Algorithms

Grover’s search algorithm

Shor’s factoring algorithm

Lecture 8

Grover’s search algorithm

Search element in an unordered array of size min \m
time instead of m/2 time on average.

In terms of functions, given a function f: {0,1}" — {0,1},
where there exists exactly one binary string X, such that:

f(x)= 1, |_fx:x0
0, if x#X,

Find x,. Classically, in the worst case, we have to
evaluate all 27 binary strings. Grover’s algorithm
demands only V2" = 272 gvaluations.

First try

» Put [x> into a superposition of all possible strings and then evaluate U,

0
{1

+ In terms of matrices U(H*"®1]00) - ¢ '

» The states are z z
[x) %, f(x))
5) =10,0), ) = xe{0.1)' o), )= xe{0,1)
lo0)=109). |a) [ Ao, fou) = =00

» Measuring the top qubits will, with equal probability, give one of the 2"
binary strings. Measuring the bottom qubit will give |0> with probability
271120 and |1> with probability 1/2". If one is lucky enough to measure
|1>, the top qubits will have the correct answer, because of the
entanglement. However, probably not so lucky.

First trick: phase inversion

Change the phase of the desired state.

Take U, and place the bottom qubit in the superposition (|0> — |1>)/~2:

x1) :

In terms of matrices: U (1, ® H)
The states are: Example: [12,%,%,"]" and f
chooses string “10”, then after
‘¢“> - ‘X’1>’ phase inversion: [V4,Y,-%5,%]T.
[0)-n)1_[|x.0)-|x1) Measuring |x> does not give
lo)=[x) 2 T 20 any information |/4[2= |-V4[2=Va.
PR [f)@0)-|f(x)@1) 10 [F0)=[FO0) | _ [-af it x=x,
‘ V2 V2 +1) 2 it x 2 x,

Second trick: inversion about the mean or
inversion about the average

* Boosting the separation of the phases.
« Explain with an example:

— 53,38,17,23,and 79
— Average a =42

— Sum of the lengths of lines above the average is the same as the
sum of lines below.

— Invert each element around the average: v’ = a + (a-v); example
[563, 38, 17, 23, 79] — [31, 46, 67, 61, 5]

— In terms of matrices: V'=(-/ +2A)V, with A[i,j]=1/n.

Inversion about the mean or
average (cont’d)

In general: n qubits, 2" possible states, where a state is 2" vector. Then

2"-by-2" matrix re 1 ... a1
2" 2" 2"

1 1 .. L

A=|2" 2 2

B L

2" 2" 2"

Multiply any state by a will give state where each amplitude will be the
average of all amplitudes.
The 2"-by-2" matrix

2 2
gy 2
2 —1+2 ... 2
—l+2A=| 7 B ”

Multiply a state by —/+2A will invert amplitudes about the mean.




Phase inversion and inversion
about the mean

« Combination is a powerful operation that separates the
amplitude of the desired state from those of all other
states.

Example that demonstrates the combined techniques:
— Vector [10,10,10,10,10]7

— Phase inversion to the fourth element: [10,10,10,—10,10]"
— Inversion about the mean (=6; -v+2a=2 or 22): [2,2,2,22,2]"
— Another phase inversion: [2,2,2,-22,2]"

— Inversion about the mean (r=_2'8’ -v+2a=-7.6 or 16.4):
[-7.6,-7.6,-7.6,16.4,—7.6]

— Another time? No, m/4Vn times, otherwise the numbers will be
“overcooked”.

Grover’s algorithm

1) Start with a state |0>
2) Apply H®"
3) Repeat m4V2"times:
a) Apply the phase inversion operators: U (I ® H)
b)  Apply the inversion about the mean operation: — | +2A
4) Measure the qubits.

Example Grover’s algorithm

» Let fbe a function that picks out the string “101”.

