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Context

 Model checking CTL was relatively easy

because the truth of formulas depends

on the current state (CTL)

and not

on an execution path (LTL)

and not

on the tree of all executions (CTL*)

 Next we concentrate on model checking LTL
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LTL: a recap
 Syntax

::=  | p | ¬ | | X | U

All other connectives can be written in

the above syntax
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LTL formulas as languages (I)

 = GFp (infinitely often p)

 The execution s1 s2 s3 s4 … satisfies if it contains

infinitely many sn1
, sn2

, … at which p holds. In between

there can be an arbitrary but finite number of state at which

p holds.

As a language (( p)*.p)

-regular expressions

* = an arbitrary but finite number of repetitions

= an infinite number of repetitions
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LTL formulas as languages(II)

 = FGp (Eventually  always  p)

 The execution s1 s2 s3 s4 … satisfies

if from a certain state onwards at all states

p holds.

 As -regular expression (p + p)*.p
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Automata on finite words: a recap

 A non-deterministic finite automaton is a special kind of
transition systems for recognizing languages on finite
words

 NF-automaton A = < ,S, , I,F>
 finite alphabet 

 S finite set of states

 S x x S transition relation 

 I S initial states

 F S accepting states

 The language of  an automaton A is

L(A) = {a1a2... an * | s1 s2 … sn F with s1 I}
a3a2a1
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Properties of finite languages

 Theorem: L(A1x A2) = L(A1) L(A2)

A1x A2 = < ,S1xS2, , I1xI2,F1xF2> where

<s,t> <s‟,t‟>  iff  s 1 s‟ and t 2 t‟

 Theorem: L(A) = is decidable

It is enough to find a path from an initial state 

in I to a final state in F.

a a a
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Automata on infinite words: Buchi

 A Buchi automaton is a special kind of transition

systems for recognizing languages on infinite

words

 Buchi automaton A = < ,S, , I,F>

 finite alphabet 

 S finite set of states

 S x x S transition relation 

 I S initial states

 F S accepting states
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Buchi automata

An infinite execution of a Buchi automaton A 

s1 s2 s3 s4 … 

is accepted by A if 

 s1 I

 there exists infinitely many i > 0 such that si F

 The language of  a Buchi automaton A is

L (A) = {a1a2... | s1 s2 … accepted by A}

a3a2a1

a2a1
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Example 

 abcccccccc... accepted

 abcbcbcbcb... accepted

 abcbbbbbbb… rejected

s0
s1

b
a c

s2

c

b
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Properties of infinite languages

 Theorem: L (A1 A2) = L (A1) L (A2)

A1 A2=< ,S1xS2x{1,2}, ,I1xI2x {1},F1xS2x{1}>

where <s,t,i> <s‟,t‟,j>  iff  

 s 1 s‟ and t 2 t‟ and i=j unless 

 i=1 and s F1 in which case j = 2, or

 i=2 and t F2 in which case j =1.

 Theorem: L (A) = is decidable

It is enough to find a path from an initial state s I to a final state t F 

such that t has a path to t itself.

a

a a
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Transition systems and 

Buchi automata
 Any transition systems M = <S, M,s0> with a

labelling function :S 2Prop can be seen as a
Buchi automata AM = < ,S, , I,F> where

 = 2Prop assignment of truth values to propositions 
(i.e. valuations)

 S same states

 s t iff s M t  and a = (s) transition relation

 I = {s0} same initial state 

 F = S every state is final

a
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Example

 The system: M =

p
q

p
q

p
q

p
q

becomes the Buchi automaton p,q

p

p
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LTL and Buchi automata

 An LTL formula denotes a set of infinite traces which satisfy 
that formula

 A Buchi automaton accepts a set of infinite traces

 Theorem: Given an LTL formula , we can build a Buchi 
automaton 

A = < ,S, ,I,F>

where =2Prop consists of the subsets of (possibly negated)
atomic propositions (i.e. valuations), which accepts only and
all the executions satisfying the formula .
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Example (1)

