Spring 2008

Program correctness

Axiomatic semantics

Marcello Bonsangue

Leiden Inatlt ute of Advanced Cﬂmputer Science
Research & Educatio

Axiomatic Semantics

m We have introduced
a syntax for sequential programs

An operational semantics (transition system) for
‘running” those programs from a starting state. A
computation may terminate in a state or run forever.

m \We would also like to have a semantics for
reasoning about program correctness

6/9/2008
29’;‘@::14’: Slide 2 Leiden Institute of Advanced.Co_ﬁ_ﬁputer Science

Axiomatic semantics

m \We need

A logical language for making assertions about
programs
m The program terminates

m If Xx = 0 then y = z+1 throughout the rest of the execution of
the program

m If the program terminates, thenx =y + z

A proof system for establishing those assertions

6/9/2008
29’;‘@::14’: Slide 3 Leiden Institute of Advanced'(_ipﬁfnpu"ter Science

Why axiomatic semantics

m Documentation of programs and interfaces
(Meyer's Design by Contract)

m Guidance in language design and coding
m Proving the correctness of algorithms

m Extended static checking
checking array bounds

m Proof-carrying code

m \Why not testing?

Dijkstra: Program testing can be used to show the
presence of bugs, but never to show their absence!

6/9/2008

ap,j‘ggzé"; Slide 4 Leiden Institute of Advanced (_;omputer Science

The idea

“Compute a number y whose square is less than

the input x”

We have to write a program P such that

y*y < X

But what if x = -47
There is no program computing y!!

6/9/2008 —
2’@:—' ,,: Slide 5 Leiden Institute of Advanced ‘Gofﬂﬁlﬁter Science

The idea (continued)

“If the input x is a positive number then compute a
number y whose square is less than the input X

:

We need to talk about the states and
the execution of the program P

{x>0}P{y*y<x}

6/9/2008 =
e g
Leiden Institute of Advanced Gofﬁ[ﬁliﬁter Science

The idea (continued)

m Hoare triple for partial correctness

precondition I\‘ A/‘ postcondition
Fpar 10} C {y}

‘\‘ command

If the command ¢ terminates when it is executed in
a state that satisfies ¢, then the resulting state will
satisfy y

@m termination is not req@

6/9/2008 ;
29’;‘@::14’: Slide 7 Leiden Institute of Advancedrgpﬁ.'lp.uhter Science

Examples

mE dy<x}zi=xz:=z+1{y<z}isvalid

{ true } while true do skip od { false } is valid

par

mletFact=y:=1;,z:=0;
while z # x do
z:=z+1;

y =y'z
od

Is . {x20}Fact{y=x!}valid?

6/9/2008

a"wﬁéﬁﬁ’j Slide 8 Leiden Institute of Advanced.Computer Science

Total correctness

m Hoare triple for total correctness

precondition I\‘ A/‘ postcondition
':tot {(I)} C {\V}

‘\‘ command

If the command c is executed in a state that satisfies
¢ then c is guaranteed to terminate and the resulting
state will satisfy v

@gram termination is requireD

6/9/2008 ;
29’;‘@::14’: Slide 9 Leiden Institute of Advancedrgpﬁ.'lp.uhter Science

Example

mElYy<x}zi=xz:=z+1{y<z}isvald

m . { true } while true do skip od { false } is not valid

m =, { false } while true do skip od { true } is valid

mletFact=y:=1;,z:=0;
while z # x do
z:=z+1;

yi=yz

od

IsF,{x=20}Fact{y=x!}valid?
6/9/2008
29’;‘@::14’: Slide 10 Leiden Institute ofAdvancedEpu”cer Science

Partial and total correctness: meaning

m Hoare triple for partial correctness F__, {¢} c {y}

If ¢ holds in a state o and <c,o> — o’ then
v holds in o

m Hoare triple for total correctness F,, {¢} ¢ {w}

If ¢ holds in a state o then
there exists a o’ such that <c,0> — o’ and v holds in ¢

m [0 be more precise, we need to:
Formalize the language of assertions for ¢ and vy
Say when an assertion holds in a state.
Give rules for deriving Hoare triples

6/9/2008
29’;‘@::14’: Slide 11 Leiden Institute of Advanced'Co_lf;i_iputer Science

The assertion language

m Extended arithmetic expressions
a:=n|x|i|(a+ta)]| (a-a)| (a*a)
T

neN,xeVar,i e lLVar

m Assertions (or extended Boolean expressions)

¢ =true | =0 | oAd | a < a |Vi.p

| € LVar

6/9/2008
29’;‘@::14’: Slide 12 Leiden Institute of Advanced'(_ipﬁfnpu"ter Science

Program variables

m We need program variables Var in our assertion
language
To express properties of a state of a program as basic
assertion such as

X=n i.e. “The value of x is n”
that can be used in more complex formulas such as

X=n= y+1 = x*(y-x) i.e. “If the value of x is n then
thatof y + 1 is x times y - X"

6/9/2008
29’;‘@::14’: Slide 13 Leiden Institute of Advancedrcoﬂipu.ter Science

Logical variables

m \We need a set of logical variables LVar

To express mathematical properties such as
di.n=i*m i.e. “an integer n is multiple of another m”

To remember the value of a program variable destroyed
by a computation

Fact2 =

|=par{ x>0} Fact2 {y=x!}is not valid but
Foad X =Xg AX 20} Fact2 {y = xy! } is.

