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CTL

 CTL = Computational Tree Logic

 the temporal combinators are under the 
immediate scope of the path quantifiers

 Why CTL? The truth of CTL formulas
depends only on the current state and not on
the current execution!

Benefit: easy and efficient model checking

Disadvantages: hard for describing individual path
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The language

 Path quantifiers allows to speaks about sets
of executions.

The model of time is tree-like: many futures are
possible from a given state

 Inevitably A

from the current state all executions satisfy

 Possibly E
from the current state there exists an execution

satisfying  



6/9/2008

Slide 4

CTL - Syntax

 ::= p1 | p2 | …

T | | | | | |

AX | AF | AG | A[ U ] |

EX | EF | EG | E[ U ] .
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CTL - Priorities

 Unary connectives bind most tightly

 , AG, EG, AF, EF, AX, and EX

 Next come , and 

 Finally come, AU and EU

 Example:

AGp1 EGp2 is not the same as AG(p1 EGp2)
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CTL - yes or no?

 Yes
 EFE[p U q]

 A[p U EF q]

 No
 EF(p U q)

 FG p

 Yes or no?
 AG(p A[p U ( p A[ p U q])])

 AF[(p U q) (q U p)] 
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A is not G

 A states that all the executions starting

from the current state will satisfy

 G state that holds at every state of the

execution considered

 A and E quantify over paths in a tree

 G and F quantify over positions along a given path

in a tree
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Combining E and F  (I)

 EF

“it is possible that will hold in the future”
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Combining E and F  (II)

 EG =E F

“it is possible that will always hold”
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Combining E and F  (III)

 AF = E F

“it is inevitable that will hold in the future”
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Combining E and F  (IV)

 AG = EF

“ is always true”

 In this case is an invariant, that is, a

property that is true continuously
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Example

 All executions starting from 0 satisfy 

AFEXerror

Why? Because from 0 all executions traverse 1 and 

may go to 2

 There exists an execution which does not

satisfy AFAXerror. Which one?

0 1

ok

2
error

warm, ok
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Examples

 AGEF

Along every execution (A)

from every state (G)

it is possible (E)

that we will encounter a state (F)

satisfying 

that is, is always reachable
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CTL - Satisfaction

 Let M = <S, ,l> be a transition system with

l(s) the set of atomic propositions satisfied by

a state s S.

 Idea for a model: A CTL formula refers to a

given state of a given transition system

M,s  means “ is true at state s”

We will define it by induction 

on the structure of 
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CTL - Semantics (I)

 M,s  T for all s in S

 M,s  p iff p l(s)

 M,s  iff not M,s 

 M,s  1 2 iff M,s  1 and M,s  2

:

:
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CTL - Semantics (II)

 M,s  AX iff for all s’ such that s s’

we have M,s’ 

 M,s  EX iff there exists s’ such that

s s’ and M,s’ 
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CTL - Semantics (III)

 M,s  AG iff for all executions

s0 s1 s2 s3 … with

s = s0 we have M,si

 M,s  EG iff there exists an execution

s0 s1 s2 s3 … with

s = s0 and such that M,si
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CTL - Semantics (IV)

 M,s  AF iff for all executions

s0 s1 s2 s3 … with s = s0

there is i such that M,si

 M,s  EF iff there exists an execution

s0 s1 s2 s3… with s=s0

and there is i such that

M,si
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CTL - Semantics (V)

 M,s  A[ 1U 2] iff for all executions

s s1 s2 s3 … there is i

such that M,si  2 and

for each j < i M,sj 1

 M,s  E[ 1U 2] iff there exists an execution

s s1 s2 s3… and there is i
such that M,si  2 and

for each j < i M,sj 1
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CTL equivalences

 De Morgan-based

 AF EG

 EF AG

 AX EX X-self duality: on a path each 

state has a unique successor 

 Until reduction

AF A[T U ]

EF E[T U ]
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CTL: Adequate sets of connectives 

 Theorem: The set of operators

T, , , {AX or EX}, {EG,AF or AU}, and EU 

is adequate for CTL.

