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CTL

 CTL = Computational Tree Logic

 the temporal combinators are under the 
immediate scope of the path quantifiers

 Why CTL? The truth of CTL formulas
depends only on the current state and not on
the current execution!

Benefit: easy and efficient model checking

Disadvantages: hard for describing individual path
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The language

 Path quantifiers allows to speaks about sets
of executions.

The model of time is tree-like: many futures are
possible from a given state

 Inevitably A

from the current state all executions satisfy

 Possibly E
from the current state there exists an execution

satisfying  
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CTL - Syntax

 ::= p1 | p2 | …

T | | | | | |

AX | AF | AG | A[ U ] |

EX | EF | EG | E[ U ] .
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CTL - Priorities

 Unary connectives bind most tightly

 , AG, EG, AF, EF, AX, and EX

 Next come , and 

 Finally come, AU and EU

 Example:

AGp1 EGp2 is not the same as AG(p1 EGp2)
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CTL - yes or no?

 Yes
 EFE[p U q]

 A[p U EF q]

 No
 EF(p U q)

 FG p

 Yes or no?
 AG(p A[p U ( p A[ p U q])])

 AF[(p U q) (q U p)] 
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A is not G

 A states that all the executions starting

from the current state will satisfy

 G state that holds at every state of the

execution considered

 A and E quantify over paths in a tree

 G and F quantify over positions along a given path

in a tree
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Combining E and F  (I)

 EF

“it is possible that will hold in the future”
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Combining E and F  (II)

 EG =E F

“it is possible that will always hold”
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Combining E and F  (III)

 AF = E F

“it is inevitable that will hold in the future”
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Combining E and F  (IV)

 AG = EF

“ is always true”

 In this case is an invariant, that is, a

property that is true continuously
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Example

 All executions starting from 0 satisfy 

AFEXerror

Why? Because from 0 all executions traverse 1 and 

may go to 2

 There exists an execution which does not

satisfy AFAXerror. Which one?

0 1

ok

2
error

warm, ok
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Examples

 AGEF

Along every execution (A)

from every state (G)

it is possible (E)

that we will encounter a state (F)

satisfying 

that is, is always reachable
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CTL - Satisfaction

 Let M = <S, ,l> be a transition system with

l(s) the set of atomic propositions satisfied by

a state s S.

 Idea for a model: A CTL formula refers to a

given state of a given transition system

M,s  means “ is true at state s”

We will define it by induction 

on the structure of 
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CTL - Semantics (I)

 M,s  T for all s in S

 M,s  p iff p l(s)

 M,s  iff not M,s 

 M,s  1 2 iff M,s  1 and M,s  2

:

:
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CTL - Semantics (II)

 M,s  AX iff for all s’ such that s s’

we have M,s’ 

 M,s  EX iff there exists s’ such that

s s’ and M,s’ 
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CTL - Semantics (III)

 M,s  AG iff for all executions

s0 s1 s2 s3 … with

s = s0 we have M,si

 M,s  EG iff there exists an execution

s0 s1 s2 s3 … with

s = s0 and such that M,si
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CTL - Semantics (IV)

 M,s  AF iff for all executions

s0 s1 s2 s3 … with s = s0

there is i such that M,si

 M,s  EF iff there exists an execution

s0 s1 s2 s3… with s=s0

and there is i such that

M,si
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CTL - Semantics (V)

 M,s  A[ 1U 2] iff for all executions

s s1 s2 s3 … there is i

such that M,si  2 and

for each j < i M,sj 1

 M,s  E[ 1U 2] iff there exists an execution

s s1 s2 s3… and there is i
such that M,si  2 and

for each j < i M,sj 1
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CTL equivalences

 De Morgan-based

 AF EG

 EF AG

 AX EX X-self duality: on a path each 

state has a unique successor 

 Until reduction

AF A[T U ]

EF E[T U ]
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CTL: Adequate sets of connectives 

 Theorem: The set of operators

T, , , {AX or EX}, {EG,AF or AU}, and EU 

is adequate for CTL.