¢ The states: |o)= 0 0 0 000 0,

%L 6
* The average is: a-—f-%-%- 3
 Calculating the inversion about the mean:

ad ‘>=[LLLLLLLL
L 2\ s 7217128 28 208 2/8 208 B 208 248
*”2“%*[2*%):%

Example Grover’s algorithm (cont’d)

* Another phase inversion:

* —_5 1
. s a= 208 28 _ 1
The average is: s &8
« Calculating the invelr ion aPout the mean:
(o)
and ‘¢>:[;1;1;1;1;1£;1;1
a8 48 4B 4B 4B 48 4B 48

25\ ek) 4k
11/48=0.97 and -1/4\8=-0.088, and squaring these numbers gives
us the probability of measuring the corresponding states. Most likely
we will measure:

_Ma:i+[2 L)zi

00000100
loa) = I OKI

Generalizations Grover’s algorithm

» Search an unordered array of size min m time
— \m time: quadratic speedup.

» What if there is more than one hit? Assume t
objects: Grover’s algorithm still works, but one
must go through the loop m4\(27/t) times.

* Many other types of generalizations and
assorted changes.

Shor’s factoring algorithm

Factoring integers important: security
« “Hard” on classical computers
* Peter Shor: in polynomial time on quantum computers

» Based on the fact that the factoring problem can be
reduced to finding the period of a certain function (see
Simon'’s algorithm)

« In practice N will be a large number

« Assume N is not a prime number. However, there exists
a deterministic, polynomial algorithm that determine if N
is prime.




Modular exponentiation

Modular arithmetic: for a positive integer N and any integer a, we
write @ mod N for the remainder (or residue) of the quotient a/N, e.g.
99 mod 15 =9.

a=a’ mod N, if and only if (a mod N) = (&’ mod N) or equivalent, if N is
a divisor of a-a’, i.e. N|(a-a’).

Start of the algorithm: choose randomly an interger a that is less than
N, but does not have a nontrivial factor in common with N. This can
be tested by Euclid’s algorithm to calculate GCD(a,N):

— GCD # 1: found a factor of N and done;

— GCD = 1: a'is called co-prime to N and we can use it.

We need to find the powers of a mod N, that is, a8®> mod N, a’ mod N,
a?mod N, a® mod N, ...

In other words, we need to find the values of the function
fon(X)=a"modN

Examples f.n(X)=a"modN

X 0 1 3 4 5 6 7 8 9 10 11 12
hu®) 12 8 1 2 4 8 1 2 4 8 1
X 0 1 3 4 5 6 7 8 9 10 11 12
fy15(X) 1 4 4 1 4 1 4 1 4 1 4 1
x 0 1 3 4 5 6 7 8 9 10 11 12
o) 113 7 01 13 4 7 1 13 4 7 1

In book: N =371

Not the values, but the period

Not the values of f,(x)=a"modN, but the period of this function,
i.e., we need to find the smallest r > 0 such that f,(r)=a" modN =1

Theorem in number theory that for any co-prime a < N, the
function f, ,, will output a 1 for some r < N. After it hits 1, e.g.,
it f,, (=1
then f  (r+)="f @
andingenera f,\ (r+s)=f, ()

Examples

x 0o 1 2 4 5 6 7 8 9 10 11 12

period 4
fs®) 1 2 4 1.2 4 8 1 2 4 8 1
x 0o 1 2 4 5 6 7 8 9 10 11 12

period 2
fy16(X) 1 4 1 14 1 4 1 4 1 4 1
x 0o 1 2 4 5 6 7 8 9 10 11 12

period 4

fas) 1 13 4

Quantum part of the algorithm

For small numbers it is easy to determine the periods of these
functions. But what if N is hundred digits long? This will be
beyond the ability of any conventional computer: we need to
calculate f, , for all needed x: superposition.

First we have to show that there is a quantum circuit that can
implement £, , (later).

The output of this function will always be less than N, so we need
n =log, N output qubits.

We will need to evaluate f, , for at least N? values of x, so we will
need at least m = log, N? = 2 log, N = 2n input qubits.

Quantum circuit for Uy, y

Operator Uy, y

where

[x.y)

How is it formed? Later...

X,y @ f,\(x)=|xy®a*modN)




Quantum circuit

) len) Iz} 3} 4}

(Measure® | QFTT®@ 1)1 ® MeasurelJ,  (H*" ®1)0,,0,)

States |@,>, |@,>, and |@,>

We start at |¢,) =|0,,,0,)

Then we place the input in an equally weighted superposition of all
ossible inputs
P P <] o0
¢ \/27"'

Evaluation of fon all these possibilities gives us

o) = I:sz(o,l}’“ % fan (x)q _ {er(m}" x,a* mod Nq
2 ’\/27 ’\/Zim

These outputs are periodic, e.g., for N =15, we have n =4 and m = 8.
For a =13 we have

| >_\o,1>+\1,13>+\2,4>+\3,7>+\4,1>+---\254,4>+\255,7>
b= V256

Measure |@,>

* Measuring the bottom qubits gives us a; modN for some ;

+ However, by periodicity we also have

a*=a“" modN and a* =a“* modN,
andinfact, foranyse Z: a* =a** modN

How many of the 2™ superpositions x have a; mod N as output?

