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Complex Vector Spaces

Lecture 2

CCn as an example
• C 4 = C x C x C x C, the vectors of length 4

• E.g.

• Addition (V + W)[j] = V[j] + W[j]
– Commutative  V + W = W + V
– Associative (V + W) + X = V + (W + X)
– Zero vector  V + 0 = 0 + V = V
– (Additive) inverse or negative  W + (–W) = (–W) + W = 0
Set with these properties is called an Abelian group.
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Complex vector space

• Complex number c (a scalar)

• Multiplication of a scalar and a vector (c · V)[j] = c x V[j], 
where x is the complex multiply

• Properties
– 1 · V = V
– c1 · (c2 · V) = (c1 x c2) · V
– c · (V +W) = c · V + c · W
– (c1 + c2 )· V = c1 · V + c2 · V

An Abelian group with these properties is called a 
complex vector space.

Formal definition
A complex vector space is a nonempty set V, whose elements we call vectors,           

with three operations
– Addition: + : V x V → V
– Negation: – : V → V
– Scalar multiplication: · : C x V → V

and a distinguished element called the zero vector 0.

They must satisfy the following properties: 
i. Commutativity of addition: V + W = W + V
ii. Associativity of addition: (V + W) + X = V + (W + X)
iii. Zero is an additive identity: V + 0 = V = 0 + V
iv. Every vector has an inverse: V + (–V)= 0 = (–V) + V
v. Scalar multiplication has a unit: 1 · V = V
vi. Scalar multiplication respects complex multiplication: c1 · (c2 · V) = (c1 x c2) · V
vii. Scalar multiplication distributes over addition: c · (V +W) = c · V + c · W
viii. Scalar multiplication distributes over complex addition: (c1 + c2 )· V = c1 · V + c2 · V

Properties i, ii, iii, and iv: Abelian group;
all properties: complex vector space.

Real vector space

A real vector space is a nonempty set V, 
analogue to a complex vector space, but there is 
a scalar multiplication that uses R and not C, i.e.,

· : R x V → V.

This set and these operations must satisfy the 
analogous properties of a complex vector space. 

Cn

• Cn, the set of vectors of length n with complex 
entries, will be complex vector space that serves 
as primary example for the class.

• It is also a real vector space, because every 
complex vector space is also a real vector 
space.

• Rn, the set of vectors of length n with real 
entries, is a real vector space.
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Cm x n

• Cm x n, the set of all m-by-n matrices with complex 
entries, is a complex vector space.

• A    Cm x n

• Addition: (A + B)[j,k] = A[j,k] + B[j,k]
• Inverse: (–A)[j,k] = –(A[j,k])
• Scalar multiplication: (c · A)[j,k] = c x A[j,k]
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Operations on matrices
• The transpose of A, denoted AT, is defined as

AT[j,k] = A[k,j]

• The conjugate of A, denoted A, is defined as

A[j,k] = A[j,k] 

• Combined gives this the adjoint or dagger operation A†, 
defined as                                                      

A† = (A)T = (AT) or A†[j,k] = A[k,j]

Properties
• Transpose is idempotent: (AT)T = A
• Transpose respects addtion: (A + B)T = AT + BT

• Transpose respects scalar multiplication: (c · A)T = c · AT

• Conjugate is idempotent: A = A
• Conjugate respects addtion: A + B = A + B
• Conjugate respects scalar multiplication: c · A = c · A

• Adjoint is idempotent: (A†)† = A
• Adjoint respects addtion: (A + B)† = A† + B†

• Adjoint respects scalar multiplication: (c · A)† = c · A†

Matrix multiplication

• Matrix multiplication is a binary operation

* : Cm x n x Cn x p → Cm x p

• Formally

• When it is clear * will be omitted.
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Properties of matrix multiplication
• Associative: (A * B) * C = A * (B * C)

• In as unit: In * A = A = A * In with In identity matrix

• Distributes over addition: 
A * (B + C) = (A * B) + (A * C) 
(B + C) * A = (B * A) + (C * A)

• Respects scalar multiplication: 
c · (A * B)  = (c · A) * B = A * (c · B)

• Relates to the transpose: (A * B)T = BT * AT

• Respects the conjugate: A * B = A * B

• Relates to the adjoint: (A * B)† = B† * A†

• Note: commutativity is not a basic property!

