

Program correctness

Axiomatic semantics

Marcello Bonsangue

Axiomatic Semantics

- We have introduced
 - □ a syntax for sequential programs
 - □ An operational semantics (transition system) for "running" those programs from a starting state. A computation may terminate in a state or run forever.

We would also like to have a semantics for reasoning about program correctness

Axiomatic semantics

- We need
 - □ A logical language for making assertions about programs
 - The program terminates
 - If x = 0 then y = z+1 throughout the rest of the execution of the program
 - If the program terminates, then x = y + z
 - ☐ A proof system for establishing those assertions

Why axiomatic semantics

- Documentation of programs and interfaces (Meyer's Design by Contract)
- Guidance in language design and coding
- Proving the correctness of algorithms
- Extended static checking
 - checking array bounds
- Proof-carrying code
- Why not testing?
 - Dijkstra: Program testing can be used to show the presence of bugs, but never to show their absence!

The idea

"Compute a number y whose square is less than the input x"

We have to write a program P such that

$$y^*y < x$$

But what if x = -4? There is no program computing y!!

The idea (continued)

"If the input x is a positive number then compute a number y whose square is less than the input x"

We need to talk about the states before and after the execution of the program P

$$\{x>0\}P\{y*y < x\}$$

The idea (continued)

If the command c terminates when it is executed in a state that satisfies ϕ , then the resulting state will satisfy ψ

program termination is not required

Examples

- $\blacksquare \models_{par} \{ y \le x \} z := x; z := z + 1 \{ y < z \} \text{ is valid}$
- ⊨_{par}{ true } while true do skip od { false } is valid
- Let Fact = y := 1; z := 0;
 while z ≠ x do
 z := z + 1;
 y := y*z
 od

Is
$$\models_{par} \{ x \ge 0 \}$$
 Fact $\{ y = x! \}$ valid?

Total correctness

If the command c is executed in a state that satisfies ϕ then c is guaranteed to terminate and the resulting state will satisfy ψ

program termination is required

Example

- $\blacksquare \models_{tot} \{ y \le x \} z := x; z := z + 1 \{ y < z \} \text{ is valid}$
- ⊨_{tot}{ true } while true do skip od { false } is not valid
- ⊨_{tot} { false } while true do skip od { true } is valid
- Let Fact = y := 1; z := 0;
 while z ≠ x do
 z := z + 1;
 y := y*z
 od

Is $\models_{tot} \{ x \ge 0 \}$ Fact $\{ y = x! \}$ valid?

Partial and total correctness: meaning

- Hoare triple for partial correctness $\vDash_{par} \{\phi\}$ c $\{\psi\}$ If ϕ holds in a state σ and $\langle c, \sigma \rangle \rightarrow \sigma'$ then ψ holds in σ'
- Hoare triple for total correctness $\vDash_{tot} \{\phi\}$ c $\{\psi\}$ If ϕ holds in a state σ then

 there exists a σ such that $\langle c, \sigma \rangle \to \sigma$ and ψ holds in σ
- To be more precise, we need to:
 - \Box Formalize the language of assertions for ϕ and ψ
 - □ Say when an assertion holds in a state.
 - ☐ Give rules for deriving Hoare triples

The assertion language

Extended arithmetic expressions

$$a := n | x | i | (a+a) | (a-a) | (a*a)$$

 $n \in N, x \in Var, i \in LVar$

Assertions (or extended Boolean expressions)

$$\phi ::= true \mid \neg \phi \mid \phi \land \phi \mid a < a \mid \forall i.\phi$$

i ∈ LVar

Program variables

- We need program variables Var in our assertion language
 - □ To express properties of a state of a program as basic assertion such as

$$x = n$$
 i.e. "The value of x is n"

that can be used in more complex formulas such as

$$x = n \Rightarrow y+1 = x^*(y-x)$$
 i.e. "If the value of x is n then that of $y + 1$ is x times $y - x$ "

Logical variables

- We need a set of logical variables LVar
 - □ To express mathematical properties such as
 ∃i. n = i * m i.e. "an integer n is multiple of another m"
 - □ To remember the value of a program variable destroyed by a computation

```
Fact2 \equiv y := 1;

while x \neq 0 do

y := y*x;

x := x - 1

od

\vdash_{par} \{x \geq 0\} Fact2 \{y = x!\} is not valid but

\vdash_{par} \{x = x_0 \land x \geq 0\} Fact2 \{y = x_0!\} is.
```


