chips Define and quantify cost: ICs (2/3)

yiels test Final
cost Packagingcost Testingcost Diecost IC ++=

yield Dieper wafer Dies
costWafer cost Die
×

=

()
area Die2

diameterWafer
area Die

2/diameterWafer per wafer Dies
2

×
×−×= ππ

α

α

−

⎟
⎠
⎞

⎜
⎝
⎛ ×+×= area DiedensityDefect 1yieldWafer yield Die

For cost effective dies:
cost ≈ f(die_area2)

In 2006: α = 4.0
Defect density = 0.4/cm2

30cm wafer ≈ $5k–$6k

Define and quantify cost: cost vs. price (3/3)

• Margin = price product sells – cost to manufacture

• Margins pay for a research and development (R&D),
marketing, sales, manufacturing equipment
maintenance, building rental, cost of financing,
pretax profits, and taxes.

• Most companies spend 4% (commodity PC
business) to 12% (high-end server business) of
income on R&D, which includes all engineering.

Outline
• Technology Trends: Culture of tracking,

anticipating and exploiting advances in
technology

• Careful, quantitative comparisons:
1. Define and quantity cost
2. Define and quantity power
3. Define and quantity dependability
4. Define, quantity, and summarize relative performance

Define and quantity power (1/2)
• For CMOS chips, traditional dominant energy

consumption has been in switching transistors,
called dynamic power

witchedFrequencySVoltageLoadCapacitivePower 2
2
1

×××=dynamic

• For mobile devices, energy better metric
VoltageLoadCapacitiveEnergy 2

×=dynamic

• For a fixed task, slowing clock rate (frequency
switched) reduces power, but not energy

• Capacitive load a function of number of transistors
connected to output and technology, which
determines capacitance of wires and transistors

• Dropping voltage helps both, so went from 5V to 1V
• To save energy & dynamic power, most CPUs now

turn off clock of inactive modules (e.g. Fl. Pt. Unit)

Example of quantifying power
• Suppose 15% reduction in voltage results in a 15%

reduction in frequency. What is impact on dynamic
power?

dynamic

dynamic

dynamic

OldPower6.0

OldPower)85(.

witchedFrequencyS)Voltage85(.LoadCapacitive85.2/1

witchedFrequencySVoltageLoadCapacitive2/1Power

3

2

2

×

×

××××

×××

≈

=

×=

=

CS252 S05 10

Define and quantity power (2/2)
• Because leakage current flows even when a

transistor is off, now static power important too

• Leakage current increases in processors with
smaller transistor sizes

• Increasing the number of transistors increases
power even if they are turned off

• In 2006, goal for leakage is 25% of total power
consumption; high performance designs at 40%

• Very low power systems even gate voltage to
inactive modules to control loss due to leakage

VoltageCurrentPower ×= staticstatic

Outline
• Review
• Technology Trends: Culture of tracking,

anticipating and exploiting advances in
technology

• Careful, quantitative comparisons:
1. Define and quantity relative cost
2. Define and quantity power
3. Define and quantity dependability
4. Define, quantity, and summarize relative performance

Define and quantity dependability (1/3)
• How decide when a system is operating properly?
• Infrastructure providers now offer Service Level

Agreements (SLA) to guarantee that their
networking or power service would be dependable

• Systems alternate between 2 states of service
with respect to an SLA:
1. Service accomplishment, where the service is delivered as

specified in SLA
2. Service interruption, where the delivered service is different

from the SLA

• Failure = transition from state 1 to state 2
• Restoration = transition from state 2 to state 1

Define and quantity dependability (2/3)
• Module reliability = measure of continuous service

accomplishment (or time to failure).
Two metrics:
1. Mean Time To Failure (MTTF) measures Reliability
2. Failures In Time (FIT) = 1/MTTF, the rate of failures

• Mean Time To Repair (MTTR) measures Service
Interruption
– Mean Time Between Failures (MTBF) = MTTF+MTTR

• Module availability measures service as alternate
between the 2 states of accomplishment and
interruption (number between 0 and 1, e.g. 0.9)
– Module availability = MTTF / (MTTF + MTTR)

Example calculating reliability
• If modules have exponentially distributed

lifetimes (age of module does not affect
probability of failure), overall failure rate is the
sum of failure rates of the modules

• Calculate FIT and MTTF for 10 disks (1M hour
MTTF per disk), 1 disk controller (0.5M hour
MTTF), and 1 power supply (0.2M hour MTTF):

hours 59,000
000,17/000,000,000,1MTTF

FIT 17,000
000,000,1/17

000,000,1/)5210(
000,200/1000,500/1)000,000,1/1(10eFailureRat

≈
=
=
=

++=
++×=

Outline
• Technology Trends: Culture of tracking,

anticipating and exploiting advances in
technology

• Careful, quantitative comparisons:
1. Define and quantity relative cost
2. Define and quantity power
3. Define and quantity dependability
4. Define, quantity, and summarize relative performance

