[60] | 1 | #!/usr/bin/env python
|
---|
| 2 |
|
---|
| 3 | # http://en.wikipedia.org/wiki/Stop_codon
|
---|
| 4 | # http://en.wikipedia.org/wiki/Escherichia_coli
|
---|
| 5 | # http://en.wikipedia.org/wiki/Open_reading_frame
|
---|
[61] | 6 | # http://nl.wikipedia.org/wiki/Genetische_code
|
---|
[60] | 7 |
|
---|
| 8 | import sys
|
---|
[61] | 9 | import csv
|
---|
| 10 | import string
|
---|
[60] | 11 |
|
---|
[63] | 12 | # http://ghmm.sourceforge.net/
|
---|
| 13 | import ghmm
|
---|
| 14 |
|
---|
[64] | 15 | from MultiReplace import MultiReplace
|
---|
| 16 |
|
---|
[63] | 17 | # The mapping is kind of odd, as 'r' could mean either 'g' or 'a', without any clear distintion
|
---|
| 18 | fasta_translate = {
|
---|
| 19 | 'r' : 'ga', # purine
|
---|
| 20 | 'y' : 'tc', # pyrimide
|
---|
| 21 | 'k' : 'gt', # keto
|
---|
| 22 | 'm' : 'ac', # amino
|
---|
| 23 | 's' : 'gc', # strong
|
---|
| 24 | 'w' : 'at', # weak
|
---|
| 25 | 'b' : 'gtc',
|
---|
| 26 | 'd' : 'gat',
|
---|
| 27 | 'h' : 'act',
|
---|
| 28 | 'v' : 'gca',
|
---|
| 29 | }
|
---|
| 30 |
|
---|
[64] | 31 | dna_ascii_translate = {
|
---|
| 32 | '0' : '*',
|
---|
| 33 | '1' : '<',
|
---|
| 34 | '2' : '<',
|
---|
| 35 | '3' : '<',
|
---|
| 36 | '4' : '-',
|
---|
| 37 | '5' : '>',
|
---|
| 38 | '6' : '>',
|
---|
| 39 | '7' : '>',
|
---|
| 40 | }
|
---|
[63] | 41 |
|
---|
[64] | 42 | dna_ascii = MultiReplace(dna_ascii_translate)
|
---|
[60] | 43 |
|
---|
[64] | 44 | def pretty_print(test_seq, ans_seq, v, length=70, parts=10, seperator=''):
|
---|
| 45 | """ Pretty printing of output for verification purposes """
|
---|
| 46 | for i in range(0,len(v[0]),length):
|
---|
| 47 | seq = []
|
---|
| 48 | ans = []
|
---|
| 49 | result = []
|
---|
| 50 | for j in range(0,length,parts):
|
---|
| 51 | t = i + j
|
---|
| 52 | seq.append(test_seq[t:t+parts])
|
---|
| 53 | ans.append(ans_seq[t:t+parts])
|
---|
| 54 | result.append(dna_ascii.replace(''.join(map(str,v[0][t:t+parts]))))
|
---|
[62] | 55 |
|
---|
[64] | 56 | print seperator.join(seq)
|
---|
| 57 | print seperator.join(ans)
|
---|
| 58 | print seperator.join(result)
|
---|
| 59 | print ''
|
---|
| 60 | print "fairness of test_seq: ", v[1]
|
---|
[62] | 61 |
|
---|
[64] | 62 |
|
---|
[63] | 63 | def ecoli_hmm():
|
---|
[60] | 64 | """Try to find genes inside e sequence using a HMM"""
|
---|
| 65 | # Model 4 bases A C G T and unknown state N
|
---|
| 66 | sigma = ghmm.Alphabet(['a', 'c', 'g', 't', 'n' ])
|
---|
| 67 | print sigma
|
---|
| 68 |
|
---|
| 69 | # XXX: Proper values, based of statistics
|
---|
| 70 | # The transition matrix A is chosen such that it reflects the statistics
|
---|
[64] | 71 | # Probalities from moving from one state to an other
|
---|
| 72 | # 0) Outer-gene : will try to get us into a gene
|
---|
| 73 | # 1) Start-codon : beginning of gene - part 1
|
---|
| 74 | # 2) Start-codon : beginning of gene - part 2
|
---|
| 75 | # 3) Start-codon : beginning of gene - part 3
|
---|
| 76 | # 4) Inside-gene : in the gene
|
---|
| 77 | # 5) Stop-codon : end of gene - part 1
|
---|
| 78 | # 6) Stop-codon : end of gene - part 2
|
---|
| 79 | # 7) Stop-codon : end of gene - part 3
|
---|
| 80 | A = [
|
