Spring 2007

Program correctness

Branching-time temporal logics

Marcello Bonsangue

Leiden Institute of Advanced Computer Science **Research & Education**

CTL

\blacksquare CTL = Computational Tree Logic \square the temporal combinators are under the immediate scope of the path quantifiers

No. 3 Marsh 19 Marsh 19 depends only on the current state and not on the current execution!

Benefit: easy and efficient model checking

Disadvantages: hard for describing individual path

6/9/2008

The language

- Path quantifiers allows to speaks about sets of executions.
	- \square The model of time is tree-like: many futures are possible from a given state
- **n** Inevitably
	- from the current state all executions satisfy ϕ
- **Possibly** E_{Φ} from the current state there exists an execution satisfying ϕ

Leiden Institute of Advanced Computer Science

6/9/2008

$EX\phi$ | $EF\phi$ | $EG\phi$ | $E[\phi \cup \phi]$.

$AX\phi$ | AF ϕ | AG ϕ | A[ϕ U ϕ] |

$T \perp \perp \neg \phi \mid \phi \wedge \phi \mid \phi \vee \phi \mid \phi \Rightarrow \phi \mid$

$\blacksquare \phi ::= p_1 | p_2 | ...$

CTL - Syntax

CTL - Priorities

- Unary connectives bind most tightly
	- □ ¬, AG, EG, AF, EF, AX, and EX
- \blacksquare Next come \wedge , and \vee
- **Finally come, AU and EU**

■ Example:

 $\mathsf{AGp}_1 \mathbin{\Rightarrow} \mathsf{EGp}_2$ is not the same as $\mathsf{AG(p}_1 \mathbin{\Rightarrow} \mathsf{EGp}_2)$

CTL - yes or no?

N Yes \Box EFE[p U q] \Box A[p U EF q]

No

 \Box EF(p U q) □ FG p

■ Yes or no? $\Box AG(p \Rightarrow A[p \cup (-p \wedge A[\neg p \cup q])])$ \Box AF[(p U q) \land (q U p)]

A is not G

- \blacksquare A ϕ states that all the executions starting from the current state will satisfy ϕ
- \blacksquare G ϕ state that ϕ holds at every state of the execution considered

- A and E quantify over paths in a tree
- G and F quantify over positions along a given path in a tree

Combining E and F (I)

\blacksquare EF ϕ

"it is possible that ϕ will hold in the future"

Slide 8

6/9/2008

Combining E and F (II)

\blacksquare $EG\phi = E \rightarrow F \rightarrow \phi$

"it is possible that ϕ will always hold"

6/9/2008

Combining E and F (III)

\blacksquare AF \upphi = \lnot E \lnot F \upphi

"it is inevitable that ϕ will hold in the future"

Combining E and F (IV)

In this case ϕ is an invariant, that is, a property that is true continuously

6/9/2008

Example

All executions starting from 0 satisfy

AFEXerror

Why? Because from 0 all executions traverse 1 and may go to 2

There exists an execution which does not satisfy AFAXerror. Which one?

6/9/2008

Examples

Along every execution (A) from every state (G) it is possible (E) that we will encounter a state (F) satisfying ϕ

that is, ϕ is always reachable

CTL - Satisfaction

- Let $M = \langle S, \rightarrow, \rangle$ be a transition system with l(s) the set of atomic propositions satisfied by a state $s \in S$.
- Idea for a model: A CTL formula refers to a given state of a given transition system
	- $\Box M, s \models \phi$ means " ϕ is true at state s"

We will define it by induction

on the structure of ϕ

Slide 14

6/9/2008

CTL - Semantics (I)

 \blacksquare M,s \models T for all s in S \blacksquare M,s $\models p$ iff $p \in I(s)$ \blacksquare M,s $\models \neg \phi$ iff not M,s $\models \phi$ \blacksquare M_,s $\models \phi_1 \wedge \phi_2$

iff M,s $\models \phi_1$ and M,s $\models \phi_2$

Slide 15

:

:

6/9/2008

CTL - Semantics (II)

\blacksquare M,s $\models AX\phi$ iff for all s' such that s \rightarrow s' we have $M, s' \models \phi$

\blacksquare M,s \models EX ϕ iff there exists s' such that $s \rightarrow s'$ and M , $s' \vDash \phi$

