1 | \documentclass[a4paper,12pt]{report}
|
---|
2 | \usepackage{hyperref}
|
---|
3 | \usepackage{a4wide}
|
---|
4 | %\usepackage{indentfirst}
|
---|
5 | \usepackage[english]{babel}
|
---|
6 | \usepackage{graphics}
|
---|
7 | %\usepackage[pdftex]{graphicx}
|
---|
8 | \usepackage{latexsym}
|
---|
9 | \usepackage{fancyvrb}
|
---|
10 | \usepackage{fancyhdr}
|
---|
11 |
|
---|
12 | \pagestyle{fancyplain}
|
---|
13 | \newcommand{\tstamp}{\today}
|
---|
14 | \newcommand{\id}{$ $Id: report.tex 162 2007-05-12 15:45:10Z rick $ $}
|
---|
15 | \lfoot[\fancyplain{\tstamp}{\tstamp}] {\fancyplain{\tstamp}{\tstamp}}
|
---|
16 | \cfoot[\fancyplain{\id}{\id}] {\fancyplain{\id}{\id}}
|
---|
17 | \rfoot[\fancyplain{\thepage}{\thepage}] {\fancyplain{\thepage}{\thepage}}
|
---|
18 |
|
---|
19 |
|
---|
20 | \title{ Challenges in Computer Science \\
|
---|
21 | \large{Assignment 2 - multi-objective question}}
|
---|
22 | \author{Rick van der Zwet\\
|
---|
23 | \texttt{<hvdzwet@liacs.nl>}\\
|
---|
24 | \\
|
---|
25 | LIACS\\
|
---|
26 | Leiden Universiteit\\
|
---|
27 | Niels Bohrweg 1\\
|
---|
28 | 2333 CA Leiden\\
|
---|
29 | Nederland}
|
---|
30 | \date{\today}
|
---|
31 | \begin{document}
|
---|
32 | \maketitle
|
---|
33 | \tableofcontents
|
---|
34 | \chapter{Introduction}
|
---|
35 | \label{foo}
|
---|
36 | The assignment -given during the college of 23 April 2007- defined 3
|
---|
37 | multi-objective questions. One of them needs further investigation:
|
---|
38 | \begin{quote}
|
---|
39 | Your task is to design a fish tank. The width, height, and length of
|
---|
40 | the box-shaped tank are your decision variables. The volume has to be
|
---|
41 | maximized, while the surface area has to be minimized {\small{because it is
|
---|
42 | directly proportional to the cost of the tank.}} Moreover, for aesthetical
|
---|
43 | reasons, the ratio between the height and length should be 2/3. Another
|
---|
44 | constraint: the volume is not to exceed 300 liters and has to be more or
|
---|
45 | equal to 60 liters.
|
---|
46 | \end{quote}
|
---|
47 |
|
---|
48 | \chapter{Assumptions}
|
---|
49 | \begin{itemize}
|
---|
50 | \item The box is 'closed', the surface area of a fish tank will be the sum of
|
---|
51 | all (6) areas of the box.
|
---|
52 | \item No surface area will be used to attach the sides to each other.
|
---|
53 | \item Both decision variables equal, a weight factor of $1$.
|
---|
54 | \end{itemize}
|
---|
55 | The surface area of a fish tank will be
|
---|
56 | \begin{equation}
|
---|
57 | a = 2 * w * h + 2 * w * l + 2 * h * l
|
---|
58 | \end{equation}
|
---|
59 | or more simplified
|
---|
60 | \begin{equation}
|
---|
61 | a = 2 * ( w * h + w * l + h * l)
|
---|
62 | \label{eq:sa}
|
---|
63 | \end{equation}
|
---|
64 | The volume will be
|
---|
65 | \begin{equation}
|
---|
66 | v = w * h * l
|
---|
67 | \label{eq:v}
|
---|
68 | \end{equation}
|
---|
69 |
|
---|
70 |
|
---|
71 | \chapter{Strategy}
|
---|
72 | We could very easy reduce the problem from 3 unknown factors to 2
|
---|
73 | unknown factors. The ratio between the height and length should be
|
---|
74 | $2/3$ which makes the height linear dependant of the width. Substitution
|
---|
75 | in Eq. \ref{eq:sa} leads to
|
---|
76 | \begin{equation}
|
---|
77 | a = 2 * ( w * ( 2/3 * l) + w * l + (2/3 * l ) * l)
|
---|
78 | \end{equation}
|
---|
79 | After substitution in Eq. \ref{eq:v} the volume will become $v = w * l *
|
---|
80 | (2/3 * l)$. With 2 unknown factors it will be perfect to use a Pareto
|
---|
81 | front. We will map $(w,l) => (v,a)$, with respect of the limitation $60
|
---|
82 | \leq v < 300$.
|
---|
83 | \chapter{Model}
|
---|
84 |
|
---|
85 | \begin{figure}[ht]
|
---|
86 | \begin{center}
|
---|
87 | \resizebox{\columnwidth}{!}{\includegraphics{pareto}}
|
---|
88 | \end{center}
|
---|
89 | \caption{
|
---|
90 | Pareto-front of fish-box
|
---|
91 | }
|
---|
92 | \label{fig:pareto}
|
---|
93 | \end{figure}
|
---|
94 |
|
---|
95 | Fig. \ref{fig:pareto} has be generated by calculating many values -with
|
---|
96 | respect to the limitations- and plot them into the figure.
|
---|
97 | As we are optimising for the smallest surface area and the largest
|
---|
98 | volume the vectors will originate from the left-top bottom of the graph
|
---|
99 | ($(400,0)$). Both decision variables are as important, so the
|
---|
100 | pareto-lines will be circles. The shorter the length of the vector the
|
---|
101 | better the solution. The blue dashed line will be the first line which
|
---|
102 | intersect a few points, so these point are the optimal solutions.
|
---|
103 |
|
---|
104 | \appendix
|
---|
105 | \fvset{numbers=left}
|
---|
106 | \chapter{pareto.pl}
|
---|
107 | \VerbatimInput{pareto.pl}
|
---|
108 | \chapter{pareto.gp}
|
---|
109 | \VerbatimInput{pareto.gp}
|
---|
110 | \end{document}
|
---|
111 |
|
---|