Last change
on this file since 35 was 2, checked in by Rick van der Zwet, 15 years ago |
Initial import of data of old repository ('data') worth keeping (e.g. tracking
means of URL access statistics)
|
File size:
1.1 KB
|
Line | |
---|
1 | echo on
|
---|
2 | % 1)
|
---|
3 | % see cramermatrix.m
|
---|
4 |
|
---|
5 | % 2)
|
---|
6 | % Matrix A
|
---|
7 | A = [1, 2, 3;
|
---|
8 | 4, 5, 6;
|
---|
9 | 7, 8, 9; ];
|
---|
10 |
|
---|
11 | % 3)
|
---|
12 | % Vector b
|
---|
13 | b = [ 10; 11; 12];
|
---|
14 |
|
---|
15 | % 4)
|
---|
16 | help cramermatrix
|
---|
17 |
|
---|
18 | % 5)
|
---|
19 | % test werking cramermatrix voor i=1,2,3
|
---|
20 | for i=1:3
|
---|
21 | cramermatrix(A,i,b)
|
---|
22 | end
|
---|
23 |
|
---|
24 | % 6)
|
---|
25 | % see cramer.m
|
---|
26 |
|
---|
27 | % 7)
|
---|
28 | % resultatencheck met rref(Ab)
|
---|
29 | Ab = [1, 2, 3, 10;
|
---|
30 | 6, 5, 4, 11;
|
---|
31 | 7, 9, 8, 12; ];
|
---|
32 | % little trick to input into newly created cramer function
|
---|
33 | cramer(Ab(:,1:3),Ab(:,4))
|
---|
34 | rref(Ab)
|
---|
35 | % klopt
|
---|
36 |
|
---|
37 | %
|
---|
38 | % Permataties van rijen van een matrix
|
---|
39 | %
|
---|
40 |
|
---|
41 | % 1)
|
---|
42 | A = [ 1, 2, 3, 4;
|
---|
43 | 5, 6, 7, 8;
|
---|
44 | 9, 10, 11, 12;
|
---|
45 | 13, 14, 15, 16; ];
|
---|
46 | % 2)
|
---|
47 | P4231 = [ 0, 0, 0, 1;
|
---|
48 | 0, 1, 0, 0;
|
---|
49 | 0, 0, 1, 0;
|
---|
50 | 1, 0, 0, 0; ];
|
---|
51 |
|
---|
52 | % 3)
|
---|
53 | T1 = P4231 * A
|
---|
54 |
|
---|
55 | % 4)
|
---|
56 | T2 = rowswap(A,1,4)
|
---|
57 | % Ze zijn gelijk
|
---|
58 |
|
---|
59 | %
|
---|
60 | % LU deconpositie
|
---|
61 | %
|
---|
62 |
|
---|
63 | % 1)
|
---|
64 | A = [ 2, 4, -1, 5, -2;
|
---|
65 | -4, -5, 3, -8, 1;
|
---|
66 | 2, -5, -4, 1, 8;
|
---|
67 | -6, 0, 7, -3, 1; ];
|
---|
68 |
|
---|
69 | % 2)
|
---|
70 | [L, U] = lu(A)
|
---|
71 |
|
---|
72 | % 3) Nee L geen onderdriehoeksmatrix, en U geen bovendriehoeksmatrix
|
---|
73 |
|
---|
74 | % 4)
|
---|
75 | [L, U, P] = lu(A)
|
---|
76 |
|
---|
77 | % 5) Ja, L is nu een onderdriehoeksmatrix
|
---|
78 |
|
---|
79 | % 6)
|
---|
80 | [L, U] = lu(P * A)
|
---|
81 | % Dit levert het gewenste resultaat op, als P gebruikt wordt
|
---|
82 |
|
---|
83 |
|
---|
Note:
See
TracBrowser
for help on using the repository browser.