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 16

CTL - Semantics (III)

\blacksquare M,s \models AG ϕ iff for all executions $S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow S_3 \dots$ with $s = s_0$ we have $M, s_i \models \phi$

 \blacksquare M,s \models EG ϕ iff there exists an execution $S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow S_3 \dots$ with $s = s_0$ and such that M , $s_i \vDash \phi$

CTL - Semantics (IV)

 \blacksquare M,s \vDash AF ϕ iff for all executions $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \dots$ with $s = s_0$ there is i such that $M,s_i \vDash \phi$

 \blacksquare M,s \models EF ϕ iff there exists an execution $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \dots$ with $s=s_0$ and there is i such that $M, S_i \vDash \phi$

6/9/2008

CTL - Semantics (V)

 \blacksquare M,s \models A[$\phi_1 \cup \phi_2$]

iff for all executions $s\rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \dots$ there is i such that $M, s_i \models \phi_2$ and for each j < i M,s_i $\models \phi_1$

 \blacksquare M,s \models $E[\phi_1 \cup \phi_2]$

iff there exists an execution $s \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \dots$ and there is i such that $M, s_i \models \phi_2$ and for each j < i M,s_i $\models \phi_1$

Slide 19

CTL equivalences

- De Morgan-based
	- $\Box \neg AF\phi \equiv EG \neg \phi$ \Box -EF ϕ = AG- ϕ

 AX EX X-self duality: on a path each state has a unique successor

Until reduction \Box AF ϕ = A[T U ϕ] \Box EF ϕ = E[T U ϕ]

6/9/2008

CTL: Adequate sets of connectives

■ Theorem: The set of operators

 $T, \neg, \wedge, \{AX \text{ or } EX\}, \{EG, AF \text{ or } AU\}, \text{ and } EU$ is adequate for CTL.

 $\Box A[\phi \cup \psi] \equiv \neg(E[\neg \psi \cup (\neg \phi \land \neg \psi)] \lor EG \neg \psi)$

6/9/2008

CTL: Weak until and release

- **Use LTL equivalence to define:** $\Box A[\phi R\psi] \equiv \neg E[\neg \phi U \neg \psi]$ \Box E[ϕ R ψ] = \neg A[\neg ϕ U \neg ψ]
	- $\Box A[\phi W\psi] \equiv A[\psi R(\phi \vee \psi)]$ \Box E[ψ W ψ] = E[ψ R($\phi \lor \psi$)]

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 22

Other CTL equivalences

- $EG\phi = \phi \wedge EX EG\phi$
- $AG\phi = \phi \wedge AX AG\phi$
- **AF** $\phi = \phi \vee AX AF\phi$ $E F \phi = \phi \vee EX E F \phi$

$$
\blacksquare \hspace{0.3cm} A[\varphi U\psi] \equiv \psi \vee (\varphi \wedge AXA[\varphi U\psi])
$$

 $E[\phi U \psi] \equiv \psi \vee (\phi \wedge EXE[\phi U \psi])$

CTL* - Syntax

■ State formulas (evaluated in states) ϕ ::= T | p | $\neg \phi$ | $\phi \wedge \phi$ | $A\psi$ | E ψ

■ Path formulas (evaluated along paths) $\psi ::= \phi \mid \neg \psi \mid \psi \wedge \psi \mid X\psi \mid F\psi \mid G\psi \mid \psi \cup \psi$

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 24

Examples

Along every execution (A) from every state (G) we will encounter a state (F) satisfying ϕ

that is, ϕ is satisfied infinitely often

Model

- Let $M = \langle S, \rightarrow, \vert \rangle$ be a transition system with l(s) the set of atomic propositions satisfied by a state $s \in S$.
- \blacksquare Idea for a model: A formula of temporal logic refers to an instant i of an execution π of a transition system M
- \blacksquare M, π , $i \vDash \phi$ means
	- " ϕ is true at position i of path π of M"

Semantics (I)

 \blacksquare M, π , $i \vDash T$ always \blacksquare M, $\pi, i \models p$ iff $p \in I(\pi(i))$ \blacksquare M, π , $i \vDash \neg \phi$ iff not M, π , $i \vDash \phi$ \blacksquare M, π , $i \vDash \phi_1 \wedge \phi_2$

iff M, $\pi, i \vDash \phi_1$ and $M, \pi, i \vDash \phi_2$

6/9/2008

Semantics (II)

