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Context

m Model checking CTL was relatively
because the truth of formulas depends

on the current state (CTL)
and not
on an execution path (LTL)
and not
on the tree of all executions (CTLY)

easy

m Next we concentrate on model checking LTL
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LTL: a recap
B Syntax

=T Ip[7ove | Xo | oUd

All other connectives can be written In
the above syntax
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LTL formulas as languages ()

m ¢ =GFp (infinitely often p)
The execution s; > s, > s; —> s, ... satisfies ¢ if it contains

infinitely many Sny» S, --- at which p holds. In between
there can be an arbitrary but finite number of state at which

—p holds. l
As a language ((—p)*.p)®

w-regular expressions
* = an arbitrary but finite number of repetitions
© = an infinite number of repetitions
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LTL formulas as languages(l|)

m 0 =FGp (Eventually always p)

m [he executions, > s, > s; —> s, ... satisfies
¢ If from a certain state onwards at all states

p holds.
5 B

m As m-regular expression (p + —p)*.p®
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Automata on finite words: a recap

m A non-deterministic finite automaton is a special kind of

transition systems for recognizing languages on finite
words

m NF-automaton A=<3X.S,—, |.F>

> finite alphabet

S finite set of states
—> <cSXXXS transition relation
| S initial states
FcS accepting states

m The language of an automaton A is
L(A) = {a,a,... a, €X* |3 5,25s,2>... Bs_e F with s, € [}
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Properties of finite languages

m [heorem: L(A X A,) = L(A;) nL(A,)
A X A, = <X,5,XS,,—, I1xl,,FxF,> where

<s,t>8 <g't'> iff s&,s'andt S, 1

m [heorem: L(A) = O is decidable

It is enough to find a path from an initial state
in | to a final state in F.
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Automata on infinite words: Buchi

m A Buchi automaton is a special kind of transition

systems for recognizing languages on infinite
words

m Buchi automaton A=<3X.S,—, |.LF>

> finite alphabet

S finite set of states
—> CSXXIXS transition relation
|l S Initial states
FcS accepting states
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Buchi automata

An infinite execution of a Buchi automaton A
S, N S, i S, iR S, .
Is accepted by A if
S, € |
there exists infinitely many i > 0 such that s, € F

m [he language of a Buchi automaton A is
L (A) = {aa,... X |3 s,258.%>... accepted by A}

6/9/2008
2’9/‘9;1;,: Slide 9 Leiden Institute of Advanced.Cp_r__ﬁputer Science




m abcccccccce... accepted

m abcbcbcbcb...  accepted
m abcbbbbbbb... rejected
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Properties of infinite languages

m [heorem: L (A®A,) =L, (A) L, (A,)
A ®A,=<Z,5,xS,x{1,2},—,l,xI,x {1},FxS,x{1}>
where <s,t,i> & <g' t'j> iff
s 8. s’and t 3, t' and i=j unless
iI=1and s € F, in which case j = 2, or

i=2 and t € F, in which case j =1.

m [heorem: L (A) = < is decidable

It is enough to find a path from an initial state s € [ to a final statet € F
such that t has a path to t itself.
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Transition systems and

Buchi automata

m Any transition systems M = <5,-»,,5,> with a
labelling function ¢:S — 2P™P can be seen as a
Buchi automata A,,- < Z,5,—, |,F> where

>, = 2Prop assignment of truth values to propositions
(i.e. valuations)

S same states

s tiffs >t anda = /(s) transition relation

| = {S;} same initial state

F=S every state is final
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Example
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LTL and Buchi automata

m  An LTL formula denotes a set of infinite traces which satisfy
that formula

m A Buchi automaton accepts a set of infinite traces

m Theorem: Given an LTL formula ¢, we can build a Buchi
automaton

A, =<3%,8,-,F>

where X =2PP consists of the subsets of (possibly negated)
atomic propositions (i.e. valuations), which accepts only and
all the executions satisfying the formula ¢.
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Example (1)
m ¢ =Fp eventually p

Ay =
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Example (2)

m 0=pUqg puntilqg
Ay =
P.q
\ @’ p@n
o(
P.q
q
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LTL and Buchi automata

m Not every Buchi automaton is an LTL
formula:

P
el

P

%,

“p holds on every odd step”
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Model checking LTL:the idea

m Let ¢ be an LTL formula and M,s be a transition
system specifying the behavior of a system

A, corresponds to all allowable behavior of the system
A,, corresponds to all possible behavior of the system
(all infinite paths of M that are potentially interesting)

To see whether a system satisfies a specification
we need to check if every path of Ay is in A,

- .

Lo(Am) < Lo(Ay)
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Model checking LTL

m [0 check set inclusion note that

BcAsB N A=Y

m  Further, L (A,) =L, (A_,)thus

Every possible path is allowable
IS equivalent to say that
there is no path that is possible and not allowable

thatis M,sk¢ ifandonlyif L, (Ay)NL,(A,)= O

()
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The method

m Problem: MskE ¢ ?

