Architecture

Reversible Gates

Quantum Gates

Lecture 6

Reversible Gates

* In quantum world all operations that are not
measurements:
— reversible
— represented by unitary matrices
— e.g., AND gate are not reversible
NOT gate and identity gate are reversible

» Today’'s computers lose energy and generate
heat. In 1960s Rolf Landauer showed:

— Erasing information causes energy loss and heat
— Writing information not

Landauer’s principle

Landauer’s principle (1)

Intuition (not completely correct): tub of water

No state

-_’ I_. In state |0> and in state |1>

State |0> dissipating
and creating energy

Landauer’s principle (Il)
| ‘ | --_| -|| ! | | Reversibility of writing

-—l -| || ' I Irreversibility of erasing

Landauer’s principle (1l1)

« Intuition with two people, Alice and Bob

« Writing
— Alice writes letter on empty blackboard
— Bob walks into the room
— Bob erases the letter
— Blackboard in its original state
— Writing is reversible

« Erasing
— Blackboard with writing on it
— Alice erases the board
— Bob walks into the room
— Bob cannot write what was on the board
— Erasing not reversible

Landauer’s principle (1V)

+ Erasing information is an irreversible,
energy-dissipating operation.

* Charles H. Bennett in 1970s: if erasing
information is the only operation that uses
energy, then a computer that is reversible
and does not erase would not use any
energy — reversible circuits and
programs.




Reversible gates: controlled-NOT gate
+ ldentity gate
* NOT gate

+ Controlled-NOT gate:

Reversible gates: Toffoli gate
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Top input is control bit:
« if [x>=0 then bottom output of |y> will be the same as the input

« if [x> =1 then the bottom output will be the opposite

Controlled-NOT gate can be reversed by itself

Similar to the controlled-NOT gate, but with two controlling bits:

« the bottom bit flips only when both of the two top bits are in state |1>.

+ can be written as |z® (x A y))
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Toffoli gate (cont’d)

« Toffoli gate is universal: with copies one can make any logical gate.
* You can make a reversible computer using only Toffoli gates.

« In theory this computer will neither use any energy nor give off any

Fredkin gate

» Fredkin gate is also universal:
— the top input is the control input

- 10,y,z>—10,y,z>and [1,y,z> — |1, z, ¥
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Fredkin gate (cont'd) Quantum gates
Universal: « A quantum gate is an operator that acts on qubits. Such operators
will be represented by unitary matrices.
ki ki ki ¥ - (ap )
+ Examples: identity operator /, the Hadamard gate Hz.: J,r, the NOT
gate, the controlled-NOT gate, the Toffoli gate, and the Fredkin gate.
9 [xA2) £] [ + Pauli matrices:
01 0 —i 1 0
X =0,=NOT= Y=0,=|. Z=0,=
o Yool o] zmerls
2 [=x)~2) 9 %) +  Other important matrices:

AND gate NOT gate
Both the Toffoli and the Fredkin gates are universal.
Not only are both reversible gates, their matrices
are also unitary.

10 1 0
= T=
S {o i} {0 e"”"}

» Several relations between these operators (see book)




Square root of NOT gate

. ) 111 -1
* Matrix representation: vNOT =—
P ﬁ[l 1}

« Not its own inverse: VNOT # YNOT*

* Reason for name:
— Put qubits |0> and |1> through YNOT gate twice:

M*M:(M)Z[‘j ‘01}

|0)=[L0]" > {%%]T 04 =)
[1)=[od] [—%%} - [-1,0]' =-10), represent samestate as| 0)

— Performs same operation as the NOT gate.

Measurement operation
« Not unitary
* Not reversible

« Usually performed at the end of a computation

* Denoted as

Geometric representation of
qubit states and operations

¢

Complex numbers ¢ with |c[2 = 1,
only identified by one number, the
angle 6 between vector and x-axis

Qubits |y>=c,|0>+c,|1>, where
|col?*|c4[?=1 can be identified by
two numbers, the latitude 6 and
the longitude @ on a three-
dimensional sphere of radius1,
known as the Bloch sphere.

Bloch sphere

Qubit: |w)=cos(0)0)+€e sin(g)1)
0<g<2rand0<f<%

Standard parametrization of the unit sphere:
X =cos¢sing
y=singsing
z=cosé (6,9)and (7 - 6,0+ 1)
represent the samebit
(up to thefactor - 1) X =Cos¢sin26
y=singsin26
z=cosé

Bloch sphere (cont’d)

. N0|I:Ith pole corresponds to state |0>and south pole
to |1>.