 = Fp eventually p

A =

p,q
p

q
p,q

p

p,q
p

q
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Example (2)

 = p U q p until q

A =

p
p,q

q

p,q
p

q
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LTL and Buchi automata

 Not every Buchi automaton is an LTL 

formula:

p

p

“p holds on every odd step”
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Model checking LTL:the idea 

 Let be an LTL formula and M,s be a transition

system specifying the behavior of a system

 A corresponds to all allowable behavior of the system

 AM corresponds to all possible behavior of the system

(all infinite paths of M that are potentially interesting)

To see whether a system satisfies a specification

we need to check if every path of AM is in A

L (AM) L (A )
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Model checking LTL

 To check set inclusion note that

B A B  A = 

 Further, L (A ) = L (A ) thus 

Every possible path is allowable 

is equivalent to say that

there is no path that is possible and not allowable

that is M,s  if and only if L (AM) L (A ) =
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The method

 Problem: M,s  ?

1. Construct a Buchi automaton A representing 

the negation of the desired LTL  specification 

2. Construct the automaton AM representing the 

system behavior

3. Construct the automaton AM A

4. Check if L (AM A ) = 

5. If yes then M,s 
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Example (1)

 Specification: = G(p XFq)

Any occurence of p must be followed (later) by an
occurrence of q

 = F(p XG q)

there exist an occurrence of p after which q will
never be encountered again

 A =

s0 s1
p,q
p

q

p,q

p

p
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Example (2)

 The system: M =

p
q

and its Buchi automaton AM p,q
t0

t1

t2

t3
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Example: (3)

 The product A AM

p,qs0t01 s1t01

s1t12

s1t21
s1t32

s0t11

s0t21

s0t31

p,q

s1t02

s1t11

s1t22
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Example: (4)

 L(A AM) = ?

p,qs0t01 s1t01

s1t12

s1t21
s1t32

s0t11

s0t21

s0t31

p,q

s1t02

s1t11

s1t22

There is a path starting from <s0t01> that

passes infinitely often through the final states
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Example: (5)

 Since L(A AM) is not empty

M,s  G(p XFq)

The counterexample is given by the path

t0t1t2t3t0t1t2t0t1t2t0…
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From LTL to Buchi automata

 General approach:

Rewrite formula in normal form

Translate formula into generalized Buchi 

automata

Turn generalized Buchi automata into 

ordinary Buchi automata
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Normal form

 LTL formulas with the until operator U that may 

contains also the next operators X

 Every formula can be converted into an equivalent 

formula in normal form expressing an infinite 

behavior using equivalences such as:

 T = T U T

 p = p XT

 F = T U G = R

 1R 2= ( 1U 2)
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Additional simplifications

 Use extra equivalences to reduce size of the 

formula. For example:

 =

X 1 X 2 = X( 1 2)

X 1 X 2 = X( 1 2)

X 1U X 2 = X( 1U 2)
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Example:

 G(Fp q) = G( Fp q)

= R ( Fp q)

= ( U ( (T U p) q))

 p q = (p q) T

= (p q) XT

= (p q) XGT

= (p q) X(T U T)
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Generalized Buchi Automata

 They differ from (normal) Buchi automata only in the 

acceptance condition, which is a „set of acceptance sets‟, 

i.e.  2S

 The language of a generalized Buchi automaton 

A = < ,S, , I,  > is 

L(A) =  { L(AF) | F  and AF = < ,S, , I,F> }

that is, a path has to visit for each set of final states F 
infinitely many times states from F.
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Example

 A generalized Buchi automaton:

ca

 Every path of c‟s with either eventually one 

a or eventually one b is accepted

1
c

b

2

1,2

c

c
c
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Generalized Buchi Automata

 A generalised Buchi automaton A = < ,S, , I,  >  

can be translated back into an ordinary Buchi 

automata by taking the intersection of the automata 

AF = < ,S, , I,F> for each F .

