Knowledge
Representation

= Many different ways of representing patterns

= Decision trees, rules, instance-based, ...
= Also called “knowledge” representation
= Representation determines inference method

= Understanding the output is the key to
understanding the underlying learning methods

= Different types of output for different learning
problems (e.g. classification, regression, ...)

witten&eibe

= “Divide-and-conquer” approach produces tree

= Nodes involve testing a particular attribute

= Usually, attribute value is compared to constant
= QOther possibilities:

= Comparing values of two attributes
= Using a function of one or more attributes

= Leaves assign classification, set of classifications,

probability distribution to instances

= Unknown instance is routed down the tree

witten&eibe

= Decision tables

= Decision trees

= Decision rules

= Rules involving relations

= Instance-based representation

= Prototypes, Clusters

witten&eibe

= Simplest way of representing output:

= Use the same format as input!

= Decision table for the weather problem:

Outlook Humidity Play
Sunny High No
Sunny Normal Yes
Overcast High Yes
Overcast Normal Yes
Rainy High No
Rainy Normal No

= Main problem: selecting the right attributes

= Also, not flexible enough

witten&eibe 4

= Nominal:
number of children usually equal to number values
=> attribute won't get tested more than once

= Other possibility: division into two subsets
= Numeric:

test whether value is greater or less than constant

= attribute may get tested several times

or = Other possibility: three-way split (or multi-way split)
= Integer: less than, equal to, greater than

= Real: below, within, above

witten&eibe

= Does absence of value have some significance?

= Yes = "missing” is a separate value

= No = "missing” must be treated in a special way
Solution A: assign instance to most popular branch

Solution B: split instance into pieces

= Pieces receive weight according to fraction of training
instances that go down each branch

= Classifications from leave nodes are combined using the
weights that have percolated to them

witten&eibe

= Easy: converting a tree into a set of rules
One rule for each leaf:

= Antecedent contains a condition for every node on the path from
the root to the leaf

= Consequent is class assigned by the leaf
= Produces rules that are unambiguous
Doesn‘t matter in which order they are executed
= But: resulting rules are unnecessarily complex

Pruning to remove redundant tests/rules

witten&eibe

witten&eibe

= Popular alternative to decision trees

= Antecedent (pre-condition): a series of tests (just
like the tests at the nodes of a decision tree)

= Tests are usually logically ANDed together (but may
also be general logical expressions)

= Consequent (conclusion): classes, set of classes, or
probability distribution assigned by rule

= Individual rules are often logically ORed together

Conflicts arise if different conclusions apply

witten&eibe

= More difficult: transforming a rule set into a tree

Tree cannot easily express disjunction between rules
= Example: rules which test different attributes

If a and b then x
If c and d then x

= Symmetry needs to be broken

= Corresponding tree contains identical subtrees (=
“replicated subtree problem”)

witten&eibe

If x=1andy=0
then class = a
If x=0andy =1
then class = a
If x=0andy=0
then class = b

If x=1andy-=1
then class = b

witten&eibe

= Are rules independent pieces of knowledge? (It seems
easy to add a rule to an existing rule base.)

%G5 o 8, ool sy o = Problem: ignores how rules are executed

then class = a

= Two ways of executing a rule set:
If z=1andw=1
then class = a Ordered set of rules (“decision list”)

Otherwise class = b = Order is important for interpretation
Unordered set of rules

= Rules may overlap and lead to different conclusions for the same

instance
witten&eibe 13 witten&eibe 14
= What if two or more rules conflict? = Assumption: if instance does not belong to class “yes”, it
A\ 4
Give no conclusion at all? belongs to class “no
Go with rule that is most popular on training data? = Trick: only learn rules for class “yes” and use default

rule for “no”

. . . If =1 d = 1 th 1 =
= What if no rule applies to a test instance? *E ey en ctass =@

Give no conclusion at all?

If z =1 and w = 1 then class

(]
[

Otherwise class = b

Go with class that is most frequent in training data? = Order of rules is not important. No conflicts!

= Rule can be written in disjunctive normal form

witten&eibe 15 witten&eibe 16

= Target concept: standing up
= So far: all rules involved comparing an attribute-value to

a constant (e.g. temperature < 45) = Shaded: standing

= These rules are called “propositional” because they have Unshaded: lying
the same expressive power as propositional logic

= What if problem involves relationships between

examples (e.g. family tree problem from above)? D D |:|

Can't be expressed with propositional rules

More expressive representation required
> / N\ [

witten&eibe witten&eibe 18

Width Height Sides Class
2 4 4 Standing
3 6 4 Standing
4 3 4 Lying
7 8 3 Standing
7 6 3 Lying
2 9 4 Standing
9 1 4 Lying
10 2 3 Lying

If width = 3.5 and height < 7.0
then lying

If height = 3.5 then standing

witten&eibe

= Using variables and multiple relations:

If height_and width of(x,h,w) and h > w
then standing(x)

= The top of a tower of blocks is standing:
If height_and width of(x,h,w) and h > w
and is_top_of (x,y)
then standing(x)

= The whole tower is standing:
If height_and width of(z,h,w) and h > w
and is_top_of (x,z) and standing(y)
and is_rest of (x,y)
then standing(x)

If empty(x) then standing(x)

= Recursive definition!

witten&eibe 2

= Simplest form of learning: rote learning

Training instances are searched for instance that most
closely resembles new instance

The instances themselves represent the knowledge

Also called instance-based learning
= Similarity function defines what'’s “learned”
= Instance-based learning is /azy learning

= Methods: k-nearest-neighbor,

witten&eibe

< Comparing attributes with each other

If width > height then lying
If height > width then standing

<+ Generalizes better to new data
< Standard relations: =, <, >
«But: learning relational rules is costly

« Simple solution: add extra attributes
(e.g. a binary attribute is width < height?)

witten&eibe 20

= Recursive definition can be seen as logic program

= Techniques for learning logic programs stem from the
area of “inductive logic programming” (ILP)

= But: recursive definitions are hard to learn
Also: few practical problems require recursion

Thus: many ILP techniques are restricted to non-recursive
definitions to make learning easier

witten&eibe 2

= Simplest case: one numeric attribute

Distance is the difference between the two attribute
values involved (or a function thereof)

= Several numeric attributes: normally, Euclidean
distance is used and attributes are normalized

= Nominal attributes: distance is set to 1 if values
are different, 0 if they are equal

= Are all attributes equally important?
Weighting the attributes might be necessary

witten&eibe 2

= Only those instances involved in a decision need
to be stored

= Noisy instances should be filtered out

= Idea: only use prototypical examples

witten&eibe

Simple 2-D representation Venn diagram

Overlapping clusters

witten&eibe 2

= Trees

= Rules

= Relational representation

= Instance-based representation

29

= Nearest-neighbor rule is used outside rectangles

= Rectangles are rules! (But they can be more

conservative than “norma

III

rules.)

= Nested rectangles are rules with exceptions

witten&eibe

Probabilistic assignment

1

2

3

0.4

0.1

0.5

0.1

0.8

0.1

0.3

0.3

0.4

0.1

0.1

0.8

0.4

0.2

0.4

0.1

0.4

0.5

0.7

0.2

0.1

sla||o|a|lo|oc|e

0.5

0.4

0.1

witten&eibe

Dendrogram

NB: dendron is the Greek
word for tree

