Spring 2007

Program correctness

SAT and its correctness

Marcello Bonsangue

Leiden Institute of Advanced Computer Science **Research & Education**

Context

- 1. We have defined the semantics of CTL formulas $M,s \vDash \phi$
- 2. We have given an efficient method for model checking a CTL formula returning all states s such that $M,s \vDash \phi$

Next we present an algorithm for it and proves its correctness

6/9/2008

The algorithm SAT

■ SAT stands for 'satisfies'

- □ Input: a well-formed CTL formula Output: a subset of the states of a transition system $M = \langle S, \rightarrow, I \rangle$
- Written in Pascal-like
	- function return
	- local_var
	- while do od
	- case is end case

The main function (I)

Leiden Institute of Advanced Computer Science

:

:

The main function (II)

$$
AXφ₁ : return SAT(¬EX¬φ₁)
$$
\n
$$
EXφ₁ : return SAT_EX(φ₁)
$$
\n
$$
A[φ₁ ∪ φ₂] : return
$$
\n
$$
SAT(¬E[¬φ₂U(¬φ₁ ∧ ¬ φ₂)]∨EG¬φ₂)
$$
\n
$$
E[φ₁ ∪ φ₂] : return SAT_EU(φ₁, φ₂)
$$
\n
$$
EFφ₁ : return SAT(E[T U φ₁])
$$
\n
$$
AFφ₁ : return SAT_AF(φ₁)
$$
\n
$$
EGφ₁ : return SAT(¬AF¬φ₁)
$$
\n
$$
AGφ₁ : return SAT(¬EF¬φ₁)
$$
\n
$$
Gseq
$$

end_case

:

6/9/2008

The function SAT_EX

function SAT $EX(\phi)$ local var X, Y **begin** $X := SAT(\phi)$ $Y := \{ s \in S \mid \exists s \rightarrow s' : s' \in X \}$ return Y

end

6/9/2008

The function SAT_AF

```
<u>function</u> SAT_AF(\phi)local var X, Y
begin
   X = SY := SAT(\phi)while X \neq Y do
         X = YY := Y \cup \{ s \in S \mid \forall s \rightarrow s' : s' \in Y \}<u>od</u>
   return Y
end
```


The function SAT_EU

```
<u>function</u> SAT EU(\phi, \psi)local var W,X,Y
begin
   W := SAT(\phi)X = SY := SAT(\psi) /* Calculated only once */
   while X \neq Y do
         X = YY := Y \cup (W \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in Y \})<u>od</u>
   return Y
end
```


The function SAT_EG

<u>function</u> SAT $EG(\phi)$ local var X, Y begin $X := \varnothing$ $Y := SAT(\phi)$ while $X \neq Y$ do $X := Y$ $Y := Y \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in Y \}$ od return Y end

Does it work?

■ Claim: For a given model M=<S, \rightarrow , \triangleright and well-formed CTL formula ϕ ,

 $SAT(\phi) = \{ s \in S \mid M, s \models \phi \} = [[\phi]]$

The proof (I)

- \blacksquare The claim is proved by induction on the structure of the formula.
- For $\phi = T$, \perp , or atomic the set [[ϕ]] is computed directly
- For $\neg \phi$, $\phi_1 \wedge \phi_2$, $\phi_1 \vee \phi_2$ or $\phi_1 \Rightarrow \phi_2$ we apply induction and predicate logic equivalences
	- **□ Example:**
		- $SAT(\phi_1 \lor \phi_2) = SAT(\phi_1) \cup SAT(\phi_2)$
			- $= [[\phi_1]] \cup [[\phi_2]]$ (induction)
			- $= [[\phi_1 \vee \phi_2]]$

Slide 11

The proof (II)

\blacksquare For $EX\phi$ we apply induction

$$
SAT(EX\phi) = SAT_EX(\phi)
$$
\n
$$
= \{ s \in S \mid \exists s \rightarrow s' : s' \in SAT(\phi) \}
$$
\n
$$
= \{ s \in S \mid \exists s \rightarrow s' : s' \in [[\phi]] \} \quad \text{(induction)}
$$
\n
$$
= \{ s \in S \mid \exists s \rightarrow s' : M, s' \models \phi \} \quad \text{(definition [[-]])}
$$
\n
$$
= \{ s \in S \mid M, s \models EX\phi \} \quad \text{(definition \models)}
$$
\n
$$
= [[EX\phi]] \quad \text{(definition [[-]])}
$$

6/9/2008

The proof (III)

