source: liacs/ccs/op2/report.tex@ 144

Last change on this file since 144 was 2, checked in by Rick van der Zwet, 15 years ago

Initial import of data of old repository ('data') worth keeping (e.g. tracking
means of URL access statistics)

File size: 3.5 KB
Line 
1\documentclass[a4paper,12pt]{report}
2\usepackage{hyperref}
3\usepackage{a4wide}
4%\usepackage{indentfirst}
5\usepackage[english]{babel}
6\usepackage{graphics}
7%\usepackage[pdftex]{graphicx}
8\usepackage{latexsym}
9\usepackage{fancyvrb}
10\usepackage{fancyhdr}
11
12\pagestyle{fancyplain}
13\newcommand{\tstamp}{\today}
14\newcommand{\id}{$ $Id: report.tex 162 2007-05-12 15:45:10Z rick $ $}
15\lfoot[\fancyplain{\tstamp}{\tstamp}] {\fancyplain{\tstamp}{\tstamp}}
16\cfoot[\fancyplain{\id}{\id}] {\fancyplain{\id}{\id}}
17\rfoot[\fancyplain{\thepage}{\thepage}] {\fancyplain{\thepage}{\thepage}}
18
19
20\title{ Challenges in Computer Science \\
21\large{Assignment 2 - multi-objective question}}
22\author{Rick van der Zwet\\
23 \texttt{<hvdzwet@liacs.nl>}\\
24 \\
25 LIACS\\
26 Leiden Universiteit\\
27 Niels Bohrweg 1\\
28 2333 CA Leiden\\
29 Nederland}
30\date{\today}
31\begin{document}
32\maketitle
33\tableofcontents
34\chapter{Introduction}
35\label{foo}
36The assignment -given during the college of 23 April 2007- defined 3
37multi-objective questions. One of them needs further investigation:
38\begin{quote}
39Your task is to design a fish tank. The width, height, and length of
40the box-shaped tank are your decision variables. The volume has to be
41maximized, while the surface area has to be minimized {\small{because it is
42directly proportional to the cost of the tank.}} Moreover, for aesthetical
43reasons, the ratio between the height and length should be 2/3. Another
44constraint: the volume is not to exceed 300 liters and has to be more or
45equal to 60 liters.
46\end{quote}
47
48\chapter{Assumptions}
49\begin{itemize}
50\item The box is 'closed', the surface area of a fish tank will be the sum of
51all (6) areas of the box.
52\item No surface area will be used to attach the sides to each other.
53\item Both decision variables equal, a weight factor of $1$.
54\end{itemize}
55The surface area of a fish tank will be
56\begin{equation}
57a = 2 * w * h + 2 * w * l + 2 * h * l
58\end{equation}
59or more simplified
60\begin{equation}
61a = 2 * ( w * h + w * l + h * l)
62\label{eq:sa}
63\end{equation}
64The volume will be
65\begin{equation}
66v = w * h * l
67\label{eq:v}
68\end{equation}
69
70
71\chapter{Strategy}
72We could very easy reduce the problem from 3 unknown factors to 2
73unknown factors. The ratio between the height and length should be
74$2/3$ which makes the height linear dependant of the width. Substitution
75in Eq. \ref{eq:sa} leads to
76\begin{equation}
77a = 2 * ( w * ( 2/3 * l) + w * l + (2/3 * l ) * l)
78\end{equation}
79After substitution in Eq. \ref{eq:v} the volume will become $v = w * l *
80(2/3 * l)$. With 2 unknown factors it will be perfect to use a Pareto
81front. We will map $(w,l) => (v,a)$, with respect of the limitation $60
82\leq v < 300$.
83\chapter{Model}
84
85\begin{figure}[ht]
86\begin{center}
87\resizebox{\columnwidth}{!}{\includegraphics{pareto}}
88\end{center}
89\caption{
90 Pareto-front of fish-box
91}
92\label{fig:pareto}
93\end{figure}
94
95Fig. \ref{fig:pareto} has be generated by calculating many values -with
96respect to the limitations- and plot them into the figure.
97As we are optimising for the smallest surface area and the largest
98volume the vectors will originate from the left-top bottom of the graph
99($(400,0)$). Both decision variables are as important, so the
100pareto-lines will be circles. The shorter the length of the vector the
101better the solution. The blue dashed line will be the first line which
102intersect a few points, so these point are the optimal solutions.
103
104\appendix
105\fvset{numbers=left}
106\chapter{pareto.pl}
107\VerbatimInput{pareto.pl}
108\chapter{pareto.gp}
109\VerbatimInput{pareto.gp}
110\end{document}
111
Note: See TracBrowser for help on using the repository browser.