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Context

1. We have defined the semantics of CTL
formulas M,s 

2. We have given an efficient method for

model checking a CTL formula returning all
states s such that M,s 

Next we present an algorithm for it and proves 

its correctness  



6/9/2008

Slide 3

The algorithm SAT

 SAT  stands for ‘satisfies’

 Input: a well-formed CTL formula

Output: a subset of the states of a 

transition system M = <S, ,l>

 Written in Pascal-like

 function return

 local_var

 while do od

 case is end_case
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The main function (I)

function SAT( )

begin

case is

T : return S

: return

atomic : return {s S | l(s) }

1 : return S - SAT( 1)

1 2 : return SAT( 1) SAT( 2)

1 2 : return SAT( 1) SAT( 2)

1 2 : return SAT( 1 2)

:
:
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The main function (II)

:
:
AX 1 : return SAT( EX 1)

EX 1 : return SAT_EX( 1)

A[ 1 U 2] : return

SAT( E[ 2U( 1 2)] EG 2)

E[ 1 U 2] : return SAT_EU( 1, 2)

EF 1 : return SAT(E[T U 1])

AF 1 : return SAT_AF( 1)

EG 1 : return SAT( AF 1)   /*SAT_EG( 1)*/

AG 1 : return SAT( EF 1)

end_case

end
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The function SAT_EX

function SAT_EX( )

local_var X,Y

begin

X := SAT( )

Y := { s S | s s’ : s’ X}

return Y

end
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The function SAT_AF

function SAT_AF( )

local_var X,Y

begin

X := S

Y := SAT( )

while X Y do

X := Y

Y := Y { s S | s s’ : s’ Y } 

od

return Y

end
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The function SAT_EU

function SAT_EU( , )

local_var W,X,Y

begin

W := SAT( )
X := S
Y := SAT( ) /* Calculated only once  */

while X Y do 

X := Y

Y := Y (W { s S | s s’ : s’ Y })

od

return Y

end
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The function SAT_EG

function SAT_EG( )

local_var X,Y

begin

X :=
Y := SAT( )

while X Y do 

X := Y

Y := Y { s S | s s’ : s’ Y }

od

return Y

end
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Does it work?

 Claim: For a given model M=<S, , l> 

and well-formed CTL formula ,

SAT( ) = { s S | M,s  } = [[ ]]

Is this true?

def
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The proof (I)

 The claim is proved by induction on the structure of the

formula.

 For = T, , or atomic the set [[ ]] is computed directly

 For , 1 2, 1 2 or 1 2 we apply induction

and predicate logic equivalences

Example:

SAT( 1 2) = SAT( 1) SAT( 2)

= [[ 1]] [[ 2]] (induction)

= [[ 1 2]]
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The proof (II)

 For EX we apply induction

SAT(EX ) = SAT_EX( )

= { s S | s s’ : s’ SAT( )}

= { s S | s s’ : s’ [[ ]]} (induction)

= { s S | s s’ : M,s’  } (definition [[-]])

= { s S | M,s  EX } (definition  )

= [[EX ]] (definition [[-]])
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The proof (III)

 For AX , A[ 1 U 2], EF , or AG we can rely on

logical equivalences and on the correctness of

SAT_EX, SAT_AF, SAT_EU, and SAT_EG

 Example:

SAT(AX ) = SAT( EX )

= S - SAT_EX( ) (def. SAT( ))

= S - [[EX ]] (correctness SAT_EX)

= [[AX ]] (logical equivalence)

But we still have to prove the correctness 

of SAT_AF, SAT_EU, and SAT_EG
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EG as fixed point

Recall that EG EX EG . Since

EX = { s S | s s’ : s’ [[ ]]} 

we have the following fixed-point definition of EG

[[EG ]] = [[ ]] { s S | s s’ : s’ [[EG ]]}

?
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Fixed points

 Let S be a set and F:Pow(S) Pow(S) be a a function

F is monotone if

X Y implies F(X) F(Y) 

for all subsets X and Y of S

A subset X of S is a fixed point of F if

F(X) =X

A subset X of S is a least fixed point of F if 

F(X) = X and X Y 

for all fixed point Y of F
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Examples

 S = {s,t} and F:X X {s}

 F is monotone

 {s} and {s,t} are all fixed points of F

 {s} is the least fixed point of F

 S = {s,t} and G:Xif X={s} then {t} else {s}

G is not monotone

 {s} {s,t} but G({s}) = {t} {s} = G({s,t})

G does not have any fixed point
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Fixed points (II)

Let Fi(X) = F(F(…F(X)…)) for i > 0 (thus F1(X) = F(X))

i-times

 Theorem: Let S be a set with n+1 elements. If

F:Pow(S) Pow(S) is a monotone function then

1) Fn+1( ) is the least fixed point of F

2) Fn+1(S) is the greatest fixed point of F

Least and greatest fixed points can be computed and the 

computation is guaranteed to terminate !
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Computing EG

