
Knowledge
Representation

Outline:
Output - Knowledge representation

!! Decision tables

!! Decision trees

!! Decision rules

!! Rules involving relations

!! Instance-based representation

!! Prototypes, Clusters

witten&eibe

Output: representing structural
patterns

!! Many different ways of representing patterns

!! Decision trees, rules, instance-based, …

!! Also called “knowledge” representation

!! Representation determines inference method

!! Understanding the output is the key to
understanding the underlying learning methods

!! Different types of output for different learning
problems (e.g. classification, regression, …)

witten&eibe

Decision tables

!! Simplest way of representing output:

!! Use the same format as input!

!! Decision table for the weather problem:

!! Main problem: selecting the right attributes

!! Also, not flexible enough

Outlook Humidity Play

Sunny High No

Sunny Normal Yes

Overcast High Yes

Overcast Normal Yes

Rainy High No

Rainy Normal No

witten&eibe

Decision trees

!! “Divide-and-conquer” approach produces tree

!! Nodes involve testing a particular attribute

!! Usually, attribute value is compared to constant

!! Other possibilities:

!! Comparing values of two attributes

!! Using a function of one or more attributes

!! Leaves assign classification, set of classifications, or

probability distribution to instances

!! Unknown instance is routed down the tree

witten&eibe

Nominal and numeric attributes

!! Nominal:
number of children usually equal to number values
! attribute won’t get tested more than once

!! Other possibility: division into two subsets

!! Numeric:
test whether value is greater or less than constant
! attribute may get tested several times

!! Other possibility: three-way split (or multi-way split)

!! Integer: less than, equal to, greater than

!! Real: below, within, above

witten&eibe

Missing values

!! Does absence of value have some significance?

!! Yes ! “missing” is a separate value

!! No ! “missing” must be treated in a special way

!! Solution A: assign instance to most popular branch

!! Solution B: split instance into pieces

!! Pieces receive weight according to fraction of training

instances that go down each branch

!! Classifications from leave nodes are combined using the

weights that have percolated to them

witten&eibe

Classification rules

!! Popular alternative to decision trees

!! Antecedent (pre-condition): a series of tests (just
like the tests at the nodes of a decision tree)

!! Tests are usually logically ANDed together (but may
also be general logical expressions)

!! Consequent (conclusion): classes, set of classes, or
probability distribution assigned by rule

!! Individual rules are often logically ORed together

!! Conflicts arise if different conclusions apply

witten&eibe

From trees to rules

!! Easy: converting a tree into a set of rules

!! One rule for each leaf:

!! Antecedent contains a condition for every node on the path from
the root to the leaf

!! Consequent is class assigned by the leaf

!! Produces rules that are unambiguous

!! Doesn’t matter in which order they are executed

!! But: resulting rules are unnecessarily complex

!! Pruning to remove redundant tests/rules

witten&eibe

From rules to trees

!! More difficult: transforming a rule set into a tree

!! Tree cannot easily express disjunction between rules

!! Example: rules which test different attributes

!! Symmetry needs to be broken

!! Corresponding tree contains identical subtrees (!
“replicated subtree problem”)

If a and b then x

If c and d then x

witten&eibe

A tree for a simple disjunction

witten&eibe

The exclusive-or problem

If x = 1 and y = 0

then class = a

If x = 0 and y = 1

then class = a

If x = 0 and y = 0

then class = b

If x = 1 and y = 1

then class = b

witten&eibe

A tree with a replicated subtree

If x = 1 and y = 1

then class = a

If z = 1 and w = 1

then class = a

Otherwise class = b

witten&eibe

“Nuggets” of knowledge

!! Are rules independent pieces of knowledge? (It seems
easy to add a rule to an existing rule base.)

!! Problem: ignores how rules are executed

!! Two ways of executing a rule set:

!! Ordered set of rules (“decision list”)

!! Order is important for interpretation

!! Unordered set of rules

!! Rules may overlap and lead to different conclusions for the same

instance

witten&eibe

Interpreting rules

!! What if two or more rules conflict?

!! Give no conclusion at all?

!! Go with rule that is most popular on training data?

!! …

!! What if no rule applies to a test instance?

