
1

Algorithms

Grover’s search algorithm

Shor’s factoring algorithm

Lecture 8

Grover’s search algorithm
• Search element in an unordered array of size m in √m

time instead of m/2 time on average.

• In terms of functions, given a function f : {0,1}n → {0,1},
where there exists exactly one binary string x0, such that:

• Find x0. Classically, in the worst case, we have to
evaluate all 2n binary strings. Grover’s algorithm
demands only √2n = 2n/2 evaluations.

⎩
⎨
⎧

≠
=

=
0

0

xx
xx

x
 if ,0
 if ,1

)(f

First try
• Put |x> into a superposition of all possible strings and then evaluate Uf

• In terms of matrices

• The states are

• Measuring the top qubits will, with equal probability, give one of the 2n

binary strings. Measuring the bottom qubit will give |0> with probability
2n-1/2n, and |1> with probability 1/2n. If one is lucky enough to measure
|1>, the top qubits will have the correct answer, because of the
entanglement. However, probably not so lucky.

() 0,0IHU n
f ⊗⊗

{ } { }
nn

nn f

2

)(,
 ,0

2
 ,0, 1,0

2
1,0

10
∑∑ ∈∈ =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
== xx

xxx
0 ϕϕϕ

First trick: phase inversion
• Change the phase of the desired state.

• Take Uf and place the bottom qubit in the superposition (|0> – |1>)/√2:

• In terms of matrices:
• The states are:

() 1,xHIU nf ⊗

[]
[]⎪⎩

⎪
⎨
⎧

≠+

=−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡ ⊕−⊕
=

⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡ −
=

=

−

−

0

0

xxx
xxxxx

x
xx

x

xx
x

x

 if ,1
 if ,1

2
)()(

2
1)(0)(

,
2

)1,)0,
2

)1)0

,1,

2
10

2
10

2

1

0

ffff
ϕ

ϕ

ϕ

Example: [½,½,½,½]T and f
chooses string “10”, then after
phase inversion: [½,½,-½,½]T .
Measuring |x> does not give
any information |½|2= |-½|2=¼.

Second trick: inversion about the mean or
inversion about the average

• Boosting the separation of the phases.

• Explain with an example:
– 53, 38, 17, 23, and 79
– Average a = 42

– Sum of the lengths of lines above the average is the same as the
sum of lines below.

– Invert each element around the average: v’ = a + (a-v); example
[53, 38, 17, 23, 79] → [31, 46, 67, 61, 5]

– In terms of matrices: V’=(-I +2A)V, with A[i,j]=1/n.

Inversion about the mean or
average (cont’d)

• In general: n qubits, 2n possible states, where a state is 2n vector. Then
2n-by-2n matrix

• Multiply any state by a will give state where each amplitude will be the
average of all amplitudes.

• The 2n-by-2n matrix

• Multiply a state by –I+2A will invert amplitudes about the mean.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nnn

nnn

nnn

A

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

L

OMM

L

L

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

+−
+−

=+−

nnn

nnn

nnn

AI

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

1

1
1

2

L

OMM

L

L

2

Phase inversion and inversion
about the mean

• Combination is a powerful operation that separates the
amplitude of the desired state from those of all other
states.

• Example that demonstrates the combined techniques:
– Vector [10,10,10,10,10]T

– Phase inversion to the fourth element: [10,10,10,–10,10]T

– Inversion about the mean (=6; -v+2a=2 or 22): [2,2,2,22,2]T

– Another phase inversion: [2,2,2,–22,2]T

– Inversion about the mean (=–2.8, -v+2a=–7.6 or 16.4):
[–7.6,–7.6, –7.6,16.4,–7.6]T

– Another time? No, π/4√n times, otherwise the numbers will be
“overcooked”.

