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Math background

The Leap from Classical to 
Quantum

Lecture 3

Eigenvalues and eigenvectors

• For a matrix A in Cm x n, if there is a number c
in C and a vector V ≠ 0 within Cn such that 
AV = c·V, then c is called an eigenvalue of A
and V an eigenvector of A associated with c.

• Some matrices have many eigenvalues and 
eigenvectors and some matrices have none.

Eigenspace
• If A has eigenvalue c0 with eigenvector V0, then for any c C we 

have 
A(cV0) = cAV0 = cc0V0 = c0(cV0)

which shows that cV0 is also an eigenvector of A with eigenvalue c0.

• If cV0 and c’V0 are two such eigenvectors, then because of

A(cV0+ c’V0) = AcV0+A c’V0 = cAV0+ c’AV0

= c(c0V0) + c’(c0V0) = (c + c’)(c0V0) = c0(c+c’) V0

we see that the addition of two such eigenvectors is also an 
eigenvector.

• Therefore, every eigenvector determines a complex subvector space 
of the vector space. It is known as the eigenspace associated with the 
given eigenvector.

∈

Hermitian matrices
• An n x n matrix A is called hermitian if A† = A. In other words A[j,k] = A[k,j].

• If A is a hermitian matrix then the operator that it represents is called self-adjoint.

• If A is a hermitian n x n matrix, we have <AV,V’> = <V,AV’>.

• If A is hermitian, then all eigenvalues are real.

• For a given hermitian matrix, distinct eigenvectors that have distinct eigenvalues are 
orthogonal.

• A diagonal matrix is a square matrix whose only nonzero entries are on the diagonal. 
All entries off the diagonal are zero.

• Every self-adjoint operator A on a finite-dimensional complex vector space V can be 
represented by a diagonal matrix whose diagonal entries are the eigenvalues of A, 
and whose eigenvectors form an orthonormal basis for V (we call this basis an 
eigenbasis).

• With every physical observable of a quantum system there is a corresponding 
hermitian matrix. Measurements of the observable always leads to a state that is 
represented by one of the eigenvectors of the associated hermitian matrix.

Unitary matrices

• An n x n matrix U is called unitary if U * U† = In.

• Unitary matrices preserve inner products <UV,UV’> = <V,V’>.

• Unitary matrices preserve distances d(UV1,UV2) = d(V1,V2). An operator 
that preserves distances is called an isometry.

• If U is unitary and UV = V’, then we can easily form U† and by multiplying 
both sides we get U† UV = U†V’ or V = U†V’. In other words U† can 
“undo” the action that U performs. In the quantum world all actions (that 
are not measurements) are “undoable” or “reversible”.

Tensor product

• Most difficult, most 
essential subject!

• Tensor product of 
vectors
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Separable versus Entangled
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Tensor product of two matrices
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The Leap from Classical to 
Quantum

Classical Deterministic Systems

60

1053453

21 12

• 6 vertices in a graph
• 27 marbles

• X = [6,2,1,5,3,10]T

• 6 vertices in a graph
• 27 marbles

• X = [5,5,0,2,0,15]T

Classical Deterministic Systems

50

1550423

51 02

Dynamics
• arrow from vertex i to vertex j: in one time click all marbles on 

vertex i will shift to vertex j

• Boolean adjacency matrix M
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(see later)
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Dynamics (cont’d)
• In general: 

Mk[i,j] = 1 if and only if there is a path of length k from    
vertex j to vertex i.

• In Quantum Computing we start with an initial state (vector of 
numbers), the “input” of the system. Operations correspond with 
multiplying the vector with matrices. The “output” is the state of the 
system when all operations are carried out.

• Summing up:
– The states of a system correspond to column vectors (state vectors).
– The dynamics of a system correspond to matrices.
– To progress from one state to another in one time step, one must

multiply the state vector by a matrix.
– Multiple step dynamics are obtained via matrix multiplications.

Probabilistic systems
• Quantum mechanics:

– Inherent indeterminacy in knowledge of a state
– States change with probabilistic laws
– States transfer with a certain likelihood.

• Instead of many marbles, just look at one:
– X = [1/5, 3/10, 1/2]T corresponds with

• 1/5 chance that marble is on vertex 0
• 3/10 chance that marble is on vertex 1
• 1/2 chance that marble is on vertex 2
• sum must be 1.

Modified dynamics

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0

0
matrix Adjacency 

3
1

3
2

6
1

2
1

3
1

6
5

6
1

M

2

0 1

1/3

1/6

1/62/3

5/6

1/2

1/3
doubly stochastic: ∑rows =1 and ∑columns=1

1 at timey probabilit is    
 at timey probabilit is    

0

0

36
6
36
9
36
21

3
2
6
1
6
1

3
1

3
2

6
1

2
1

3
1

6
5

6
1

+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

tY
tX

YMX

Symmetry
• Multiplication also on the left of a matrix with a row vector (=state vector):
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multiply on the right of M takes states from time t to time t+1

multiply on the left of M takes states from time t to time t-1
time symmetry
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M2[i,j] = the probability of going from 
vertex j to vertex i in 2 time clicks.

