source: liacs/nc/laser-pulse-shaping/pso.m@ 104

Last change on this file since 104 was 49, checked in by Rick van der Zwet, 15 years ago

Final result report

File size: 3.5 KB
RevLine 
[34]1% Particle Swarm optimalisation
[28]2% BSDLicence
3% Rick van der Zwet - 0433373 - <hvdzwet@liacs.nl>
[34]4% Modeled after http://en.wikipedia.org/wiki/Particle_swarm_optimization
[28]5
[36]6% Dimention settings
[49]7parameters = 10;
[32]8
[36]9% If global optimum does not change this many steps bail out
10iteration_break = 5;
11max_iterations = 1000;
[47]12max_time = 10 * 60; % in sec
[36]13
14% Flock properties
[49]15local_swarm_size = 50;
16local_swarms = 10;
[36]17
18%% Particle properties
19% Speed of walking around to a certain direction
20wander = 0.4;
21
[34]22% 'Influence' of the envirionment with regards to solutions
23% Trust the group global solution to be feasible
24c_social = 0.4;
25% Trust the neighbor solution to be feasible
26c_cognitive = 0.4;
27% Trust the own best solution to be feasible
28c_ego = 0.2;
[32]29
[36]30% Variables used for plotting
31fitness_history = [];
32fitness_iterations = [];
33
[34]34% Initiate all particles
35flock_p = rand(parameters,local_swarm_size,local_swarms) .* (2 * pi);
36flock_v = zeros(size(flock_p));
[30]37
[35]38
[34]39% Global best placeholder
[47]40g_best = ones(parameters,1) .* 9;
41g_fitness = 0;
[34]42% at (:,x) lives the neighbor best of local_swarm 'x'
[47]43n_best = ones(parameters,local_swarms) .* 9;
44n_fitness = zeros(parameters,local_swarms);
[34]45% at (:,p,x) leves the local best of particle 'p' in local_swarm 'x'
[47]46l_best = ones(parameters,local_swarm_size,local_swarms) .* 9;
47l_fitness = zeros(local_swarm_size, local_swarms);
[28]48
[36]49idle_counter = 0;
[37]50tic();
[31]51
[34]52% Code not optimised for performance, but for readablility
[36]53for i = 1:max_iterations
[34]54 for s = 1:local_swarms
55 fitness = SHGa(flock_p(:,:,s));
56 % See if we got any better local optimum
57 for p = 1:local_swarm_size
[47]58 if fitness(p) > l_fitness(p,s)
[34]59 l_fitness(p,s) = fitness(p);
60 l_best(:,p,s) = flock_p(:,p,s);
[35]61 end
62 end
[31]63
[34]64 % See if we got any better neighbor optimum
65 for p = 1:local_swarm_size
[47]66 if l_fitness(p,s) > n_fitness(s)
[34]67 n_fitness(s) = l_fitness(p,s);
68 n_best(:,s) = l_best(:,p,s);
[35]69 end
70 end
71 end
[34]72
[36]73 idle_counter = idle_counter + 1;
74
[34]75 % See wether we have a new global optimum
76 for s = 1:local_swarms
[47]77 if n_fitness(s) > g_fitness
[34]78 g_fitness = n_fitness(s);
[36]79 g_best = n_best(:,s);
80 idle_counter = 0;
[35]81 end
82 end
[34]83
[36]84 % Stop conditions
85 if idle_counter == iteration_break
[37]86 fprintf('Caught by idle_counter\n');
[47]87 break;
[36]88 end
[37]89 if toc > max_time
90 fprintf('Caught by max_time used \n');
[47]91 break;
[36]92 end
93
94
[47]95 fprintf('%04i : %.15f\n', i, g_fitness);
[36]96 fitness_iterations = [fitness_iterations, i];
97 fitness_history = [fitness_history, g_fitness];
98
99
[34]100 % Update particles to new value
101 r_cognitive = rand();
102 r_social = rand();
103 r_ego = rand();
104 for s = 1:local_swarms
105 for p = 1:local_swarm_size
[37]106 flock_v(:,p,s) = flock_v(:,p,s) * wander + ...
107 (g_best - flock_p(:,p,s)) * (c_cognitive * r_cognitive) + ...
108 (n_best(:,s) - flock_p(:,p,s)) * (c_social * r_social) + ...
109 (l_best(:,p,s) - flock_p(:,p,s)) * (c_ego * r_ego);
[36]110 flock_p(:,p,s) = flock_p(:,p,s) + flock_v(:,p,s);
[35]111 end
112 end
113end
[34]114
[49]115% Dispay hack
116g_fitness
[47]117g_best
[36]118
119plot(fitness_iterations,fitness_history);
120title(sprintf('Particle Swarm Optimalisation on Laser-Pulse shaping problem'));
121ylabel('fitness');
122xlabel('iterations');
123grid on;
124legend(sprintf('Parameters %i',parameters));
[49]125print(sprintf('pso-fitness-%.10f.eps', max(fitness_history)),'-depsc2');
Note: See TracBrowser for help on using the repository browser.