A[U] (E[ U(  )] EG )
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CTL: Weak until and release 

 Use LTL equivalence to define:

A[R] E[ U ]

E[R] A[ U ]

A[W] A[R( )]

E[W] E[R( )]
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Other CTL equivalences

 EG EX EG

 AG AX AG

 AF AX AF

 EF EX EF

 A[ U]  ( AXA[ U])

 E[ U]  ( EXE[ U])
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CTL* - Syntax

 State formulas (evaluated in states)

::= T | p |  | | A | E

 Path formulas (evaluated along paths)

 ::= |  |   | X | F | G | U
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Examples

 AGF

Along every execution (A)

from every state (G)

we will encounter a state (F)

satisfying 

that is, is satisfied infinitely often
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Model

 Let M = <S, ,l> be a transition system with
l(s) the set of atomic propositions satisfied by
a state s S.

 Idea for a model: A formula of temporal logic
refers to an instant i of an execution of a
transition system M

 M, ,i  means

“ is true at position i of path of M”
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Semantics (I)

 M, ,i  T always

 M, ,i  p iff p l( (i))

 M, ,i  iff not M, ,i 

 M, ,i  1 2 iff M, ,i  1 and

M, ,i  2
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Semantics (II)

 M, ,i  X iff M, ,i+1 

 M, ,i  F iff there exists i j such

that M, ,j 

 M, ,i  G iff M, ,j for all i j

 M, ,i  1U 2 iff there exists i j such

that M, ,j  2 and for all
i k<j we have M, ,k  1
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Semantics (III)

 M, ,i  E iff there exists ’ such that
(0)... (i)= ’(0)... ’(i)

and M, ’,i 

 M, ,i  A iff for all ’ such that

(0)... (i) = ’(0)... ’(i) we
have M, ’,i 
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LTL and CTL CTL*

 Semantically, an LTL formula is equivalent 

to the CTL* formula A

 CTL is a restricted fragment of CTL* with path 

formulas

 ::= X | F | G | U 

and the same state formulas as CTL*, i.e.

::= T | p |  | | A | E
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Expressivity

CTL*

CTL LTL

1 2 3 4
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In CTL but not in LTL

1 = AG EF p in CTL

From any state we can always get to a state in which p

holds

s s’
p

s

p
p

M M’

 It cannot be expressed as LTL formula because

 All executions starting from s in M’ are also executions

starting from s in M

 In CTL M,s  1 but M’,s  1
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In CTL and in LTL

2 = AG(p AFq) in CTL

and

2 = G(p Fq) in LTL

“Any p is eventually followed by a q”
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In LTL but not in CTL

3 = GFp Fq in LTL

“If p holds infinitely often along a path, then
there is a state in which q holds”

Note: FGp is different from AFAGp since the
first is satisfied in

whereas the latter is not (starting from s).

s s’
p p

s’’
p
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Neither in CTL nor in LTL

4 = E(GFp) in CTL*

“There is a path with infinitely many

state in which p holds”

Not expressible in LTL: Trivial

Not expressible in CTL: very complex
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Boolean combination of path in CTL

 CTL = CTL*  but 

Without boolean combination of path formulas

Without nesting of path formulas

 The first restriction is not real …

E[Fp Fq] EF[p EFq] EF[q EFp] 

 First p and then q or viceversa
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More generally …

E[ (pUq)] E[ qU( p q)] EG q

E[(p1Uq1) (p2Uq2)] E[(p1 p2)U(q1 E[p2Uq2])] 
E[(p1 p2)U(q2 E[p1Uq1])]

E[Fp Gq] E[q U (p EG q)]

E[ Xp] EX p

E[Xp Xq] EX(p q)

E[Fp Xq] EX(q EFp)

A[ ] E[ ] 
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Past operators

analogues of
-------------------------------------------------
 Previous P X neXt

 Since S U Until

 Once O F Future

 Historically H G Globally

 In LTL they do not add expressive power, 
but CTL they do!