For AX ϕ , A[ϕ ₁ U ϕ ₂], EF ϕ , or AG ϕ we can rely on logical equivalences and on the correctness of SAT_EX, SAT_AF, SAT_EU, and SAT_EG

□ Example:

 $SAT(AX\phi) = SAT(\neg EX \neg \phi)$ $= S - SAT EX(\neg \phi)$ (def. SAT($\neg \phi$)) $= S - [[EX \rightarrow 0]]$ (correctness SAT_EX)

6/9/2008

 $=$ $[|AX_\phi]|$ (logical equivalence)

But we still have to prove the correctness

of SAT_AF, SAT_EU, and SAT_EG

EG as fixed point

Recall that $EG\phi = \phi \wedge EX EG\phi$. Since

$$
EX\psi = \{ s \in S \mid \exists s \rightarrow s' : s' \in [[\psi]] \}
$$

we have the following fixed-point definition of EG

Fixed points

Let S be a set and $F:Pow(S) \rightarrow Pow(S)$ be a a function \Box F is monotone if $X \subset Y$ implies $F(X) \subset F(Y)$ for all subsets X and Y of S

 \Box A subset X of S is a fixed point of F if $F(X) = X$

 \Box A subset X of S is a least fixed point of F if $F(X) = X$ and $X \subset Y$

for all fixed point Y of F

Examples

\blacksquare S = {s,t} and F:X \mapsto X \cup {s}

 \Box F is monotone

 \square {s} and {s,t} are all fixed points of F

 \Box {s} is the least fixed point of F

■ S = {s,t} and G:X
$$
\mapsto
$$
 if X={s} then {t} else {s}

 \Box G is not monotone

 \bullet {s} \subseteq {s,t} but G({s}) = {t} \subset {s} = G({s,t})

 \Box G does not have any fixed point

Fixed points (II)

Let $F^{i}(X) = F(F(...F(X)...))$ for $i > 0$ (thus $F^{1}(X) = F(X)$) i-times

- **Theorem:** Let S be a set with n+1 elements. If $F:Pow(S) \rightarrow Pow(S)$ is a monotone function then
	- 1) $F^{n+1}(\emptyset)$ is the least fixed point of F
	- 2) $F^{n+1}(S)$ is the greatest fixed point of F

Least and greatest fixed points can be computed and the computation is guaranteed to terminate !

Computing EG

To find a set $[[EG\phi]]$ such that

 $[[EG\phi]] = [[\phi]] \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in [[EG\phi]] \}$

we look if it is a fixed point of the function

 $F(X) = \left[\left[\phi \right] \right] \cap \left\{ s \in S \mid \exists s \rightarrow s' : s' \in X \right\}$

Theorem: Let $n = |S|$ be the size of S and F defined as above. We have

- 1. F is monotone
- 2. $[EG\phi]$ is the greatest fixed point of F
- 3. $[[EG\phi]] = F^{n+1}(S)$

6/9/2008

Correctness of SAT_EG

- 1. Inside the loop it always holds $Y \subseteq SAT(\phi)$
- 2. Because Y \subseteq SAT(ϕ), substitute in SAT EG $Y := Y \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in Y \}$ with Y := $SAT(\phi) \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in Y \}$
- 3. Note that SAT $EG(\phi)$ is calculating the greatest fixed point (use induction!)

 $F(X) = [[\phi]] \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in X \}$

4. It follows from the previous theorem that SAT $EG(\phi)$ terminates and computes $[[EG\phi]]$.

Example: EG

Example: EG

Iterating F on S until it stabilizes

$$
\Box F^{1}(S) = \{s_{0}, s_{4}\} \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in S \}
$$

= $\{s_{0}, s_{4}\} \cap S$
= $\{s_{0}, s_{4}\}$

$$
\begin{aligned} \n\square \ F^2(S) &= F(F^1(S)) \\ \n&= F(\{s_0, s_4\}) \\ \n&= \{s_0, s_4\} \cap \{ \ s \in S \mid \exists s \to s' : s' \in \{s_0, s_4\} \} \\ \n&= \{s_0, s_4\} \n\end{aligned}
$$

■ Thus $\{s_0, s_4\}$ is the greatest fixed point of F and equals [[EGq]]

Leiden Institute of Advanced Computer Science

6/9/2008

EU as fixed point

- **Recall that E**[ϕ U ψ] $\equiv \psi \lor (\phi \land EX E[\phi \cup$ ψ]).
- Since $EX\varphi = \{ s \in S \mid \exists s \rightarrow s' : s' \in [[\varphi]] \}$ we obtain

