
Program correctness

Branching-time temporal logics

Marcello Bonsangue

Spring 2007

6/9/2008

Slide 2

CTL

 CTL = Computational Tree Logic

 the temporal combinators are under the
immediate scope of the path quantifiers

 Why CTL? The truth of CTL formulas
depends only on the current state and not on
the current execution!

Benefit: easy and efficient model checking

Disadvantages: hard for describing individual path

6/9/2008

Slide 3

The language

 Path quantifiers allows to speaks about sets
of executions.

The model of time is tree-like: many futures are
possible from a given state

 Inevitably A

from the current state all executions satisfy

 Possibly E
from the current state there exists an execution

satisfying

6/9/2008

Slide 4

CTL - Syntax

 ::= p1 | p2 | …

T | | | | | |

AX | AF | AG | A[U] |

EX | EF | EG | E[U] .

6/9/2008

Slide 5

CTL - Priorities

 Unary connectives bind most tightly

 , AG, EG, AF, EF, AX, and EX

 Next come , and

 Finally come, AU and EU

 Example:

AGp1 EGp2 is not the same as AG(p1 EGp2)

6/9/2008

Slide 6

CTL - yes or no?

 Yes
 EFE[p U q]

 A[p U EF q]

 No
 EF(p U q)

 FG p

 Yes or no?
 AG(p A[p U (p A[p U q])])

 AF[(p U q) (q U p)]

6/9/2008

Slide 7

A is not G

 A states that all the executions starting

from the current state will satisfy

 G state that holds at every state of the

execution considered

 A and E quantify over paths in a tree

 G and F quantify over positions along a given path

in a tree

6/9/2008

Slide 8

Combining E and F (I)

 EF

“it is possible that will hold in the future”

6/9/2008

Slide 9

Combining E and F (II)

 EG =E F

“it is possible that will always hold”

6/9/2008

Slide 10

Combining E and F (III)

 AF = E F

“it is inevitable that will hold in the future”

6/9/2008

Slide 11

Combining E and F (IV)

 AG = EF

“ is always true”

 In this case is an invariant, that is, a

property that is true continuously

6/9/2008

Slide 12

Example

 All executions starting from 0 satisfy

AFEXerror

Why? Because from 0 all executions traverse 1 and

may go to 2

 There exists an execution which does not

satisfy AFAXerror. Which one?

0 1

ok

2
error

warm, ok

6/9/2008

Slide 13

Examples

 AGEF

Along every execution (A)

from every state (G)

it is possible (E)

that we will encounter a state (F)

satisfying

that is, is always reachable

6/9/2008

Slide 14

CTL - Satisfaction

 Let M = <S, ,l> be a transition system with

l(s) the set of atomic propositions satisfied by

a state s S.

 Idea for a model: A CTL formula refers to a

given state of a given transition system

M,s means “ is true at state s”

We will define it by induction

on the structure of

6/9/2008

Slide 15

CTL - Semantics (I)

 M,s T for all s in S

 M,s p iff p l(s)

 M,s iff not M,s

 M,s 1 2 iff M,s 1 and M,s 2

:

:

6/9/2008

Slide 16

CTL - Semantics (II)

 M,s AX iff for all s’ such that s s’

we have M,s’

 M,s EX iff there exists s’ such that

s s’ and M,s’

6/9/2008

Slide 17

CTL - Semantics (III)

 M,s AG iff for all executions

s0 s1 s2 s3 … with

s = s0 we have M,si

 M,s EG iff there exists an execution

s0 s1 s2 s3 … with

s = s0 and such that M,si

6/9/2008

Slide 18

CTL - Semantics (IV)

 M,s AF iff for all executions

s0 s1 s2 s3 … with s = s0

there is i such that M,si

 M,s EF iff there exists an execution

s0 s1 s2 s3… with s=s0

and there is i such that

M,si

6/9/2008

Slide 19

CTL - Semantics (V)

 M,s A[1U 2] iff for all executions

s s1 s2 s3 … there is i

such that M,si 2 and

for each j < i M,sj 1

 M,s E[1U 2] iff there exists an execution

s s1 s2 s3… and there is i
such that M,si 2 and

for each j < i M,sj 1

6/9/2008

Slide 20

CTL equivalences

 De Morgan-based

 AF EG

 EF AG

 AX EX X-self duality: on a path each

state has a unique successor

 Until reduction

AF A[T U]

EF E[T U]

6/9/2008

Slide 21

CTL: Adequate sets of connectives

 Theorem: The set of operators

T, , , {AX or EX}, {EG,AF or AU}, and EU

is adequate for CTL.