-
-
-
- \blacksquare M, π , $i \models \mathsf{X}\phi$ iff M, π , $i+1 \models \phi$
- \blacksquare M, $\pi, i \vDash F\phi$ iff there exists i $\leq j$ such that M, $\pi, j \vDash \phi$
- \blacksquare M, $\pi, i \vDash G\phi$ iff M, $\pi, j \vDash \phi$ for all i $\leq j$

 \blacksquare M, π , $i \vDash \phi_1 \cup \phi_2$ iff there exists $i \le j$ such that $M, \pi, j \models \phi_2$ and for all i \leq k \leq j we have M, π ,k \models ϕ_1

Semantics (III)

\blacksquare M, π , i \models E ϕ iff there exists π' such that $\pi(0)$... $\pi(i) = \pi'(0)$... $\pi'(i)$ and $M, \pi', i \models \phi$

\blacksquare M, π , $i \vDash A\phi$ iff for all π' such that $\pi(0)$... $\pi(i) = \pi'(0)$... $\pi'(i)$ we have $M, \pi', i \models \phi$

LTL and $CTL \subseteq CTL^*$

Semantically, an LTL formula ϕ is equivalent to the CTL* formula $A\phi$

■ CTL is a restricted fragment of CTL^{*} with path formulas

$\psi ::= X\phi \mid F\phi \mid G\phi \mid \phi \cup \phi$ and the same state formulas as CTL*, i.e. ϕ ::= T | p | $\neg \phi$ | $\phi \wedge \phi$ | $A\psi$ | $E\psi$

Slide 30

Expressivity

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 31

In CTL but not in LTL

$$
\phi_1 = AG \text{ EF p} \qquad \text{in CTL}
$$

From any state we can always get to a state in which p holds

If cannot be expressed as LTL formula ϕ because

- □ All executions starting from s in M' are also executions starting from s in M
- \Box In CTL M,s \models ϕ_1 but M',s \nvdash ϕ_1

Leiden Institute of Advanced Computer Science

6/9/2008

In CTL and in LTL

$$
\phi_2 = AG(p \Rightarrow AFq) \text{ in CTL}
$$

and

$$
\phi_2 = G(p \Rightarrow Fq) \text{ in LTL}
$$

"Any p is eventually followed by a q"

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 33

In LTL but not in CTL

ϕ_3 = GFp \Rightarrow Fq in LTL

"If p holds infinitely often along a path, then there is a state in which q holds"

Note: FGp is different from AFAGp since the first is satisfied in

whereas the latter is not (starting from s).

Leiden Institute of Advanced Computer Science

6/9/2008

Neither in CTL nor in LTL

ϕ_4 = E(GFp) in CTL* "There is a path with infinitely many state in which p holds"

□ Not expressible in LTL: Trivial □ Not expressible in CTL: very complex

Slide 35

6/9/2008

Boolean combination of path in CTL

\blacksquare CTL = \ulcorner CTL $*$ but

Without boolean combination of path formulas Without nesting of path formulas

■ The first restriction is not real … \Box E[Fp \land Fq] \equiv EF[p \land EFq] \lor EF[q \land EFp] **First p and then q or viceversa**

Slide 36

More generally …

 $E[\neg (pUq)] \equiv E[\neg qU(\neg p \land \neg q)] \lor EG \neg q$ \Box E[(p₁Uq₁) \land (p₂Uq₂)] = E[(p₁ \land P₂)U(q₁ \land E[p₂Uq₂])] $E[(p_1 \wedge p_2)U(q_2 \wedge E[p_1 Uq_1])]$ \Box E[Fp \land Gq] = E[q U (p \land EG q)]

$$
\Box E[\neg Xp] = EX \neg p
$$

$$
\Box E[Xp \land Xq] \equiv EX(p \land q)
$$

$$
\Box E[Fp \land Xq] \equiv EX(q \land EFP)
$$

$$
\Box A[\phi] \equiv \neg E[\neg \phi]
$$

PenC - Spring 2006

6/9/2008

Past operators

In LTL they do not add expressive power, but CTL they do!

6/9/2008