6/9/2008

it . id ti £Ad Ll Coutinasy 38
T Slide 14 Leiden Institute of Advance 7-0_1?;1_1puter cience

Meaning of assertions

m Next we assign meaning to assertions

Problem: “¢ holds in a state " may depends on
the value of the logical variables in ¢

Solution: use interpretations of logical variables

Examples

m z< Xxholds in a state ¢ :Var — N with o(x) = 3 for all
interpretations l:LVar — N of the logical variables
such that I(i) < 3

m i <i+1 holds in a state for all interpretations

3. PenC - Spring 2006 6/9/2008
59;‘9;1; Slide 15 Leiden Institute of Advanced.Co_ﬁ_ﬁputer Sciléice

Meaning of expressions

m Given a state o:Var - N and an interpretation
l.LVar—N we define the meaning of an expression e
as [[e]]lo, inductively given by

[N]]lo =n
[X]]lo = o(X)
[illo = (i)
[aitay]llc = [[a4]]llo H[[as]]lo
[a-asllc = [[a4]]lo - [[ay]]lo
[a"a]llc = [[aq]llc *[[aj]llc
FH AY 6/9/2008
2@’ Slide 16 Leiden Institute of AdvancediSOMPUIErScicn e

Meaning of assertions

m Given a state o : Var - N and an interpretation
I:LVar — N we define

ol FE ¢
inductively by

= true

= —0 Iff not o,l F ¢

= oAy iffolFEdand o,l F vy
= a, < a, iff [[a]]lo < [[a,]]lo

= Vi.p iffo,l[n/ilE ¢ foralln e N

6/9/2008
Leiden Institute of Advanced Computer Science

Partial and total correctness

m Partial correctness: | Fp,. {0} € {v}
Vo (o,lFdand<c,c> > o)= o, lF vy
m [otal correctness: | F {0} c {w}
Vo.o,lFd=>3d0c.(<Cc,6>—>c and ol F v)

where ¢ and y are assertions and c is a command

6/9/2008 ;
29’;‘@::14’: Slide 18 Leiden Institute of Advancedrgpﬁ.'lp.uhter Science

Validity
m To give an absolute meaning to

{i<x}x:=x+3{i<x}
we have to quantify over all interpretations |

m Partial correctness:

= par 10} € {W}

m [otal correctness:

VI T Egar {0} € {w}

|:tot {(I)} C {\V} Vil |:tot {(I)} C {\V}

6/9/2008 —
2’@:—' ,,: Slide 19 Leiden Institute of Advanced ‘(_Eofﬂlfiil'ter Science

Deriving assertions

m \We have the meaning of both

I:par{(l)} C {‘V} and |:tot {(I)} C {\V}

but it depends on the operational semantics and it
cannot be effectively used

m Thus we want to define a proof system to derive
symbolically valid assertions from valid assertions.

—oar 10}C{w} means that the Hoare triple {¢}c{w} can be
derived by some axioms and rules

Similarly for k., {¢}c{wy}

6/9/2008

C g Leiden Institute of Advanced Computer Science

‘vrd Slide 20 et

Free and bound variables

m A logical variable is bound in an assertion if it
occurs in the scope of a quantifier

Jd.Nn=1"m

m A logical variable is free if it is not bound
|+ 100 <77 AVi.j+i=3

free
bound

6/9/2008
29’;‘@::14’: Slide 21 Leiden Institute of Advancedrcoﬂipu.ter Science

Substitution (1)

m For an assertion ¢, logical variable | and
arithmetic expression e we define

olefi]
as the assertion resulting by substituting in ¢ the
free occurrence of i by e.

m Definition for extended arithmetic expressions

n[e/i] = n (a,+a,)[eli]=(a [e/i]*+a,[e/i])
X[e/i] = x (as-a,)[eli]=(a4[eli]-a,[eli])
) ife/i] = e (a,*a,)[eli]=(a,[e/i]*a,[ei])

jle/i] =]

6/9/2008

Cwowd Slide 22

Leiden Institute of Advanced Computer Science

Substitution (II)

m Definition for assertions

truele/i] = true
(—=d)efi] = —(¢[e/i])
(04 A §y)lefi] = (§4[efi] A ¢y[efi])
(a4 < a,)[eli] = (a4[e/i] < a,[eli])

m) (Vi.9)[efi] = Vi.d
(Vj.0)[eli] = Vj.¢[e/i] j#I

m Pictorially, if ¢ = ---i--i--I- with i free, then
o[eli] = ---e--e--e-

6/9/2008

Leiden Institute of Advance

d Computer Science

Proof rules partial correctness ()

m [here is one derivation rule for each
command in the language.