A[U] (E[U()] EG)

6/9/2008

Slide 22

CTL: Weak until and release

 Use LTL equivalence to define:

A[R] E[U]

E[R] A[U]

A[W] A[R()]

E[W] E[R()]

6/9/2008

23

PenC - Spring 2006

Slide 23

Other CTL equivalences

 EG EX EG

 AG AX AG

 AF AX AF

 EF EX EF

 A[U] (AXA[U])

 E[U] (EXE[U])

6/9/2008

Slide 24

CTL* - Syntax

 State formulas (evaluated in states)

::= T | p | | | A | E

 Path formulas (evaluated along paths)

 ::= | | | X | F | G | U

6/9/2008

Slide 25

Examples

 AGF

Along every execution (A)

from every state (G)

we will encounter a state (F)

satisfying

that is, is satisfied infinitely often

6/9/2008

Slide 26

Model

 Let M = <S, ,l> be a transition system with
l(s) the set of atomic propositions satisfied by
a state s S.

 Idea for a model: A formula of temporal logic
refers to an instant i of an execution of a
transition system M

 M, ,i means

“ is true at position i of path of M”

6/9/2008

Slide 27

Semantics (I)

 M, ,i T always

 M, ,i p iff p l((i))

 M, ,i iff not M, ,i

 M, ,i 1 2 iff M, ,i 1 and

M, ,i 2

6/9/2008

Slide 28

Semantics (II)

 M, ,i X iff M, ,i+1

 M, ,i F iff there exists i j such

that M, ,j

 M, ,i G iff M, ,j for all i j

 M, ,i 1U 2 iff there exists i j such

that M, ,j 2 and for all
i k<j we have M, ,k 1

6/9/2008

Slide 29

Semantics (III)

 M, ,i E iff there exists ’ such that
(0)... (i)= ’(0)... ’(i)

and M, ’,i

 M, ,i A iff for all ’ such that

(0)... (i) = ’(0)... ’(i) we
have M, ’,i

6/9/2008

30

PenC - Spring 2006

Slide 30

LTL and CTL CTL*

 Semantically, an LTL formula is equivalent

to the CTL* formula A

 CTL is a restricted fragment of CTL* with path

formulas

 ::= X | F | G | U

and the same state formulas as CTL*, i.e.

::= T | p | | | A | E

6/9/2008

Slide 31

Expressivity

CTL*

CTL LTL

1 2 3 4

6/9/2008

Slide 32

In CTL but not in LTL

1 = AG EF p in CTL

From any state we can always get to a state in which p

holds

s s’
p

s

p
p

M M’

 It cannot be expressed as LTL formula because

 All executions starting from s in M’ are also executions

starting from s in M

 In CTL M,s 1 but M’,s 1

6/9/2008

Slide 33

In CTL and in LTL

2 = AG(p AFq) in CTL

and

2 = G(p Fq) in LTL

“Any p is eventually followed by a q”

6/9/2008

Slide 34

In LTL but not in CTL

3 = GFp Fq in LTL

“If p holds infinitely often along a path, then
there is a state in which q holds”

Note: FGp is different from AFAGp since the
first is satisfied in

whereas the latter is not (starting from s).

s s’
p p

s’’
p

6/9/2008

Slide 35

Neither in CTL nor in LTL

4 = E(GFp) in CTL*

“There is a path with infinitely many

state in which p holds”

Not expressible in LTL: Trivial

Not expressible in CTL: very complex

6/9/2008

36

PenC - Spring 2006

Slide 36

Boolean combination of path in CTL

 CTL = CTL* but

Without boolean combination of path formulas

Without nesting of path formulas

 The first restriction is not real …

E[Fp Fq] EF[p EFq] EF[q EFp]

 First p and then q or viceversa

6/9/2008

37

PenC - Spring 2006

Slide 37

More generally …

E[(pUq)] E[qU(p q)] EG q

E[(p1Uq1) (p2Uq2)] E[(p1 p2)U(q1 E[p2Uq2])]
E[(p1 p2)U(q2 E[p1Uq1])]

E[Fp Gq] E[q U (p EG q)]

E[Xp] EX p

E[Xp Xq] EX(p q)

E[Fp Xq] EX(q EFp)

A[] E[]

6/9/2008

38

PenC - Spring 2006

Slide 38

Past operators

analogues of

 Previous P X neXt

 Since S U Until

 Once O F Future

 Historically H G Globally

 In LTL they do not add expressive power,
but CTL they do!