Meaning of assertions

- Next we assign meaning to assertions
 - Problem: "φ holds in a state σ" may depends on the value of the logical variables in φ
 - Solution: use interpretations of logical variables
 - Examples
 - z < x holds in a state σ :Var → N with σ(x) = 3 for all interpretations I:LVar → N of the logical variables such that I(i) < 3</p>
 - i < i+1 holds in a state for all interpretations</p>

Meaning of expressions

Given a state σ:Var → N and an interpretation I:LVar→N we define the meaning of an expression e as [[e]]I_σ, inductively given by

```
\square [[n]]I_{\sigma} = n
```

$$\square [[X]] I_{\sigma} = \sigma(X)$$

$$\square [[i]]I\sigma = I(i)$$

$$\Box$$
 [[a₁-a₂]]| σ = [[a₁]]| σ - [[a₂]]| σ

$$\Box [[a_1^*a_2]] | \sigma = [[a_1]] | \sigma * [[a_2]] | \sigma$$

Meaning of assertions

■ Given a state σ : Var \rightarrow N and an interpretation I:LVar \rightarrow N we define

$$\sigma, I \models \phi$$

inductively by

- $\Box \sigma, I \models true$
- $\square \sigma, I \models \neg \phi$ iff not $\sigma, I \models \phi$
- $\square \sigma, I \models \phi \land \psi$ iff $\sigma, I \models \phi$ and $\sigma, I \models \psi$
- $\square \sigma$, $I \models a_1 < a_2 \text{ iff } [[a_1]] | \sigma < [[a_2]] | \sigma$
- $\square \sigma, I \models \forall i. \phi$ iff $\sigma, I[n/i] \models \phi$ for all $n \in \mathbb{N}$

Partial and total correctness

Partial correctness: I ⊨_{par} {φ} c {ψ}

$$\forall \sigma \ (\sigma, I \vDash \phi \ \text{and} \ \langle c, \sigma \rangle \rightarrow \sigma') \Rightarrow \sigma', I \vDash \psi$$

■ Total correctness: $I \vDash_{tot} \{\phi\} \ c \{\psi\}$

$$\forall \sigma. \ \sigma, I \vDash \phi \Rightarrow \exists \ \sigma'. (\langle c, \sigma \rangle \rightarrow \sigma' \ and \ \sigma', I \vDash \psi)$$

where ϕ and ψ are assertions and c is a command

Validity

To give an absolute meaning to {i < x} x := x+3 {i < x} we have to quantify over all interpretations I

Partial correctness:

$$\models_{par} \{\phi\} \ C \ \{\psi\} \equiv \forall I. \ I \models_{par} \{\phi\} \ C \ \{\psi\}$$

Total correctness:

$$\models_{tot} \{\phi\} \ c \ \{\psi\} \equiv \forall I. \ I \models_{tot} \{\phi\} \ c \ \{\psi\}$$

Deriving assertions

We have the meaning of both

$$\models_{\mathsf{par}} \{\phi\} \ \mathsf{c} \ \{\psi\} \quad \mathsf{and} \quad \models_{\mathsf{tot}} \{\phi\} \ \mathsf{c} \ \{\psi\}$$

but it depends on the operational semantics and it cannot be effectively used

- Thus we want to define a proof system to derive symbolically valid assertions from valid assertions.
 - $\Box \vdash_{par} \{\phi\}c\{\psi\}$ means that the Hoare triple $\{\phi\}c\{\psi\}$ can be derived by some axioms and rules
 - □ Similarly for $\vdash_{tot} \{\phi\}c\{\psi\}$

Free and bound variables

A logical variable is bound in an assertion if it occurs in the scope of a quantifier

A logical variable is free if it is not bound

free
$$i + 100 < 77 \land \forall i. j+i = 3$$
bound

Substitution (I)

For an assertion φ, logical variable i and arithmetic expression e we define

$$\phi[e/i]$$

as the assertion resulting by substituting in ϕ the free occurrence of i by e.