In general for each positive integer k, we have Mk[i,j] = the 
probability of going from vertex j to vertex i in k time clicks.
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The stochastic billiard ball
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start single marble in vertex 0: [1,0,0,0]T

after one time click: [0,1/2,1/2,0]T

after another time click: [1/2,0,0,1/2]T

marble acts like a billiard ball that 
bounces back and forth between vertices 
1,2 and 0,3

quantum version will follow
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Probabilistic double-slit experiment (I)
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bullet always through one of the two slits

50% chance through top slit, 50% chance through bottom slit

three targets after each slit that can be hit with equal probability

one time click to a slit, one to a target

Probabilistic double-slit experiment (II)
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Probabilistic double-slit experiment (III)
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B2 probabilities of bullet’s position after two time ticks

Sure that we start with bullet in position 0: 
X = [1,0,0,0,0,0,0,0]T

After two time clicks:                                 
B2X = [0,0,0,1/6,1/6,1/3,1/6,1/6]T

B2[5,0] = 1/6 + 1/6 = 1/3, what we expect.

In QM strange things……

Summarizing
• The vectors that represent states of a probabilistic 

physical system express a type of indeterminacy about 
the exact physical state of the system.

• The matrices that represent the dynamics express a type 
of indeterminacy about the way the physical system will 
change over time. Their entries enable us to compute 
the likelihood of transitioning from one state to the next.

• The way in which the indeterminacy progresses is 
simulated by matrix multiplication, just as in the 
deterministic scenario.

Quantum Systems

• QM: weight is not a real number p
between 0 and 1, rather a complex 
number c such that |c|2 is a real number 
between 0 and 1.

• Real number probabilities can only 
increase when added; complex numbers 
can cancel each other and lower their 
probability. This is called interference.
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States and Graphs
• States: not sum of entries, but the sum of the modulus squared 

should be 1.

• Graphs: not with real number weights, but with complex number 
weights. Adjacency matrix not double stochastic, but unitary.
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If U is the matrix that takes a state from time t to time t+1,

then U† is the matrix that takes a state from time t to time t-1.

V → UV → U†UV = I3V = V

“undo” the operation

The quantum billiard ball
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other paths cancel each other out (interference)
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Double-slit experiment (I)

photons follow laws of quantum physics

each slit has a 50% chance of the photon’s passing through it

three measuring devices after each slit

one time click from laser to wall, one from wall to measuring devices
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Double-slit experiment (II)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−−

+−−

−−

+−

1000000
0100000
001000
0001000
0000100
0000000
0000000
00000000

6
1

6
1

6
1

6
1

6
1
6

1
2

1
2

1

i

i

ii

i

i

P0 5

2

1

6

4

7

3

1/√2

1/√2

(-1+i)/√6

1

1

1

1

1

(-1-i)/√6

(1-i)/√6

(-1-i)/√6

(-1+i)/√6

(1-i)/√6

not unitary: many other paths

Double-slit experiment (III)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−−

+−−

−−

+−

1000000
0100000
001000
0001000
0000100
0000000
0000000
00000000

6
1

6
1
6

1
6

1
6

1
6

1
2

1
2

1

i

i

ii

i

i

P [ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1000000
0100000
001000
0001000
0000100
0000000
0000000
00000000

,

3
1
3
1
3
1

3
1
3
1
3
1

2
1
2
1

2jiP

exactly the same as with bullets: nothing 
strange happens after one time click.
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Double-slit experiment (IV)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−

−−−−

+−−

−−−−

+−+−

100000
010000
001000
000100
000010
00000000
00000000
00000000

6
1

12
1

6
1

12
1

6
1

6
1

6
1

12
1

6
1

12
1

2

ii

ii

ii

ii

ii

P [ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000
010000
001000
000100
000010
00000000
00000000
00000000

,

3
1

6
1

3
1

6
1

3
1

3
1
3
1

6
1

3
1

6
122 jiP

Almost exactly as B2, but one glaring 
difference: B2[5,0] = 1/3, but |P2[5,0]|2 = 0

Explanation

• Interference: waves?

• However, experiment can be done with a single 
photon: interference!

• Superposition: all positions simultaneously!

• Measurement: no longer superposition, but 
collapse to a single classical state.

Review
• States in a quantum system are represented by column vectors of 

complex numbers whose sum of moduli squared is 1.

• The dynamics of a quantum system is represented by unitary 
matrices and is therefore reversible. The “undoing” is obtained via 
the algebraic inverse, i.e., the adjoint of the unitary matrix 
representing forward evolution.

• The probabilities of quantum mechanics are always given as the 
modulus square of complex numbers.

• Quantum states can be superposed, i.e., a physical system can be
in more than one basic state simultaneously.

Errata

All errata:
http://www.cambridge.org/resources/0521879965/7337_Errata.pdf

This link can be found on the QC-webpage.

Reading

• This lecture: Ch 2.5-2.7 & Ch 3.1-3.3, p 60-97.

• Next lecture: Ch 3.4 & (start) Ch 4.


