
Program correctness

SAT and its correctness

Marcello Bonsangue

Spring 2007

6/9/2008

Slide 2

Context

1. We have defined the semantics of CTL
formulas M,s

2. We have given an efficient method for

model checking a CTL formula returning all
states s such that M,s

Next we present an algorithm for it and proves

its correctness

6/9/2008

Slide 3

The algorithm SAT

 SAT stands for ‘satisfies’

 Input: a well-formed CTL formula

Output: a subset of the states of a

transition system M = <S, ,l>

 Written in Pascal-like

 function return

 local_var

 while do od

 case is end_case

6/9/2008

Slide 4

The main function (I)

function SAT()

begin

case is

T : return S

: return

atomic : return {s S | l(s) }

1 : return S - SAT(1)

1 2 : return SAT(1) SAT(2)

1 2 : return SAT(1) SAT(2)

1 2 : return SAT(1 2)

:
:

6/9/2008

Slide 5

The main function (II)

:
:
AX 1 : return SAT(EX 1)

EX 1 : return SAT_EX(1)

A[1 U 2] : return

SAT(E[2U(1 2)] EG 2)

E[1 U 2] : return SAT_EU(1, 2)

EF 1 : return SAT(E[T U 1])

AF 1 : return SAT_AF(1)

EG 1 : return SAT(AF 1) /*SAT_EG(1)*/

AG 1 : return SAT(EF 1)

end_case

end

6/9/2008

Slide 6

The function SAT_EX

function SAT_EX()

local_var X,Y

begin

X := SAT()

Y := { s S | s s’ : s’ X}

return Y

end

6/9/2008

Slide 7

The function SAT_AF

function SAT_AF()

local_var X,Y

begin

X := S

Y := SAT()

while X Y do

X := Y

Y := Y { s S | s s’ : s’ Y }

od

return Y

end

6/9/2008

Slide 8

The function SAT_EU

function SAT_EU(,)

local_var W,X,Y

begin

W := SAT()
X := S
Y := SAT() /* Calculated only once */

while X Y do

X := Y

Y := Y (W { s S | s s’ : s’ Y })

od

return Y

end

6/9/2008

Slide 9

The function SAT_EG

function SAT_EG()

local_var X,Y

begin

X :=
Y := SAT()

while X Y do

X := Y

Y := Y { s S | s s’ : s’ Y }

od

return Y

end

6/9/2008

Slide 10

Does it work?

 Claim: For a given model M=<S, , l>

and well-formed CTL formula ,

SAT() = { s S | M,s } = [[]]

Is this true?

def

6/9/2008

Slide 11

The proof (I)

 The claim is proved by induction on the structure of the

formula.

 For = T, , or atomic the set [[]] is computed directly

 For , 1 2, 1 2 or 1 2 we apply induction

and predicate logic equivalences

Example:

SAT(1 2) = SAT(1) SAT(2)

= [[1]] [[2]] (induction)

= [[1 2]]

6/9/2008

Slide 12

The proof (II)

 For EX we apply induction

SAT(EX) = SAT_EX()

= { s S | s s’ : s’ SAT()}

= { s S | s s’ : s’ [[]]} (induction)

= { s S | s s’ : M,s’ } (definition [[-]])

= { s S | M,s EX } (definition)

= [[EX]] (definition [[-]])

6/9/2008

Slide 13

The proof (III)

 For AX , A[1 U 2], EF , or AG we can rely on

logical equivalences and on the correctness of

SAT_EX, SAT_AF, SAT_EU, and SAT_EG

 Example:

SAT(AX) = SAT(EX)

= S - SAT_EX() (def. SAT())

= S - [[EX]] (correctness SAT_EX)

= [[AX]] (logical equivalence)

But we still have to prove the correctness

of SAT_AF, SAT_EU, and SAT_EG

6/9/2008

Slide 14

EG as fixed point

Recall that EG EX EG . Since

EX = { s S | s s’ : s’ [[]]}

we have the following fixed-point definition of EG

[[EG]] = [[]] { s S | s s’ : s’ [[EG]]}

?

6/9/2008

Slide 15

Fixed points

 Let S be a set and F:Pow(S) Pow(S) be a a function

F is monotone if

X Y implies F(X) F(Y)

for all subsets X and Y of S

A subset X of S is a fixed point of F if

F(X) =X

A subset X of S is a least fixed point of F if

F(X) = X and X Y

for all fixed point Y of F

6/9/2008

Slide 16

Examples

 S = {s,t} and F:X X {s}

 F is monotone

 {s} and {s,t} are all fixed points of F

 {s} is the least fixed point of F

 S = {s,t} and G:Xif X={s} then {t} else {s}

G is not monotone

 {s} {s,t} but G({s}) = {t} {s} = G({s,t})

G does not have any fixed point

6/9/2008

Slide 17

Fixed points (II)

Let Fi(X) = F(F(…F(X)…)) for i > 0 (thus F1(X) = F(X))

i-times

 Theorem: Let S be a set with n+1 elements. If

F:Pow(S) Pow(S) is a monotone function then

1) Fn+1() is the least fixed point of F

2) Fn+1(S) is the greatest fixed point of F

Least and greatest fixed points can be computed and the

computation is guaranteed to terminate !

