1 | % Particle Swarm optimalisation
|
---|
2 | % BSDLicence
|
---|
3 | % Rick van der Zwet - 0433373 - <hvdzwet@liacs.nl>
|
---|
4 | % Modeled after http://en.wikipedia.org/wiki/Particle_swarm_optimization
|
---|
5 |
|
---|
6 | % Dimention settings
|
---|
7 | parameters = 80;
|
---|
8 |
|
---|
9 | % If global optimum does not change this many steps bail out
|
---|
10 | iteration_break = 5;
|
---|
11 | max_iterations = 1000;
|
---|
12 | max_time = 5 * 60; % in sec
|
---|
13 |
|
---|
14 | % Flock properties
|
---|
15 | local_swarm_size = 10;
|
---|
16 | local_swarms = 50;
|
---|
17 |
|
---|
18 | %% Particle properties
|
---|
19 | % Speed of walking around to a certain direction
|
---|
20 | wander = 0.4;
|
---|
21 |
|
---|
22 | % 'Influence' of the envirionment with regards to solutions
|
---|
23 | % Trust the group global solution to be feasible
|
---|
24 | c_social = 0.4;
|
---|
25 | % Trust the neighbor solution to be feasible
|
---|
26 | c_cognitive = 0.4;
|
---|
27 | % Trust the own best solution to be feasible
|
---|
28 | c_ego = 0.2;
|
---|
29 |
|
---|
30 | % Variables used for plotting
|
---|
31 | fitness_history = [];
|
---|
32 | fitness_iterations = [];
|
---|
33 |
|
---|
34 | % Initiate all particles
|
---|
35 | flock_p = rand(parameters,local_swarm_size,local_swarms) .* (2 * pi);
|
---|
36 | flock_v = zeros(size(flock_p));
|
---|
37 |
|
---|
38 |
|
---|
39 | % Global best placeholder
|
---|
40 | g_best = zeros(parameters,1);
|
---|
41 | g_fitness = 1;
|
---|
42 | % at (:,x) lives the neighbor best of local_swarm 'x'
|
---|
43 | n_best = zeros(parameters,local_swarms);
|
---|
44 | n_fitness = ones(parameters,local_swarms);
|
---|
45 | % at (:,p,x) leves the local best of particle 'p' in local_swarm 'x'
|
---|
46 | l_best = zeros(parameters,local_swarm_size,local_swarms);
|
---|
47 | l_fitness = ones(local_swarm_size, local_swarms);
|
---|
48 |
|
---|
49 | idle_counter = 0;
|
---|
50 | tic();
|
---|
51 |
|
---|
52 | % Code not optimised for performance, but for readablility
|
---|
53 | for i = 1:max_iterations
|
---|
54 | for s = 1:local_swarms
|
---|
55 | fitness = SHGa(flock_p(:,:,s));
|
---|
56 | % See if we got any better local optimum
|
---|
57 | for p = 1:local_swarm_size
|
---|
58 | if fitness(p) < l_fitness(p,s)
|
---|
59 | l_fitness(p,s) = fitness(p);
|
---|
60 | l_best(:,p,s) = flock_p(:,p,s);
|
---|
61 | end
|
---|
62 | end
|
---|
63 |
|
---|
64 | % See if we got any better neighbor optimum
|
---|
65 | for p = 1:local_swarm_size
|
---|
66 | if l_fitness(p,s) < n_fitness(s)
|
---|
67 | n_fitness(s) = l_fitness(p,s);
|
---|
68 | n_best(:,s) = l_best(:,p,s);
|
---|
69 | end
|
---|
70 | end
|
---|
71 | end
|
---|
72 |
|
---|
73 | idle_counter = idle_counter + 1;
|
---|
74 |
|
---|
75 | % See wether we have a new global optimum
|
---|
76 | for s = 1:local_swarms
|
---|
77 | if n_fitness(s) < g_fitness
|
---|
78 | g_fitness = n_fitness(s);
|
---|
79 | g_best = n_best(:,s);
|
---|
80 | idle_counter = 0;
|
---|
81 | end
|
---|
82 | end
|
---|
83 |
|
---|
84 | % Stop conditions
|
---|
85 | if idle_counter == iteration_break
|
---|
86 | fprintf('Caught by idle_counter\n');
|
---|
87 | return;
|
---|
88 | end
|
---|
89 | if toc > max_time
|
---|
90 | fprintf('Caught by max_time used \n');
|
---|
91 | return;
|
---|
92 | end
|
---|
93 |
|
---|
94 |
|
---|
95 | fprintf('%i : %.15f\n', i, g_fitness);
|
---|
96 | fitness_iterations = [fitness_iterations, i];
|
---|
97 | fitness_history = [fitness_history, g_fitness];
|
---|
98 |
|
---|
99 |
|
---|
100 | % Update particles to new value
|
---|
101 | r_cognitive = rand();
|
---|
102 | r_social = rand();
|
---|
103 | r_ego = rand();
|
---|
104 | for s = 1:local_swarms
|
---|
105 | for p = 1:local_swarm_size
|
---|
106 | flock_v(:,p,s) = flock_v(:,p,s) * wander + ...
|
---|
107 | (g_best - flock_p(:,p,s)) * (c_cognitive * r_cognitive) + ...
|
---|
108 | (n_best(:,s) - flock_p(:,p,s)) * (c_social * r_social) + ...
|
---|
109 | (l_best(:,p,s) - flock_p(:,p,s)) * (c_ego * r_ego);
|
---|
110 | flock_p(:,p,s) = flock_p(:,p,s) + flock_v(:,p,s);
|
---|
111 | end
|
---|
112 | end
|
---|
113 | end
|
---|
114 |
|
---|
115 |
|
---|
116 | plot(fitness_iterations,fitness_history);
|
---|
117 | title(sprintf('Particle Swarm Optimalisation on Laser-Pulse shaping problem'));
|
---|
118 | ylabel('fitness');
|
---|
119 | xlabel('iterations');
|
---|
120 | grid on;
|
---|
121 | legend(sprintf('Parameters %i',parameters));
|
---|
122 | print('pso-fitness.eps','-depsc2');
|
---|