CS252 S05 11

Definition: Performance
• Performance is in units of things per sec

– bigger is better

• If we are primarily concerned with response time

performance(X) = 1
execution_time(X)

" X is n times faster than Y" means

Performance(X) Execution_time(Y)
n = =

Performance(Y) Execution_time(X)

Performance: What to measure?
• Usually rely on benchmarks vs. real workloads
• To increase predictability, collections of benchmark

applications, called benchmark suites, are popular
• SPECCPU: popular desktop benchmark suite

– CPU only, split between integer and floating point programs
– SPECint2000 has 12 integer, SPECfp2000 has 14 integer pgms
– SPECCPU2006 to be announced Spring 2006
– SPECSFS (NFS file server) and SPECWeb (WebServer) added as

server benchmarks

• Transaction Processing Council measures server
performance and cost-performance for databases

– TPC-C Complex query for Online Transaction Processing
– TPC-H models ad hoc decision support
– TPC-W a transactional web benchmark
– TPC-App application server and web services benchmark

How Summarize Suite Performance (1/5)

• Arithmetic average of execution time of all pgms?
– But they vary by 4X in speed, so some would be more important

than others in arithmetic average

• Could add a weight per program, but how pick a
weight?

– Different companies want different weights for their products

• SPECRatio: Normalize execution times to reference
computer, yielding a ratio proportional to

performance =
time on reference computer

time on computer being rated

How Summarize Suite Performance (2/5)

• If program SPECRatio on Computer A is 1.25
times bigger than Computer B, then

B

A

A

B

B

reference

A

reference

B

A

ePerformanc
ePerformanc

imeExecutionT
imeExecutionT

imeExecutionT
imeExecutionT

imeExecutionT
imeExecutionT

SPECRatio
SPECRatio

==

==25.1

• Note that when comparing 2 computers as a ratio,
execution times on the reference computer drop
out, so choice of reference computer is irrelevant

How Summarize Suite Performance (3/5)

• Since ratios, proper mean is geometric mean
(SPECRatio unitless, so arithmetic mean meaningless)

n
n

i
iSPECRatioeanGeometricM ∏

=

=
1

1. Geometric mean of the ratios is the same as the
ratio of the geometric means

2. Ratio of geometric means
= Geometric mean of performance ratios
⇒ choice of reference computer is irrelevant!

These two points make geometric mean of ratios
attractive to summarize performance

How Summarize Suite Performance (4/5)

• Does a single mean well summarize performance of
programs in benchmark suite?

• Can decide if mean a good predictor by characterizing
variability of distribution using standard deviation

• Like geometric mean, geometric standard deviation is
multiplicative rather than arithmetic

• Can simply take the logarithm of SPECRatios, compute
the standard mean and standard deviation, and then
take the exponent to convert back:

()

()()()i

n

i
i

SPECRatioStDevtDevGeometricS

SPECRatio
n

eanGeometricM

lnexp

ln1exp
1

=

⎟
⎠

⎞
⎜
⎝

⎛ ×= ∑
=

CS252 S05 12

How Summarize Suite Performance (5/5)

• Standard deviation is more informative if know
distribution has a standard form

– bell-shaped normal distribution, whose data are symmetric
around mean

– lognormal distribution, where logarithms of data – not data
itself – are normally distributed (symmetric) on a logarithmic
scale

• For a lognormal distribution, we expect that
68% of samples fall in range

95% of samples fall in range
[]gstdevmeangstdevmean ×,/

[]22 ,/ gstdevmeangstdevmean ×

And in conclusion …
• Computer Architecture >> instruction sets
• Computer Architecture skill sets are different

– 5 Quantitative principles of design
– Quantitative approach to design
– Solid interfaces that really work
– Technology tracking and anticipation

• Computer Science at the crossroads from sequential to parallel
computing

– Salvation requires innovation in many fields, including computer architecture

• Tracking and extrapolating technology part of architect’s responsibility
• Expect Bandwidth in disks, DRAM, network, and processors to improve

by at least as much as the square of the improvement in Latency
• Quantify dynamic and static power

– Capacitance x Voltage2 x frequency, Energy vs. power

• Quantify dependability
– Reliability (MTTF, FIT), Availability (99.9…)

• Quantify and summarize performance
– Ratios, Geometric Mean, Multiplicative Standard Deviation

Reading

• This lecture: chapter 1

• Next lecture: appendix A

• Assignment 1: appendix B