!! Give no conclusion at all?

!! Go with class that is most frequent in training data?

!! …

witten&eibe

Special case: boolean class

!! Assumption: if instance does not belong to class “yes”, it
belongs to class “no”

!! Trick: only learn rules for class “yes” and use default
rule for “no”

!! Order of rules is not important. No conflicts!

!! Rule can be written in disjunctive normal form

If x = 1 and y = 1 then class = a

If z = 1 and w = 1 then class = a

Otherwise class = b

witten&eibe

Rules involving relations

!! So far: all rules involved comparing an attribute-value to
a constant (e.g. temperature < 45)

!! These rules are called “propositional” because they have
the same expressive power as propositional logic

!! What if problem involves relationships between
examples (e.g. family tree problem from above)?

!! Can’t be expressed with propositional rules

!! More expressive representation required

witten&eibe

The shapes problem

!! Target concept: standing up

!! Shaded: standing
Unshaded: lying

witten&eibe

A propositional solution

Width Height Sides Class

2 4 4 Standing

3 6 4 Standing

4 3 4 Lying

7 8 3 Standing

7 6 3 Lying

2 9 4 Standing

9 1 4 Lying

10 2 3 Lying

If width " 3.5 and height < 7.0

then lying

If height " 3.5 then standing

witten&eibe

A relational solution

"!Comparing attributes with each other

"!Generalizes better to new data

"!Standard relations: =, <, >

"!But: learning relational rules is costly

"!Simple solution: add extra attributes

(e.g. a binary attribute is width < height?)

If width > height then lying

If height > width then standing

witten&eibe

Rules with variables
!! Using variables and multiple relations:

!! The top of a tower of blocks is standing:

!! The whole tower is standing:

!! Recursive definition!

If height_and_width_of(x,h,w) and h > w

then standing(x)

If height_and_width_of(z,h,w) and h > w

 and is_top_of(x,z) and standing(y)

 and is_rest_of(x,y)

then standing(x)

If empty(x) then standing(x)

If height_and_width_of(x,h,w) and h > w

 and is_top_of(x,y)

then standing(x)

witten&eibe

Inductive logic programming

!! Recursive definition can be seen as logic program

!! Techniques for learning logic programs stem from the
area of “inductive logic programming” (ILP)

!! But: recursive definitions are hard to learn

!! Also: few practical problems require recursion

!! Thus: many ILP techniques are restricted to non-recursive
definitions to make learning easier

witten&eibe

Instance-based representation

!!Simplest form of learning: rote learning

!!Training instances are searched for instance that most
closely resembles new instance

!!The instances themselves represent the knowledge

!!Also called instance-based learning

!!Similarity function defines what’s “learned”

!!Instance-based learning is lazy learning

!!Methods: k-nearest-neighbor, …

witten&eibe

The distance function

!!Simplest case: one numeric attribute

!!Distance is the difference between the two attribute
values involved (or a function thereof)

!!Several numeric attributes: normally, Euclidean
distance is used and attributes are normalized

!!Nominal attributes: distance is set to 1 if values
are different, 0 if they are equal

!!Are all attributes equally important?

!!Weighting the attributes might be necessary

witten&eibe

Learning prototypes

!!Only those instances involved in a decision need

to be stored

!!Noisy instances should be filtered out

!!Idea: only use prototypical examples

witten&eibe

Rectangular generalizations

!!Nearest-neighbor rule is used outside rectangles

!!Rectangles are rules! (But they can be more
conservative than “normal” rules.)

!!Nested rectangles are rules with exceptions

witten&eibe

Representing clusters I

Simple 2-D representation Venn diagram

Overlapping clusters

witten&eibe

Representing clusters II

Probabilistic assignment

1 2 3

a 0.4 0.1 0.5

b 0.1 0.8 0.1

c 0.3 0.3 0.4

d 0.1 0.1 0.8

e 0.4 0.2 0.4

f 0.1 0.4 0.5

g 0.7 0.2 0.1

h 0.5 0.4 0.1

Dendrogram

NB: dendron is the Greek
word for tree

witten&eibe

Summary

!!Trees

!!Rules

!!Relational representation

!!Instance-based representation