« Angle ¢ is the angle that |y> makes from x along
the equator (longitude) and 6 is half the angle that
|w> makes with the z axis (/atitude).

*  When a qubit is measured in the standard basis, it
collapses to the north or south pole of the Bloch
spheree. The probability depends on the latitude, !
soon 6. -

* Rotation around the z axis, changing the
longitude: does not affect the probability to which
classical state it will collapse. It is called a phase
change, altering the phase parameter e/

Bloch sphere: dynamics

« Every unitary 2-by-2 matrix will ‘manipulate’ the sphere.

* The X, Y, and Z Pauli matrices “flip” the Bloch sphere
180° about the X, y, and z axes, resp.:
— Xis a NOT gate taking |0> to |1> and vice versa, and even more:

it takes everything above the equator to below the equator.
Similar for the other Pauli matrices: e.g., Y operation




Bloch sphere: dynamics/rotations

» Phase shift gates: R(e):{l 0}
0 ¢

» Following operation on an arbitrary qubit:
: 6 )
cos(6') 0) + € sin(¢")|1) = L:f;i (g)} - [e”;iss(inzﬁ‘)}
Leaves the latitude alone and just changes

the longitude. New state will remain
unchanged, only the phase will change.

Bloch sphere: dynamics/rotations

* Rotation of 6 degrees around X, y, or z axis:

oosg —ising
&(9):005%I—isin%X: 2 2

—isin- cos—
cosg —sing
R (6)=cosgl _isinZy - 2 2
Y 2 2 .0
sin—  cos—
2 2
6, .. 0 e’? 0
R,(@)=cos—| —isn—-Z =
N A

* General rotation around vector D=(D,,D,,D,) with size 1
from the origin:

RD(G):oos%I —isin%(DxX +D,Y+D,2)

Bloch sphere: higher dimensions

Valuable tool for understanding qubits and one-
qubit operations.

For n-qubits there is a higher-dimensional
analog of the sphere.

» Research challenge: visualizing what happens
when we manipulate several bits at once.

» Entanglement lies beyond the scope of the
Bloch sphere.

controlled-U or CU

% P9 This operation will
perform the U operation if
the top |x>is a [1> and

1 will perform the identity
v operation if x> is |0>.
Equivalent to an IF-THEN
statement.

For the simple case of 1000

U:[a c} CU=0100
b d 00 ab
00 cd

Universal quantum gates

» Universal logical gates can simulate every
logical circuit:
— {AND, NOT} gates
— NAND gate

« Universal reversible gates:
— Toffoli gate
— Fredkin gate

» Universal quantum gates:
— {H, °NOT, R(cos™(3/5))}

Universal quantum gates (cont’d)

» Deutsch gate D(6)

% % If the inputs |x> and |y>
are both |1>, then the
phase shift operation R(6)

1Y) 1Y will act on the |z> input.
Otherwise, |z> will be the
same as |z>.

I

R(6)




No-Cloning Theorem

< ltis impossible to clone an exact quantum state.

* In other words, it is impossible to make a copy of an
arbitrary quantum state without first destroying the
original.

* We can “cut” and “paste” a quantum state, we cannot
“copy” and “paste”.

* Move is possible, copy is impossible.

» Transporting arbitrary quantum states from one system
to another is no problem.

* See book for “proofs”.

No-Cloning Theorem (cont’d)

What about the fanout gate? The Toffoli and
Fredkin quantum gates can mimic the fanout
gate.

Fredkin gate: (x%10)- (x—=xx)  Cloning?

[0)+2
V2

=

Assume x input is superposition
leaving y=1and z= 0.

, While

This corresponds to the state

botooo 4 of

No-Cloning Theorem (cont’d)

Multiply with Fredkin state: So for a classical bit x
1000000 O0fO 0 the Fredkin gate
0100000O0O|O 0 performs the fanout
00100000|%||F operation', 'but fora
00010000|0| |0 superposition:
00001000}05)0 |0)+]7) 10 ,1020)+[10)
000000 10(0]| |k 2 2
000001004 |0

0000O0O0OT1|O0] [O

Not a fanout operation,
. [010)+[203) no-cloning theorem

Resulting state
g V2 safely stands.

Reading

e This lecture: Ch 5.3-5.4.

¢ Next lecture: Ch 6.1-?7.




