Last change
on this file since 73 was 2, checked in by Rick van der Zwet, 15 years ago |
Initial import of data of old repository ('data') worth keeping (e.g. tracking
means of URL access statistics)
|
File size:
880 bytes
|
Line | |
---|
1 | %An objective function for the low-autocorrelation problem.
|
---|
2 | %Author: Ofer M. Shir, 2004; oshir@liacs.nl.
|
---|
3 | %-----------------------------------------------------------------------
|
---|
4 | function [f] = merit (pop)
|
---|
5 | % Given a population of binary sequences, this function calculates
|
---|
6 | % the merit function according to the formula specified in the exercise
|
---|
7 | % description. The input pop is the given matrix.
|
---|
8 | % The output f is the merit factor calculated (row vector).
|
---|
9 |
|
---|
10 | n = size(pop,1)
|
---|
11 | m = size(pop,2)
|
---|
12 | E = zeros(1,m)
|
---|
13 | %Calculated efficiently in a matrix-notation; auxilary matrices - Y1,Y2
|
---|
14 | %- are initialized in every iteration. They are shifted form of the
|
---|
15 | %original y vectors. The diaganol of the dot-squared Y2*Y1 matrix is
|
---|
16 | %exactly the inner sum of merit function.
|
---|
17 | for k=1:n-1
|
---|
18 | Y1=pop(1:n-k,:)
|
---|
19 | Y2=pop(k+1:n,:)'
|
---|
20 | E=E+((diag(Y2*Y1)).^2)'
|
---|
21 | end
|
---|
22 |
|
---|
23 | %The output:
|
---|
24 | f = (n*n*ones(1,m))./(2*E)
|
---|
Note:
See
TracBrowser
for help on using the repository browser.