 To find a set [[EG ]] such that

[[EG ]] = [[ ]] { s S | s s’ : s’ [[EG ]]}

we look if it is a fixed point of the function

F(X) = [[ ]] { s S | s s’ : s’ X}

 Theorem: Let n = |S| be the size of S and F 
defined as above. We have

1. F is monotone

2. [[EG ]]  is the greatest fixed point of F

3. [[EG ]] = Fn+1(S) 
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Correctness of SAT_EG

1. Inside the loop it always holds Y SAT( )

2. Because Y SAT( ), substitute in SAT_EG

Y := Y { s S | s s’ : s’ Y }

with Y := SAT( ) { s S | s s’ : s’ Y }

3. Note that SAT_EG( ) is calculating the greatest fixed
point (use induction!)

F(X) = [[ ]] { s S | s s’ : s’ X}

4. It follows from the previous theorem that SAT_EG( )

terminates and computes [[EG ]].



6/9/2008

Slide 20

Example: EG

Let us compute [[EGq]].
p

s4

q

q

s3

s2s0 s1

It is the greatest fixed point of

F(X) = [[q]] { s S | s s’ : s’ X }

= {s0,s4} { s S | s s’ : s’ X }
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Example: EG

 Iterating F on S until it stabilizes

 F1(S) ={s0,s4} { s S | s s’ : s’ S }

= {s0,s4} S

= {s0,s4}

 F2(S) =F(F1(S)) 

= F({s0,s4})

= {s0,s4} { s S | s s’ : s’ {s0,s4} }

= {s0,s4}

 Thus {s0,s4} is the greatest fixed point of F and equals [[EGq]]
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EU as fixed point

Recall that E[ U ] ( EX E[ U 
]).

Since EX = { s S | s s’ : s’ [[ ]]} we 
obtain

[[E[ U ]]] = [[ ]] ([[ ]] {s S | s s’: s’ [[E[ U ]]]})

?
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Computing E[ U ]

 As before, we show that [[E[ U ]]] is a fixed point

of the function

G(X) = [[ ]] ([[ ]] { s S | s s’ : s’ X})

 Theorem: Let n = |S| be the size of S and G defined 

as above. We have

1. G is monotone

2. [[E[ U ]]]  is the least fixed point of G

3. [[E[ U ]]] = Gn+1( ) 
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Correctness of SAT_EU

1. Inside the loop it always holds W=SAT( ) and Y SAT( ).

2. Substitute in SAT_EU

Y:=Y (W { s S | s s’ : s’ Y })

with

Y:=SAT( ) (SAT( ) { s S | s s’ : s’ Y })

3. Note that SAT_EU( ) is calculating the least fixed point of

G(X) = [[ ]] ([[ ]] { s S | s s’ : s’ X})

4. It follows from the previous theorem that SAT_EU( , )

terminates and computes [[E[ U ]]]
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Example: EU

Let us compute [[EFp]] = [[E[TUp]]].

It is the least fixed point of

G(X) = [[p]] ([[T]] { s S | s s’ : s’ X})

= {s3} (S { s S | s s’ : s’ X })

= {s3} { s S | s s’ : s’ X }

p

s4

q

q

s3

s2s0 s1
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Example: EU
 Iterating G on until it stabilizes we have

 G1( ) = {s3} { s S | s s’ : s’ }

= {s3} = {s3}

 G2( ) = G(G1( )) = G({s3})

= {s3} { s S | s s’ : s’ {s3} }

= {s1,s3}

 G3( ) = G(G2( )) = G({s1,s3})

= {s3} { s S | s s’ : s’ {s1,s3} }

= {s0,s1, s2,s3}

 G4( ) =G(G3( )) = G({s0,s1, s2,s3})

= {s3} { s S | s s’ : s’ {s0,s1, s2,s3} }

= {s0,s1, s2,s3}

 Thus [[EFp]] = [[E[TUp]]]  = {s0,s1,s2,s3}.
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AF as fixed point

Since AF AX AF and

AX = { s S | s s’ : s’ [[ ]]}

we obtain

[[AF ]] = [[ ]] { s S | s s’ : s’ [[AF ]]}

?
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Computing AF

 Again, consider [[AF ]] as a fixed point of the

function

H(X) = [[ ]] { s S | s s’ : s’ X}

 Theorem: Let n = |S| be the size of S and G 

defined as above. We have

1. H is monotone

2. [[AF ]]  is the least fixed point of H

3. [[AF ]] = Hn+1( ) 
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Correctness of SAT_AF

1. Inside the loop it always holds Y SAT( ).

2. Substitute in SAT_AF

Y:=Y { s S | s s’ : s’ Y })

with

Y:=SAT( ) { s S | s s’ : s’ Y }

3. Note that SAT_AF( ) is calculating the least fixed point of

H(X) = [[ ]] { s S | s s’ : s’ X}

4. It follows from the previous theorem that AT_AF( )
terminates and computes [[AF ]]