---|
| 81 | [0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
---|
| 82 | [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
---|
| 83 | [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
|
---|
| 84 | [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0],
|
---|
| 85 | [0.0, 0.0, 0.0, 0.0, 0.7, 0.3, 0.0, 0.0],
|
---|
| 86 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
|
---|
| 87 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
|
---|
| 88 | [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
---|
| 89 | ]
|
---|
[60] | 90 |
|
---|
[64] | 91 | # XXX: Proper values, based of statistics
|
---|
| 92 | # The emission probabilities matrix is modeled after the statistics
|
---|
| 93 | # (['a', 'c', 'g', 't', 'n' ]
|
---|
| 94 | B = [
|
---|
| 95 | # e.g. state 0 -> emission probability
|
---|
| 96 | [0.2, 0.2, 0.2, 0.2, 0.2] ,
|
---|
| 97 | [0.9, 0.0, 0.1, 0.0, 0.0] ,
|
---|
| 98 | [0.0, 0.0, 0.0, 1.0, 0.0] ,
|
---|
| 99 | [0.0, 0.0, 1.0, 0.0, 0.0] ,
|
---|
| 100 | [0.2, 0.2, 0.2, 0.2, 0.2] ,
|
---|
| 101 | [0.0, 0.0, 0.0, 1.0, 0.0] ,
|
---|
| 102 | [0.7, 0.0, 0.3, 0.0, 0.0] ,
|
---|
| 103 | [0.7, 0.0, 0.3, 0.0, 0.0] ,
|
---|
| 104 | ]
|
---|
[60] | 105 |
|
---|
| 106 | # Initial distribution favors outside
|
---|
[64] | 107 | pi = [0.9] + [0.1/7] * 7
|
---|
[60] | 108 |
|
---|
| 109 | m = ghmm.HMMFromMatrices(sigma,ghmm.DiscreteDistribution(sigma),A ,B, pi)
|
---|
[64] | 110 | print "Initial HMM"
|
---|
| 111 | print m
|
---|
[60] | 112 |
|
---|
| 113 | obs_seq = m.sampleSingle(20)
|
---|
| 114 | print "Observation sequence : ", obs_seq
|
---|
| 115 | obs = map(sigma.external, obs_seq)
|
---|
| 116 | print "Observations : ", ''.join(obs)
|
---|
| 117 |
|
---|
[64] | 118 | answer = {}
|
---|
| 119 | handle = open('AE005174v2-2-gene.raw', 'rU')
|
---|
| 120 | answer['AE005174v2-2'] = handle.read()
|
---|
| 121 | handle.close()
|
---|
[61] | 122 |
|
---|
[64] | 123 | contig_seq = {}
|
---|
| 124 | handle = open('AE005174v2-2.raw', 'rU')
|
---|
| 125 | contig_seq['AE005174v2-2'] = handle.read()
|
---|
| 126 | handle.close()
|
---|
[62] | 127 |
|
---|
[64] | 128 | handle = open('AE005174v2-1.raw', 'rU')
|
---|
| 129 | contig_seq['AE005174v2-1'] = handle.read()
|
---|
| 130 | handle.close()
|
---|
[62] | 131 |
|
---|
[64] | 132 | test_seq = contig_seq['AE005174v2-2'][0:490]
|
---|
| 133 | ans_seq = answer['AE005174v2-2'][0:490]
|
---|
| 134 | test_eseq=ghmm.EmissionSequence(sigma,list(test_seq))
|
---|
| 135 | v = m.viterbi(test_eseq)
|
---|
| 136 | pretty_print(test_seq, ans_seq, v)
|
---|
[62] | 137 |
|
---|
[61] | 138 |
|
---|
[64] | 139 | # Train sequence
|
---|
| 140 | print "Training baumWelch"
|
---|
| 141 | train_seq = ghmm.EmissionSequence(sigma,list(contig_seq['AE005174v2-1']))
|
---|
| 142 | v = m.baumWelch(train_seq)
|
---|
| 143 | print m
|
---|
[62] | 144 |
|
---|
[61] | 145 |
|
---|
[64] | 146 | print "Results after training sequence..."
|
---|
| 147 | v = m.viterbi(test_eseq)
|
---|
| 148 | pretty_print(test_seq, ans_seq, v)
|
---|
[60] | 149 |
|
---|
| 150 |
|
---|
| 151 | # XXX: Results
|
---|
| 152 |
|
---|
| 153 | if __name__ == "__main__":
|
---|
[63] | 154 | ecoli_hmm()
|
---|