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Assembling Quantum Systems

Architecture

Lecture 5

Two particles moving in a one-dimensional grid: first particle on {x0, x1, …, xn-1}, 
the second particle on {y0, y1, …, ym-1}.

Assembling Quantum States
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Assume we have two independent quantum systems Q and Q’, represented 
respectively by the vector spaces VV and VV’’. The quantum system obtained by 
merging Q and Q’ will have the tensor product V V and VV’’ as a state space.

We can assemble as many systems as we like:

n x m possible basic states:

, meaning the first particle is at x0, and the second particle at y0.

, meaning the first particle is at xn-1 and the second at ym-1.
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Assembling (cont’d)
• Generic state vector:

which is a vector in the (n x m)-dimensional complex space CCnxm.

• The quantum amplitude |ci,j| squared is the probability of finding the 
two particles at positions xi and yj.

• Example:

• What is probability of finding first particle at x1 and second one at y1?
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Assembling (cont’d)
• Entanglement:

– The basic states of the assembled system are just the tensor product of basic 
states of its constituents.

– Each generic state vector can be rewritten as the tensor product of two states, 
coming from one subsystem and a second one? NOT TRUE

• Example: simplest two-particle system, where each particle is allowed only in 
two points. Consider the state

In order to clarify what is left out, we might write this as

• Can we write this as the tensor product of two states coming from two 
subsystems? 1st particle                            , 2nd particle
Tensor product

• No solution: |ψ> cannot be written as a tensor product.
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Assembling: Entanglement
• What does it physically mean?

• First particle 50-50 chance of being in x0 or x1.

• If in x0? Term                      has coefficient 0, so no chance that second 
particle in y1. We must conclude that it can only be found in y0.

• Similarly, if first particle in x1, second one must be in y1.

• Symmetrical with respect to the two particles: the same if we measure 
second particle first.

• The individual states of the two particles are intimately related to each other, 
or entangled.

• Amazing: the xi’s can be light years away from the yi’s!

• Sharp contrast: no clue
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Separable states

Entangled states

Assembling: spin systems
• Law of conservation of spin: in an isolated system the total amount 

of spin must stay the same.

• Fix on the z-direction and corresponding spin basis: up and down. 

• Consider a composite particle, whose total spin is zero.

• This particle might split up into two particles that do have spin:
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Assembling: spin systems (cont’d)
• Spin states of the two particles will be entangled.
• Spin of total system zero → sum of the spins of the two particles must 

cancel each other out:
– Measure spin of left particle along z axis |↑L> → spin of right particle |↓R>
– Similarly, |↓L> → |↑R> 

• Basis left particle BL={|↑L>, |↓L>}, basis right particle BR={|↑R>, |↓R>}, so 
basis of total system

• Entangled particles are described by

• Combinations             and              cannot occur because of the law of 
conservation of spin.

• Measuring left particle: if it collapses to |↑L> then instantaneously right 
particle collapses to |↓R>, even if the particle is millions of light years 
away.

• Entanglement plays role in: algorithms, cryptography, teleportation, 
and decoherence.
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Assembling systems

Summarizing:

– We can use the tensor product to build complex 
systems out of simpler ones.

– The new system cannot be analyzed simply in terms 
of states belonging to its subsystems. An entire set of 
new states has been created, which cannot be 
resolved into their constituents.

Architecture

Bits and qubits
• A bit is a unit of information describing a two-dimensional 

classical system.
• A bit is away of describing a system whose set of states 

is of size 2, usually written as 0 and 1, or F and T, etc.
• By matrices:

• In a classical world: either in state |0> or in state |1>; in a 
quantum world this is not sufficient: a quantum system 
can be in state |0> and in state |1> simultaneously.

• A quantum bit or a qubit is a unit of information 
describing a two-dimensional quantum system.
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Qubits: representation
• Representation of a qubit where |c0|2+|c1|2=1

• |c0|2 is the probability that after measuring the qubit, it will be found 
in state |0>, while |c1|2 is the probability that it will be in state |1>

• Canonical basis of CC2: 
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Qubits: denotations and 
implementations
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Several ways of denoting qubits

Examples of qubit implementations (see chapter 11)

• An electron in an atom might be in one of two different energy levels 
(ground state and excited states).

• A photon might be in one of two polarized states.

• A subatomic particle might have one of two spin directions.

There will be enough quantum indeterminacy and quantum superposition 
effects within all these systems to represent a qubit.
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Qubits: more than 1 bit
• Only one bit of storage not very interesting. Consider a byte or eight 

bits 01101011
• Following the preceding method of describing bits

• To combine quantum systems one should use tensor products

• This is an element of 

• This vector space may be denoted as (CC2)  8. This is a complex 
vector space of dimension 28=256, isomorphic to CC256.

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
1
0

  ,
1
0

  ,
0
1

  ,
1
0

  ,
0
1

  ,
1
0

  ,
1
0

  ,
0
1

〉⊗〉⊗〉⊗〉⊗〉⊗〉⊗〉⊗〉 1 0 0 1 0 1 1 0

22222222 CCCCCCCC ⊗⊗⊗⊗⊗⊗⊗

⊗

Qubyte
• Another description: a 28=256 row vector

• Classical world: indicate the state of each bit of a byte → eight bits.
• Quantum world: a state of eight qubits is given by writing 256 complex 

numbers.
• A 64-qubit register: 264 = 18,446,744,073,709,551,616 complex numbers.
• Exponential growth: thought to the notion of quantum computing.
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Two-qubit system
• Qubit pair:
• Tensor product clear:
• Another way:  

• A general state of a two-qubit system:

• Tensor product of two states not commutative:

• Entangled states:

10or  10 ⊗⊗

01or  1,0,10
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Classical gates: NOT

NOT gate
– Input 1 bit or a 2x1 matrix
– Output 1 bit or a 2x1 matrix
–
– Consider the matrix

0 equals 1 of NOT and 1 equals 0 of NOT
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Classical gates: AND

AND gate
– Input 2 bits, output 1 bit, so a 21-by-22 matrix
– Consider the matrix
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NONSENS! Only classical 
states, i.e. columns matrices 
with a single 1 entry and all 
other entries 0. Later more……

Classical gates: OR

OR gate

– Consider the matrix
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Classical gates: NAND

NAND gate

– Special importance because every logical gate can be 
composed of NAND gates.

– NAND = AND followed by NOT
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Sequential operations

A B = B * A B A

Convention: computation flows from left to right, 
so A followed by B shall be denoted as

A B

A nm

m input bits and n output bits

A will be of size 2n-by-2m

A nm B p

B*A is a (2p-by-2n)*(2n-by-2m)= (2p-by-2m) matrix

Parallel operations
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Parallel operations: example
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Example DeMorgan’s laws
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Reading

• This lecture: Ch 4.5 & Ch 5.1-5.2, p 132-151.

• Next lecture: Ch 5.3-5.5


