

- Bob cannot write what was on the board
- Erasing not reversible

Landauer's principle (IV)

- Erasing information is an irreversible, energy-dissipating operation.
- Charles H. Bennett in 1970s: if erasing information is the only operation that uses energy, then a computer that is reversible and does not erase would not use any energy → reversible circuits and programs.

Fredkin gate										
Fredkin gate is also universal:										
 the top input is the control input 										
$ 0, y, z \rangle \rightarrow 0, y, z \rangle$ and $ 1, y, z \rangle \rightarrow 1, z, y \rangle$										
$ x\rangle$	$ \dot{x}\rangle$		000	001	010	011	100	101	110	111
		000	1	0	0	0	0	0	0	0
		001	0	1	0	0	0	0	0	0
y)	$ y\rangle$	010	0	0	1	0	0	0	0	0
<u> </u>	< <u>→ →</u>	011	0	0	0	1	0	0	0	0
		100	0	0	0	0	1	0	0	0
		101	0	0	0	0	0	0	1	0
z)	z')	110	0	0	0	0	0	1	0	0
×		111	- 0	0	0	0	0	0	0	1]

Bloch sphere: higher dimensions

- Valuable tool for understanding qubits and onequbit operations.
- For *n*-qubits there is a higher-dimensional analog of the sphere.
- Research challenge: visualizing what happens when we manipulate several bits at once.
- Entanglement lies beyond the scope of the Bloch sphere.

Universal quantum gates • Universal logical gates can simulate every logical circuit: – {AND, NOT} gates – NAND gate • Universal reversible gates: – Toffoli gate – Fredkin gate • Universal quantum gates: – {H, CNOT, R(cos⁻¹(3/5))}

• See book for "proofs".

No-Cloning Theorem (cont'd)

- What about the fanout gate? The Toffoli and Fredkin quantum gates can mimic the fanout gate.
- Fredkin gate: $(x, 1, 0) \mapsto (x, \neg x, x)$ Cloning?
- Assume *x* input is superposition $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$, while leaving *y* = 1 and *z* = 0.
- This corresponds to the state $\begin{bmatrix} 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}^{T}$

Reading

- This lecture: Ch 5.3-5.4.
- Next lecture: Ch 6.1-??.