+ Answer: VTJ

s)

State |p;>

x,a" mod Nq

2
T

So Za‘za; modN
los) =

We might also write this as

[ZTMOM t, + jr,a* mod N>}

;)=

om

T

Here t, is the first time that the measured value occurs. It is called the
offset of the period.

Example (cont'd), let us say that we measure 7 for the bottom qubits:
BT +[7.7)+[117) +|157) +---| 25L,7) +] 255,7) | | | I
B 256

7}

Vandermonde matrix
+ Evaluating polynomials: P(x) = a, +a,X" + a,X* + a,x* +---+a, ,x"*
» This polynomial can be represented by a column vector [aﬂ,ai,az,-",an,l]T
Suppose we want to evaluate this polynomial at numbers Xo: %1, %5+, X4

« This can be achieved by

e Btk AP

Every row is a geometric series, matrix
is called the Vandermonde matrix,
denoted by V(x,, X, X, **, X, 1)

Vandermonde matrix (cont’d)

Elements changed to “powers of one of the M™ roots of unity w',,’
(chapter 1)

M =2mis fixed, so wy, is simply w. We obtain the M-by-M
Vandermonde matrix V(w?, w!, w?, ..., w"")
To evaluate P(x) at the powers of one of the M" roots of unity

[ Pis

Rty 1 1 1 | | |
ety & ; u | o |
|

|
1 Plas?)




Discrete Fourier transform

Definition of discrete Fourier transform (DFT)
1
DFT =——V(0°, 0", @?,...,0"*
M ( )

. ) 1
Formally, DFT is defined as DFT =—— o
Y N

Two tasks:
— It modifies the period from r to 27/r
— It eliminates the offset.

riririr|rir|r|rir|r L r r v Li
B e e e e L P e B | pe—r| 3| ]

Quantum Fourier transform

Denoted by QFT.
Same operation, but more suitable for quantum computers.

This quantum version is very fast and made of “small” unitary
operators that are easy to implement.

Measure the top qubits

Assumption that r evenly divides into 2™ (not in Shor’s actual
algorithm: finding period for any r). So we measure the top qubit
and we will find some multiple of 2™/r . We will measure

a2

X for somewhole number 4

We know 2™ and after measurement also x, so we get
X 2" A

2" 2y

Reduce this number to an irreducible fraction and take the
denominator to be the period r. If we don’t make the simplifying
assumption, given above: perform this process several times.

From the Period to the Factors

Assumption the period ris an even number; if not, choose another a.

So a"=1 mod N and we may subtract 1 from both sides to get
a'—1=0mod N, or equivalently N | (a"—1).

Or N | (Na" + 1)(Na"— 1) or N'| (a72 + 1)(a”2 — 1), remember r is even.
So any factor of N is also a factor of either (a”2 + 1) or (a”2— 1) or both.

Either way, a factor for N can be found by looking at GCD((a”? + 1), N)
and GCD((a”? - 1), N), which can be done by the classical Euclidean
algorithm.

One problem: be sure that a”2# —1 mod N. Solution: start over again.

Example: period f, ;5 is 4. So GCD(5,15)=5 and GCD(3,15)=3.

Shor’s algorithm

Putting all pieces together, see p217 of the book.

Complexity of this algorithm? O(n? log n log log n), where n is the
number of bits to represent the number N.

The best classical algorithms demand

2/3

s .
0O(e™"°'""*")  wherecissome constant

This is exponential in terms of n.

Implementation of Uy, ,: see p217-218.

Final remark

“Even if a real implementation of large-
scale quantum computers is years away,
the design and study of quantum
algorithms is something that is ongoing
and is an exciting field of interest.”




Reading

¢ This lecture: Ch 6.4-6.5

¢ Next lecture: Ch 9