Definition for extended arithmetic expressions

$$n[e/i] = n$$
 $(a_1+a_2)[e/i]=(a_1[e/i]+a_2[e/i])$
 $x[e/i] = x$ $(a_1-a_2)[e/i]=(a_1[e/i]-a_2[e/i])$
 $i[e/i] = e$ $(a_1^*a_2)[e/i]=(a_1[e/i]^*a_2[e/i])$
 $i[e/i] = i$

Substitution (II)

Definition for assertions

```
true[e/i] = true

(\neg \phi)[e/i] = \neg (\phi[e/i])
(\phi_1 \land \phi_2)[e/i] = (\phi_1[e/i] \land \phi_2[e/i])
(a_1 < a_2)[e/i] = (a_1[e/i] < a_2[e/i])
(\forall i. \phi)[e/i] = \forall i. \phi
(\forall j. \phi)[e/i] = \forall j. \phi[e/i] \quad j \neq i
```

Pictorially, if $\phi = ---i--i--i-$ with i free, then $\phi[e/i] = ---e--e-$

Proof rules partial correctness (I)

There is one derivation rule for each command in the language.

$$\square \{\phi\} \text{ skip } \{\phi\}$$

skip

$$\square \{\phi[a/x]\} x := a \{\phi\}$$

ass

Proof rules partial correctness (II)

$$\{\phi \land b\} c \{\phi\}$$

$$= ------ while$$

$$\{\phi\} while b do c od \{\phi \land \neg b\}$$

A first example: assignment

Let's prove that

$$\vdash_{par} \{true\} x:=1 \{x=1\}$$

Another example: assignment

- Prove that {true} x:= e {x=e} when x does not appear in e
 - 1. Because x does ot appear in e we have $(x=e)[e/x] \equiv (x[e/x]=e[e/x]) \equiv (e=e)$
 - 2. Use assignment + consequence to obtain the proof

Another example: conditional

■ Prove $\vdash_{par} \{true\} \underline{if} y \le 1 \underline{then} x := 1 \underline{else} x := y \underline{fi} \{x > 0\}$

An example: while

Prove $\vdash_{par} \{0 \le x\}$ while x>0 do x:=x-1 od $\{x=0\}$

We take as invariant $0 \le x$ in the while-rule

An example: while, again

Prove that $\{x \le 0\}$ while $x \le 5$ do x:=x+1 od $\{x=6\}$

1. We start with the invariant x < 6 in the while-rule

2. We finish with the consequence rule

$$\vdash x \leq 0 \Rightarrow x \leq 6 \quad \{x \leq 6\} \text{ while } x \leq 5 \text{ do } x := x+1 \text{ od } \{x \leq 6 \land x > 5\} \quad \vdash x \leq 6 \land x > 5 \Rightarrow x=6$$

 $\{x \le 0\}$ while $x \le 5$ do x:=x+1 od $\{x=6\}$

Auxiliary rules

They can be derived from the previous ones

- \Box $\{\phi\}$ C $\{\phi\}$ if the program variables in ϕ do not appear in C
- $\square \{\phi\} \ \mathsf{x} := \mathsf{a} \{\exists \mathsf{x}_0.(\phi[\mathsf{x}_0 / \mathsf{x}] \land \mathsf{x} = \mathsf{a}[\mathsf{x}_0 / \mathsf{x}])\}$

$$\begin{cases} \{\phi_1\} \ c \ \{\psi\} \\ \{\phi_2\} \ c \ \{\psi\} \end{cases}$$

$$\{\phi_1 \lor \phi_2\} \ c \ \{\psi\}$$

Comments on Hoare logic

- The rules are syntax directed
 - ☐ Three problems:
 - When to apply the consequence rule
 - How to prove the implication in the consequence rule
 - What invariant to use in the while rule
- The last is the real hard one
 - □ Should it be given by the programmer?

An extensive example: a program

```
DIV ≗
    q := 0;
    r := x;
    while r \ge y do
                 r := r-y;
                 q := q+1
    od
    We wish to prove
    \{x \ge 0 \land y > 0\} DIV \{q^*y + r = x \land 0 \le r < y\}
```