• A complex vector space V with a multiplication * that satisfies the first four properties 
is called a complex algebra.

Complex subspace
• Given two complex vector spaces V and V’, we 

say that V is a complex subspace of V’ if V is a 
subset of V and the operations of V are 
restrictions of operations of V’.
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Linear map/operator/isomorphism

• Let V and V’ be two complex vector spaces. A linear map from V to V’ is 
a function f : V → V’ such that
– f respects addition: f(V1+V2) = f(V1) + f(V2)
– f respects the scalar multiplication: f(c·V) = c·f(V)

• A linear map from a complex vector space to itself is called an operator. 
If F(V) = A*V is an operator, we say that F is represented by A.

• Two complex vector spaces V and V’ are isomorphic if there is a one-to-
one linear map f : V → V’. Such a map is called an isomorphism. When 
two vector spaces are isomorphic, it means that the names of the
elements of the vector spaces are renamed but the structure of the two 
spaces are the same. Two such vector spaces are “essentially the 
same”.

Basis
• Linear combination:

V = c0 · V0 + c1 · V1 + · · · + cn-1 · Vn-1 .

• Linearly independent if
0 = c0 · V0 + c1 · V1 + · · · + cn-1 · Vn-1

implies that c0= c1= · · · = cn-1=0. 

Is equivalent that for any nonzero V there are unique coefficients 
c0, c1, · · · , cn-1 such that 

V = c0 · V0 + c1 · V1 + · · · + cn-1 · Vn-1 .

• A set B = {V0, V1, …, Vn-1} of vectors is called a basis of a 
(complex) vector space V if both
i. Every V can be written as a linear combination of vectors from B
ii. B is linearly independent.

Canonical or standard basis
• R3:

• Cn (and Rn):

• See book for matrices and others.
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Dimension

• Bases for R3, e.g.:

• For every vector space, every basis has the 
same number of vectors. This is called the 
dimension of the vector space.
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Transition matrix

• A change of basis matrix or a transition matrix
from basis B to basis D is a matrix MD←B such 
that for any vector V we have

VD = MD←B * VB

• Important example: Hadamard matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡
−

=

2
1

2
1

2
1

2
1

11
11

2
1H

Inner product
Inner product (or dot product or scalar product) on a complex vector 

space V is a function

satisfying the following conditions

i. Nondegenerate

ii. Respects addition

iii. Respects scalar multiplication

iv. Skew symmetric
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Examples

See book for other examples
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Norm or length

Norm or length is a function  
defined as 

i. Norm is nondegenerate:
ii. Norm satisfies the triangle inequality:
iii. Norm respects scalar multiplication:

RV →:   

VV,V =
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Distance function

Distance function is a function
where

i. Distance is nondegenerate:

ii. Distance satisfies the triangle inequality:

iii. Distance is symmetric:
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Orthogonal and orthonormal basis

• Orthogonal basis B = {V0,V1,…,Vn-1}:

• Orthonormal basis B:

0, implies  ,orthogonal  pairwise  vectors =≠ kj VVkj

Not orthogonal Orthogonal but 
not orthonormal

Orthonormal

1 norm of is vector basisevery  and orthogonal
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Hilbert space

• A Hilbert space is a complex inner product space 
that is complete (for definition see book).

• Every finite-dimensional complex vector space 
with an inner product is automatically a Hilbert 
space.

Errata chapter 2

All errata:
http://www.cambridge.org/resources/0521879965/7337_Errata.pdf

This link will be available soon on the QC-webpage.
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Reading

• This lecture: Ch 2.1-2.4, p 29-60.

• Next lecture: Ch 2.5-2.7 & (start of) Ch 3.