{0} skip {¢} skip

{¢[a/x]} x = a {¢} ass

{0} ci {v} {w}co{o}
{0} c4; C5 {0}

6/9/2008

Leiden Institute of Advanced Computer Science

Proof rules partial correctness (ll)

{d A b} cy{v} {d A =b} ¢y {y}

-- if
{¢} If b then c, else c, fi {y}

{¢ A b} c {0} _
...................................... while
{¢} while b do c od {$p A —b}

Fo=¢ {p}ciy} Fv =y
--- cons
{0} ¢ {v}

Leiden Institute of Advance

d Computer Science

A first example: assignment

m Let's prove that

= par {true} x:=1 {x=1}

{true} x:=1 {x=1}

E3 PenC - Spring 2006 6/9/2008
59;‘9;1; Slide 26 Leiden Institute of Advanced'Co_lf;i_iputer ScRgice

Another example: assignment

m Prove that {true} x:= e {x=e} when x does not appear
ine

1. Because x does ot appear in € we have
(x=e)[e/x] = (X[e/x]=e[e/x]) = (e=e)

2. Use assignment + consequence to obtain the proof

---------------------- ass
-true = e=e {e=e} x:=e {x=€}
cons
{true} x:=e {x=e}
Aak 6/9/2008
ey Leiden Institute of Advanced Co_li_iipu:cer Science

a%;‘@gﬂi Sllde 27

Another example: conditional

m Prove +__ {true} if y<1 then x:=1 else x:=y fi {x>0}

par{

---------------------- ass ASS --m-m-mmmmmmmm-

Hrue A y<1=1>0 {1>0} x:=1 {x>0} Htrue A y>1 =y>0 {y>0} x:=y
{x>0}

-- CONS === mm e

{true Ay <1} x:=1 {x>0} {true Ay >} x:=y {x>0}
-- if
{true} if y<1 then x:=1 else x:=y fi {x>0}

6/9/2008
29’;‘@::14’: Slide 28 Leiden Institute of Advanced.Cp_r__ﬁputer Science

An example: while

m Prove -, {0 < x} while x>0 do x:=x-1 od {x=0}

We take as invariant 0 < x in the while-rule

{x < 0} x>0 do x:=x-1 od {x=0}

6/9/2008
29’;‘@::14’: Slide 29 Leiden Institute of Advanced.Co_ﬁ_ﬁputer Science

An example: while, again

Prove that {x < 0} while x < 5 do x:=x+1 od {x=6}

1. We start with the invariant x < 6 in the while-rule

ass
FX<BAX<5=x+1<6 {x+1 < 6}x:=x+1 {x < 6}

{x <6 AXx <3} x=x+1{x <6}
while
{x < 6} while x < 5 do x:=x+1 od {x < 6 A x>5}

2. We finish with the consequence rule

FXx<0 = x<6 {x<6}whilex<5dox:=x+10d{x<6Ax>5} Fx<6AXx>5= x=6

{x < 0} while x < 5 do x:=x+1 od {x=6}

6/9/2008
29’;‘@::14’: Slide 30 Leiden Institute of Advanced.Co_ﬁ_ﬁputer Science

Auxiliary rules

m They can be derived from the previous ones

{¢} c {d} if the program variables in ¢ do not appear in c

{0} X 1= @ {Ixo-(9lxo /X] A X = A[xo/X])}

{04} C1{w} {02} Co{w}
{(b=¢)A(=b=¢,)} if b then c, else c, fi {y}

{¢4} c{v} {02} c{v}
{04 v &y} ¢ {w}

{01} c{wq} {d2} c{wy}
{01 A b} c{ygnyy}

6/9/2008

29’;‘@@]*: Slide 31 Leiden Institute of Advanced Computer Science

Comments on Hoare logic

m The rules are syntax directed

Three problems:
» When to apply the consequence rule
= How to prove the implication in the consequence rule
= What invariant to use in the while rule

m The last is the real hard one
Should it be given by the programmer?

V.ENN PenC - Spring 2006 6/9/2008
pj‘ég"s Slide 32 Leiden Institute of Advanced ?op‘fputer ScBhce

An extensive example: a program

DIV =
q:=0;
.= X;
while r >y do
r:=r-y;
q:=q+1

od

We wish to prove
Xx=20Ay>0}DIV{qg*y+tr=x A 0<r<y }

6/9/2008
29’;‘@::14’: Slide 33 Leiden Institute of Advanced'Co_lf;i_iputer Science