6/9/2008

Slide 18

Computing EG

 To find a set [[EG]] such that

[[EG]] = [[]] { s S | s s’ : s’ [[EG]]}

we look if it is a fixed point of the function

F(X) = [[]] { s S | s s’ : s’ X}

 Theorem: Let n = |S| be the size of S and F
defined as above. We have

1. F is monotone

2. [[EG]] is the greatest fixed point of F

3. [[EG]] = Fn+1(S)

6/9/2008

Slide 19

Correctness of SAT_EG

1. Inside the loop it always holds Y SAT()

2. Because Y SAT(), substitute in SAT_EG

Y := Y { s S | s s’ : s’ Y }

with Y := SAT() { s S | s s’ : s’ Y }

3. Note that SAT_EG() is calculating the greatest fixed
point (use induction!)

F(X) = [[]] { s S | s s’ : s’ X}

4. It follows from the previous theorem that SAT_EG()

terminates and computes [[EG]].

6/9/2008

Slide 20

Example: EG

Let us compute [[EGq]].
p

s4

q

q

s3

s2s0 s1

It is the greatest fixed point of

F(X) = [[q]] { s S | s s’ : s’ X }

= {s0,s4} { s S | s s’ : s’ X }

6/9/2008

Slide 21

Example: EG

 Iterating F on S until it stabilizes

 F1(S) ={s0,s4} { s S | s s’ : s’ S }

= {s0,s4} S

= {s0,s4}

 F2(S) =F(F1(S))

= F({s0,s4})

= {s0,s4} { s S | s s’ : s’ {s0,s4} }

= {s0,s4}

 Thus {s0,s4} is the greatest fixed point of F and equals [[EGq]]

6/9/2008

Slide 22

EU as fixed point

Recall that E[U] (EX E[U
]).

Since EX = { s S | s s’ : s’ [[]]} we
obtain

[[E[U]]] = [[]] ([[]] {s S | s s’: s’ [[E[U]]]})

?

6/9/2008

Slide 23

Computing E[U]

 As before, we show that [[E[U]]] is a fixed point

of the function

G(X) = [[]] ([[]] { s S | s s’ : s’ X})

 Theorem: Let n = |S| be the size of S and G defined

as above. We have

1. G is monotone

2. [[E[U]]] is the least fixed point of G

3. [[E[U]]] = Gn+1()

6/9/2008

Slide 24

Correctness of SAT_EU

1. Inside the loop it always holds W=SAT() and Y SAT().

2. Substitute in SAT_EU

Y:=Y (W { s S | s s’ : s’ Y })

with

Y:=SAT() (SAT() { s S | s s’ : s’ Y })

3. Note that SAT_EU() is calculating the least fixed point of

G(X) = [[]] ([[]] { s S | s s’ : s’ X})

4. It follows from the previous theorem that SAT_EU(,)

terminates and computes [[E[U]]]

6/9/2008

Slide 25

Example: EU

Let us compute [[EFp]] = [[E[TUp]]].

It is the least fixed point of

G(X) = [[p]] ([[T]] { s S | s s’ : s’ X})

= {s3} (S { s S | s s’ : s’ X })

= {s3} { s S | s s’ : s’ X }

p

s4

q

q

s3

s2s0 s1

6/9/2008

Slide 26

Example: EU
 Iterating G on until it stabilizes we have

 G1() = {s3} { s S | s s’ : s’ }

= {s3} = {s3}

 G2() = G(G1()) = G({s3})

= {s3} { s S | s s’ : s’ {s3} }

= {s1,s3}

 G3() = G(G2()) = G({s1,s3})

= {s3} { s S | s s’ : s’ {s1,s3} }

= {s0,s1, s2,s3}

 G4() =G(G3()) = G({s0,s1, s2,s3})

= {s3} { s S | s s’ : s’ {s0,s1, s2,s3} }

= {s0,s1, s2,s3}

 Thus [[EFp]] = [[E[TUp]]] = {s0,s1,s2,s3}.

6/9/2008

Slide 27

AF as fixed point

Since AF AX AF and

AX = { s S | s s’ : s’ [[]]}

we obtain

[[AF]] = [[]] { s S | s s’ : s’ [[AF]]}

?

6/9/2008

Slide 28

Computing AF

 Again, consider [[AF]] as a fixed point of the

function

H(X) = [[]] { s S | s s’ : s’ X}

 Theorem: Let n = |S| be the size of S and G

defined as above. We have

1. H is monotone

2. [[AF]] is the least fixed point of H

3. [[AF]] = Hn+1()

6/9/2008

Slide 29

Correctness of SAT_AF

1. Inside the loop it always holds Y SAT().

2. Substitute in SAT_AF

Y:=Y { s S | s s’ : s’ Y })

with

Y:=SAT() { s S | s s’ : s’ Y }

3. Note that SAT_AF() is calculating the least fixed point of

H(X) = [[]] { s S | s s’ : s’ X}

4. It follows from the previous theorem that AT_AF()
terminates and computes [[AF]]