A[U] (E[ U(  )] EG )
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CTL: Weak until and release 

 Use LTL equivalence to define:

A[R] E[ U ]

E[R] A[ U ]

A[W] A[R( )]

E[W] E[R( )]
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Other CTL equivalences

 EG EX EG

 AG AX AG

 AF AX AF

 EF EX EF

 A[ U]  ( AXA[ U])

 E[ U]  ( EXE[ U])
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CTL* - Syntax

 State formulas (evaluated in states)

::= T | p |  | | A | E

 Path formulas (evaluated along paths)

 ::= |  |   | X | F | G | U
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Examples

 AGF

Along every execution (A)

from every state (G)

we will encounter a state (F)

satisfying 

that is, is satisfied infinitely often
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Model

 Let M = <S, ,l> be a transition system with
l(s) the set of atomic propositions satisfied by
a state s S.

 Idea for a model: A formula of temporal logic
refers to an instant i of an execution of a
transition system M

 M, ,i  means

“ is true at position i of path of M”



6/9/2008

Slide 27

Semantics (I)

 M, ,i  T always

 M, ,i  p iff p l( (i))

 M, ,i  iff not M, ,i 

 M, ,i  1 2 iff M, ,i  1 and

M, ,i  2
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Semantics (II)

 M, ,i  X iff M, ,i+1 

 M, ,i  F iff there exists i j such

that M, ,j 

 M, ,i  G iff M, ,j for all i j

 M, ,i  1U 2 iff there exists i j such

that M, ,j  2 and for all
i k<j we have M, ,k  1
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Semantics (III)

 M, ,i  E iff there exists ’ such that
(0)... (i)= ’(0)... ’(i)

and M, ’,i 

 M, ,i  A iff for all ’ such that

(0)... (i) = ’(0)... ’(i) we
have M, ’,i 
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LTL and CTL CTL*

 Semantically, an LTL formula is equivalent 

to the CTL* formula A

 CTL is a restricted fragment of CTL* with path 

formulas

 ::= X | F | G | U 

and the same state formulas as CTL*, i.e.

::= T | p |  | | A | E
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Expressivity

CTL*

CTL LTL

1 2 3 4
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In CTL but not in LTL

1 = AG EF p in CTL

From any state we can always get to a state in which p

holds

s s’
p

s

p
p

M M’

 It cannot be expressed as LTL formula because

 All executions starting from s in M’ are also executions

starting from s in M

 In CTL M,s  1 but M’,s  1
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In CTL and in LTL

2 = AG(p AFq) in CTL

and

2 = G(p Fq) in LTL

“Any p is eventually followed by a q”
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In LTL but not in CTL

3 = GFp Fq in LTL

“If p holds infinitely often along a path, then
there is a state in which q holds”

Note: FGp is different from AFAGp since the
first is satisfied in

whereas the latter is not (starting from s).

s s’
p p

s’’
p
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Neither in CTL nor in LTL

4 = E(GFp) in CTL*

“There is a path with infinitely many

state in which p holds”

Not expressible in LTL: Trivial

Not expressible in CTL: very complex
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Boolean combination of path in CTL

 CTL = CTL*  but 

Without boolean combination of path formulas

Without nesting of path formulas

 The first restriction is not real …

E[Fp Fq] EF[p EFq] EF[q EFp] 

 First p and then q or viceversa
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More generally …

E[ (pUq)] E[ qU( p q)] EG q

E[(p1Uq1) (p2Uq2)] E[(p1 p2)U(q1 E[p2Uq2])] 
E[(p1 p2)U(q2 E[p1Uq1])]

E[Fp Gq] E[q U (p EG q)]

E[ Xp] EX p

E[Xp Xq] EX(p q)

E[Fp Xq] EX(q EFp)

A[ ] E[ ] 
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Past operators

analogues of
-------------------------------------------------
 Previous P X neXt

 Since S U Until

 Once O F Future

 Historically H G Globally

 In LTL they do not add expressive power, 
but CTL they do!