Computing $E[\phi \cup \psi]$

As before, we show that $[[E[\phi \cup \psi]]]$ is a fixed point of the function

 $G(X) = [[\psi]] \cup ([[\phi]] \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in X \})$

- Theorem: Let n = |S| be the size of S and G defined as above. We have
	- 1. G is monotone
	- 2. $[[E[\phi \cup \psi]]]$ is the least fixed point of G
	- 3. **[[E[** ϕ **U** ψ]]] = Gⁿ⁺¹(\varnothing)

Correctness of SAT_EU

- 1. Inside the loop it always holds $W=SAT(\phi)$ and $Y \supseteq SAT(\psi)$.
- 2. Substitute in SAT_EU $Y:=Y \cup (W \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in Y \})$

with

 $Y: =SAT(\psi) \cup (SAT(\phi) \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in Y \})$

- 3. Note that SAT $EU(\phi)$ is calculating the least fixed point of $G(X) = [[\psi]] \cup ([[\phi]] \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in X \})$
- 4. It follows from the previous theorem that SAT $EU(\phi, \psi)$ terminates and computes $[[E[\phi U \psi]]]$

6/9/2008

Example: EU

Example: EU

Iterating G on \varnothing until it stabilizes we have \Box G¹(\varnothing) = {s₃} \cup { s \in S | \exists s \rightarrow s' $:$ s' \in \varnothing } $= \{s_3\} \cup \varnothing = \{s_3\}$ \Box G²(\varnothing) = G(G¹(\varnothing)) = G({s₃}) $= \{s^3\} \cap \{ s \in S \mid \exists s \rightarrow s' : s' \in \{s^3\} \}$ $= \{s_1, s_3\}$ □ $G^3(\emptyset) = G(G^2(\emptyset)) = G({s_1, s_3})$ $=\{\mathsf{s}_3\}\cup\{\,\mathsf{s}\in\mathsf{S}\mid\exists\mathsf{s}\to\mathsf{s}^\prime\,\colon\mathsf{s}^\prime\in\{\mathsf{s}_1,\mathsf{s}_3\}\,\}$ $= \{s_0, s_1, s_2, s_3\}$ \Box G⁴(\varnothing) =G(G³(\varnothing)) = G({s₀,s₁, s₂,s₃}) $=\{\mathrm{s}_3\}\cup\{\mathrm{\ s}\in\mathrm{S}\mid\exists\mathrm{s}\rightarrow\mathrm{s}^\prime\mathrm{:}\,\mathrm{s}^\prime\in\{\mathrm{s}_0,\mathrm{s}_1,\,\mathrm{s}_2,\mathrm{s}_3\}\,\}$ $= \{s_0, s_1, s_2, s_3\}$ ■ Thus $[[EFp]] = [[E[TUp]]] = {s₀, s₁, s₂, s₃}.$

6/9/2008

AF as fixed point

Since $\overline{AF}\phi = \phi \vee \overline{AX} \overline{AF}\phi$ and $AX \varphi = \{ s \in S \mid \forall s \rightarrow s' : s' \in [[\varphi]] \}$

we obtain

Slide 27

Computing AFφ

Again, consider $[[AF₀]]$ as a fixed point of the function

 $H(X) = [[\phi]] \cup \{ s \in S \mid \forall s \rightarrow s' : s' \in X \}$

Theorem: Let $n = |S|$ be the size of S and G defined as above. We have

- 1. H is monotone
- 2. $[IAF\phi]$ is the least fixed point of H
- 3. $\left[\left[\mathsf{AF}\phi\right]\right] = \mathsf{H}^{n+1}(\varnothing)$

Correctness of SAT_AF

- 1. Inside the loop it always holds $Y \supset \text{SAT}(\phi)$.
- 2. Substitute in SAT_AF $Y:=Y \cup \{ s \in S \mid \forall s \rightarrow s' : s' \in Y \}$ with

$$
\mathsf{Y}{:=}\mathsf{SAT}(\varphi){\:\cup\:} \{\,s\in S\mid \forall s\rightarrow s': s'\in \mathsf{Y}\,\}
$$

3. Note that SAT $AF(\phi)$ is calculating the least fixed point of

$$
H(X) = [[\varphi]] \cup \{ s \in S \mid \forall s \rightarrow s' : s' \in X \}
$$

4. It follows from the previous theorem that AT $AF(\phi)$ terminates and computes [[AF ϕ]]

