Last change
on this file since 183 was 2, checked in by Rick van der Zwet, 15 years ago |
Initial import of data of old repository ('data') worth keeping (e.g. tracking
means of URL access statistics)
|
File size:
1.1 KB
|
Rev | Line | |
---|
[2] | 1 | echo on
|
---|
| 2 | % 1)
|
---|
| 3 | % see cramermatrix.m
|
---|
| 4 |
|
---|
| 5 | % 2)
|
---|
| 6 | % Matrix A
|
---|
| 7 | A = [1, 2, 3;
|
---|
| 8 | 4, 5, 6;
|
---|
| 9 | 7, 8, 9; ];
|
---|
| 10 |
|
---|
| 11 | % 3)
|
---|
| 12 | % Vector b
|
---|
| 13 | b = [ 10; 11; 12];
|
---|
| 14 |
|
---|
| 15 | % 4)
|
---|
| 16 | help cramermatrix
|
---|
| 17 |
|
---|
| 18 | % 5)
|
---|
| 19 | % test werking cramermatrix voor i=1,2,3
|
---|
| 20 | for i=1:3
|
---|
| 21 | cramermatrix(A,i,b)
|
---|
| 22 | end
|
---|
| 23 |
|
---|
| 24 | % 6)
|
---|
| 25 | % see cramer.m
|
---|
| 26 |
|
---|
| 27 | % 7)
|
---|
| 28 | % resultatencheck met rref(Ab)
|
---|
| 29 | Ab = [1, 2, 3, 10;
|
---|
| 30 | 6, 5, 4, 11;
|
---|
| 31 | 7, 9, 8, 12; ];
|
---|
| 32 | % little trick to input into newly created cramer function
|
---|
| 33 | cramer(Ab(:,1:3),Ab(:,4))
|
---|
| 34 | rref(Ab)
|
---|
| 35 | % klopt
|
---|
| 36 |
|
---|
| 37 | %
|
---|
| 38 | % Permataties van rijen van een matrix
|
---|
| 39 | %
|
---|
| 40 |
|
---|
| 41 | % 1)
|
---|
| 42 | A = [ 1, 2, 3, 4;
|
---|
| 43 | 5, 6, 7, 8;
|
---|
| 44 | 9, 10, 11, 12;
|
---|
| 45 | 13, 14, 15, 16; ];
|
---|
| 46 | % 2)
|
---|
| 47 | P4231 = [ 0, 0, 0, 1;
|
---|
| 48 | 0, 1, 0, 0;
|
---|
| 49 | 0, 0, 1, 0;
|
---|
| 50 | 1, 0, 0, 0; ];
|
---|
| 51 |
|
---|
| 52 | % 3)
|
---|
| 53 | T1 = P4231 * A
|
---|
| 54 |
|
---|
| 55 | % 4)
|
---|
| 56 | T2 = rowswap(A,1,4)
|
---|
| 57 | % Ze zijn gelijk
|
---|
| 58 |
|
---|
| 59 | %
|
---|
| 60 | % LU deconpositie
|
---|
| 61 | %
|
---|
| 62 |
|
---|
| 63 | % 1)
|
---|
| 64 | A = [ 2, 4, -1, 5, -2;
|
---|
| 65 | -4, -5, 3, -8, 1;
|
---|
| 66 | 2, -5, -4, 1, 8;
|
---|
| 67 | -6, 0, 7, -3, 1; ];
|
---|
| 68 |
|
---|
| 69 | % 2)
|
---|
| 70 | [L, U] = lu(A)
|
---|
| 71 |
|
---|
| 72 | % 3) Nee L geen onderdriehoeksmatrix, en U geen bovendriehoeksmatrix
|
---|
| 73 |
|
---|
| 74 | % 4)
|
---|
| 75 | [L, U, P] = lu(A)
|
---|
| 76 |
|
---|
| 77 | % 5) Ja, L is nu een onderdriehoeksmatrix
|
---|
| 78 |
|
---|
| 79 | % 6)
|
---|
| 80 | [L, U] = lu(P * A)
|
---|
| 81 | % Dit levert het gewenste resultaat op, als P gebruikt wordt
|
---|
| 82 |
|
---|
| 83 |
|
---|
Note:
See
TracBrowser
for help on using the repository browser.