% Particle Swarm optimalisation % BSDLicence % Rick van der Zwet - 0433373 - % Modeled after http://en.wikipedia.org/wiki/Particle_swarm_optimization % Dimention settings parameters = 80; % If global optimum does not change this many steps bail out iteration_break = 5; max_iterations = 1000; max_time = 10 * 60; % in sec % Flock properties local_swarm_size = 10; local_swarms = 50; %% Particle properties % Speed of walking around to a certain direction wander = 0.4; % 'Influence' of the envirionment with regards to solutions % Trust the group global solution to be feasible c_social = 0.4; % Trust the neighbor solution to be feasible c_cognitive = 0.4; % Trust the own best solution to be feasible c_ego = 0.2; % Variables used for plotting fitness_history = []; fitness_iterations = []; % Initiate all particles flock_p = rand(parameters,local_swarm_size,local_swarms) .* (2 * pi); flock_v = zeros(size(flock_p)); % Global best placeholder g_best = ones(parameters,1) .* 9; g_fitness = 0; % at (:,x) lives the neighbor best of local_swarm 'x' n_best = ones(parameters,local_swarms) .* 9; n_fitness = zeros(parameters,local_swarms); % at (:,p,x) leves the local best of particle 'p' in local_swarm 'x' l_best = ones(parameters,local_swarm_size,local_swarms) .* 9; l_fitness = zeros(local_swarm_size, local_swarms); idle_counter = 0; tic(); % Code not optimised for performance, but for readablility for i = 1:max_iterations for s = 1:local_swarms fitness = SHGa(flock_p(:,:,s)); % See if we got any better local optimum for p = 1:local_swarm_size if fitness(p) > l_fitness(p,s) l_fitness(p,s) = fitness(p); l_best(:,p,s) = flock_p(:,p,s); end end % See if we got any better neighbor optimum for p = 1:local_swarm_size if l_fitness(p,s) > n_fitness(s) n_fitness(s) = l_fitness(p,s); n_best(:,s) = l_best(:,p,s); end end end idle_counter = idle_counter + 1; % See wether we have a new global optimum for s = 1:local_swarms if n_fitness(s) > g_fitness g_fitness = n_fitness(s); g_best = n_best(:,s); idle_counter = 0; end end % Stop conditions if idle_counter == iteration_break fprintf('Caught by idle_counter\n'); break; end if toc > max_time fprintf('Caught by max_time used \n'); break; end fprintf('%04i : %.15f\n', i, g_fitness); fitness_iterations = [fitness_iterations, i]; fitness_history = [fitness_history, g_fitness]; % Update particles to new value r_cognitive = rand(); r_social = rand(); r_ego = rand(); for s = 1:local_swarms for p = 1:local_swarm_size flock_v(:,p,s) = flock_v(:,p,s) * wander + ... (g_best - flock_p(:,p,s)) * (c_cognitive * r_cognitive) + ... (n_best(:,s) - flock_p(:,p,s)) * (c_social * r_social) + ... (l_best(:,p,s) - flock_p(:,p,s)) * (c_ego * r_ego); flock_p(:,p,s) = flock_p(:,p,s) + flock_v(:,p,s); end end end g_best plot(fitness_iterations,fitness_history); title(sprintf('Particle Swarm Optimalisation on Laser-Pulse shaping problem')); ylabel('fitness'); xlabel('iterations'); grid on; legend(sprintf('Parameters %i',parameters)); print(sprintf('pso-fitness-%f.eps', max(fitness_history)),'-depsc2');