 If  = then every infinite path is accepted.

 The ordinary  Buchi automata of < ,S, , I, > is 

< ,S, , I, S > 
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Example (cont‟d)

 The translation of the previous automaton into 
an ordinary Buchi automaton is

ac

b cc

c

c
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Closure of a formula

 Given an LTL formula define its closure
Cl( ) to be the set of subformulas of and 
of their complement.

 Cl( ) 

 Cl( ) implies Cl( ) 

 1 2 Cl( ) implies 1, 2 Cl( ) 

 X Cl( ) implies Cl( )

 1U 2 Cl( ) implies 1, 2 Cl( )
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Constructing the automata A :states

 The states Sub( ) of the automata are the maximal subsets 
S of Cl( ) that have no propositional inconsitency

1. For all Cl( ), S iff ¬ S

2. If T Cl( ) then T S 

3. 1 2 S iff 1 S or 2 S, whenever 1 2 Cl( )

4. ( 1 2) S iff ¬ 1 S and ¬ 2 S, whenever ( 1 2) Cl( )

5. If 1U 2 S then 1 S or 2 S 

6. If ¬( 1U 2 ) S then ¬ 2 S

Intuition: S implies that holds in S

 The initial states are those states containing  
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Example

 Cl(pUq) = {p,q,¬p,¬q, pUq, ¬(pUq) }

 Sub(pUq) = { { p, q,pUq},

{p,¬q,pUq},

{p,¬q,¬(pUq)}

{¬p,q, pUq}

{¬p,¬q, ¬(pUq)}}
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Constructing the automata: transitions

Define the transition relation by setting s s‟ iff

1. X s implies s‟

2. ¬X s implies ¬ s‟

3. 1U 2 s and 2 s implies 1U 2 s‟

4. ¬( 1U 2) s and 1 s implies ¬( 1U 2) s‟ 

5. a = set of all atomic propositions that hold in s 

N.B.: Conditions 3. and 4. are there because 

1U 2  2 ( 1 X( 1U 2))

1R 2 2 ( 1 X( 1R 2))

a
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Constructing the automata: acceptance

 For each iU i Cl( ) define the set of accepting states Fi by
 s Fi  iff  ¬( i U i) s or i s 

 The above means that we only accept executions for which infinitely 
many time ¬( i U i) i holds

 Intuition:
For each iU i Cl( ) we have to guarantee that eventually i holds.

1. Suppose we accept an execution for which only finitely many time
¬( iU i) i holds.

2. Then we can find a suffix such that ¬( i U i) i will never hold, that
is ( i U i) ¬ i will always hold.

3. Thus we have an execution for which our goal is not guaranteed
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Complexity

 A has size O(2| |) in the worst case

 The product A B has size O(|A|x|B|)

 We can determine if there no acceptable 

path in A B in O(|A B|) time

 Thus, model checking M,s   can be done 

in O(|M|x 2| |) time
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Example: pUq

 Cl(pUq) = { p, ¬p, q, ¬q, pUq, ¬(pUq) }

pUq

p,q

¬(pUq)
p,¬q

pUq

¬p,q
pUq

p,¬q

¬(pUq)

¬p,¬q

p,¬q

p,¬q

p,¬q

p,¬q

p,¬q
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Example: pUq

 The previous automata is equivalent to

p,¬q
p,q

¬p,q

p,q 

p,¬q

¬p,q

¬p,¬q
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Example II

 Buchi automaton for atomic proposition p 

 p = p X(T U T) = 

 Cl( ) = { p,¬p, T,¬T,TUT, ¬(T U T), X(TUT),¬X(TUT), ,¬ } 

 Sub( ) = {1,2,3} with 

 1 ={p,T,TUT, X(TUT), },

 2 = {¬p, T,TUT, X(TUT), ¬ }

 3 = {p, T,TUT, ¬X(TUT), ¬ }}
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Example II

 Buchi automaton for atomic proposition p

2

1

p

p

3

p

¬p

¬p
¬p