Construct a Buchi automaton A_, representing
the negation of the desired LTL specification ¢

Construct the automaton A,, representing the
system behavior

Construct the automaton Ay ® A_,
Check if L, (Ay ® A ) =D
If yes then M,s E ¢
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Example (1)

m Specification: ¢ = G(p = XFq)
Any occurence of p must be followed (later) by an
occurrence of q

B —0=F(p A XG—Q)

there exist an occurrence of p after which q will
never be encountered again

A=
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Example (2)

m [he system: M =

Q)

and its Buchi automaton A,
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Example: (3)

m The productA_, ® Ay
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Example: (4)

" LA, ®A)=07

There is a path starting from <s,t,1> that

passes infinitely often through the final states
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Example: (5)

m Since L(A_, ® A is not empty
M,s # G(p = XFq)

The counterexample is given by the path
tot Lttt ttot tto. ..
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From LTL to Buchi automata

m General approach:
Rewrite formula in normal form

Translate formula into generalized Buchi
automata

Turn generalized Buchi automata into
ordinary Buchi automata
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Normal form

m LTL formulas with the until operator U that may
contains also the next operators X

m Every formula ¢ can be converted into an equivalent
formula y in normal form expressing an infinite
behavior using equivalences such as:

T=TUT

P=pAXT

Fo=TU¢ Gop=LR¢
01RO= —(=0,1U—0,)
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Additional simplifications

m Use extra equivalences to reduce size of the
formula. For example:

6 = ¢

Xy Vv Xy = X(91V 95)
Xy A Xy = X(01 A §5)

Xo4U X, = X(94Ud,)
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Example:

m G(Fp = q) = G(—=Fp v q)
=1 R(=Fpvq)
=~ (=LU=(=(TUp)vQ))

BpA-Q=(PA-Q)AT
= (P A—Q) AXT
=(p A—q) A XGT
=(pA—=qQ)AX(TUT)
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Generalized Buchi Automata

m They differ from (normal) Buchi automata only in the
acceptance condition, which is a ‘set of acceptance sets’,

i.e. Fc2S

m The language of a generalized Buchi automaton
A=<2S -, |, F>is

L(A)= N {L(As) | F € Fand Ar = < =,8,—, |,F>}

that is, a path has to visit for each set of final states F € F
infinitely many times states from F.
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Example

m A generalized Buchi automaton:

m Every path of ¢c’s with either eventually one
a or eventually one b is accepted
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Generalized Buchi Automata

m A generalised Buchi automaton A=<%,5,—, 1, 7>
can be translated back into an ordinary Buchi
automata by taking the intersection of the automata
Ar=<2%,5,—, |,F>foreach F ¢ F.

m If 7 = then every infinite path is accepted.
m The ordinary Buchi automata of < £,5,—, |, J>is
<xS5,—>,1,S>
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Example (cont'd)

m [he translation of the previous automaton into
an ordinary Buchi automaton is
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Closure of a formula

m Given an LTL formula ¢ define its closure
Cl(¢) to be the set of subformulas v of ¢ and
of their complement.

¢ € Cl(¢)

v € Cl(¢) implies —y € Cl(d)

vV Y, € Cl(¢) implies yq,y, e Cl(¢)
Xy € Cl(¢) implies ¢ € Cl(¢)

v, Uy, € Cl(¢) implies y4,y, € Cl(¢)
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Constructing the automata A:states

m The states Sub(¢) of the automata are the maximal subsets
S of Cl(¢) that have no propositional inconsitency

Forally € Cl(¢), y e Siff wy ¢ S
If T € Cl(¢) then Te S

Vv, € Siffy, € Sory, € S, whenever y,v vy, € Cl(¢)

—(yqVv yy)e Siff vy, € Sand vy, € S, whenever —(y,v y,)e Cl(¢)
If w,Uy, € Sthenwy, e Sory, € S

If 2(y,Uy,) € Sthen 7y, € S

Intuition: y € S implies that y holds in S

O The initial states are those states containing ¢
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Example

m Cl(pUq) = {p,q,7p,™q, pUq, 7(pUQq) }

m Sub(pUq) = {{ p, q,pUq},
{p,7q,pUq},
{p,7q,7(pUQq)}
{7p.q, pUq}
{7p,7q, ~(pUQq)}}
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Constructing the automata: transitions

Define the transition relation by setting s & s’ iff
Xy € simpliesy € s
Xy € simplies "y € §
v,Uy, € sand y, ¢ simplies y,Uy, € §’
“(y4Uwy,)e s and y, € s implies 7(y,Uy,)e S’
a = set of all atomic propositions that hold in s

N.B.: Conditions 3. and 4. are there because

YUy, = gy v (yAX(yUyy))
v1Ry, = wo A (yy v X(yRy,))
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Constructing the automata: acceptance

m Foreach y,Uy, € Cl(¢) define the set of accepting states F, by
s e F, iff 7°(y;Uy,)esory,es
The above means that we only accept executions for which infinitely
many time 2(y; Uy,) v v, holds

m Intuition:

For each y;,Uy, € Cl(d) we have to guarantee that eventually v, holds.
Suppose we accept an execution for which only finitely many time
“(xUyi) v y; holds.

Then we can find a suffix such that =(y; Uy;) v y; will never hold, that
IS (y; Uy,) A y; will always hold.
Thus we have an execution for which our goal is not guaranteed
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Complexity

m A_, has size O(21%) in the worst case

m [he product A®B has size O(|A|x|B]|)

m \We can determine if there no acceptable
path in A®B in O(|A®B|) time

m [hus, model checking M,s E ¢ can be done
in O(|M[x 20¢l) time
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Example: pUq

m Cl(pUq) = {p, 7p, 9, 7q, pUqg, 7(pUq) }
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Example: pUq

m The previous automata is equivalent to

P.9
P,7q
P.q
P,7q
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Example Il

m Buchi automaton for atomic proposition p
P=pAX(TUT)=¢
Cl(¢p) ={p,7p, T,~T,TUT, 7(T U T), X(TUT),~X(TUT), ¢,"}
Sub(d) = {1,2,3} with
= 1={p, T, TUT, X(TUT), $ },
2 = {=p, T, TUT, X(TUT), ~¢}
= 3 ={p, T,TUT, "X(TUT), "¢}
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Example Il

m Buchi automaton for atomic proposition p
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