Repeat π/4

Grover’s algorithm
1) Start with a state |0>
2) Apply
3) Repeat π/4√2n times:

a) Apply the phase inversion operators:
b) Apply the inversion about the mean operation:

4) Measure the qubits.

nH ⊗

()HIU f ⊗
AI 2+−

Example Grover’s algorithm

• Let f be a function that picks out the string “101”.
• The states:

• The average is:
• Calculating the inversion about the mean:

[]

T

a

T

T

⎥
⎦

⎤
⎢
⎣

⎡ −=

⎥
⎦

⎤
⎢
⎣

⎡=

=

8
1

8
1

8
1

8
1

8
1

8
1

8
1

8
1

,
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1

,00000001

3

2

1

ϕ

ϕ

ϕ

84
3

88

7
8

6
8

1
8

1

==
−∗

=a

82
5

84
32

8
12

and
82

1
84

32
8

12

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×+=+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×+−=+−

av

av
T

b ⎥
⎦

⎤
⎢
⎣

⎡=
82

1
82

1
85

1
82

1
82

1
82

1
82

1
82

1
3ϕ

Example Grover’s algorithm (cont’d)
• Another phase inversion:

• The average is:

• Calculating the inversion about the mean:

• 11/4√8=0.97 and -1/4√8=-0.088, and squaring these numbers gives
us the probability of measuring the corresponding states. Most likely
we will measure:

88
1

8

7
82

5
82

1

=
−∗

=a

84
11

88
12

82
52

and
84

1
88

12
82

12

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×+=+−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×+−=+−

av

av
T

b ⎥
⎦

⎤
⎢
⎣

⎡ −−−−−−−=
84
1

84
1

84
11

84
1

84
1

84
1

84
1

84
1

3ϕ

T

a ⎥
⎦

⎤
⎢
⎣

⎡ −=
82

1
82

1
85

1
82

1
82

1
82

1
82

1
82

1
3ϕ

[]T001000004 =ϕ
OK!

Generalizations Grover’s algorithm

• Search an unordered array of size m in m time
→ √m time: quadratic speedup.

• What if there is more than one hit? Assume t
objects: Grover’s algorithm still works, but one
must go through the loop π/4√(2n/t) times.

• Many other types of generalizations and
assorted changes.

Shor’s factoring algorithm
• Factoring integers important: security

• “Hard” on classical computers

• Peter Shor: in polynomial time on quantum computers

• Based on the fact that the factoring problem can be
reduced to finding the period of a certain function (see
Simon’s algorithm)

• In practice N will be a large number

• Assume N is not a prime number. However, there exists
a deterministic, polynomial algorithm that determine if N
is prime.

3

Modular exponentiation
• Modular arithmetic: for a positive integer N and any integer a, we

write a mod N for the remainder (or residue) of the quotient a/N, e.g.
99 mod 15 = 9.

• a≡a’ mod N, if and only if (a mod N) = (a’ mod N) or equivalent, if N is
a divisor of a–a’, i.e. N|(a–a’).

• Start of the algorithm: choose randomly an interger a that is less than
N, but does not have a nontrivial factor in common with N. This can
be tested by Euclid’s algorithm to calculate GCD(a,N):
– GCD ≠ 1: found a factor of N and done;
– GCD = 1: a is called co-prime to N and we can use it.

• We need to find the powers of a mod N, that is, a0 mod N, a1 mod N,
a2 mod N, a3 mod N, …

• In other words, we need to find the values of the function
Naxf x

Na mod)(, =

Examples Naxf x
Na mod)(, =

…1842184218421f2,15(x)

…1211109876543210x

…1414141414141f4,15(x)

…1211109876543210x

…1741317413174131f13,15(x)

…1211109876543210x

In book: N = 371

Not the values, but the period
• Not the values of , but the period of this function,

i.e., we need to find the smallest r > 0 such that

• Theorem in number theory that for any co-prime a ≤ N, the
function fa,N will output a 1 for some r < N. After it hits 1, e.g.,

Naxf x
Na mod)(, =

1mod)(, == Narf r
Na

)()(generalin and
)1()1(then

1)(if

,,

,,

,

sfsrf
frf

rf

NaNa

NaNa

Na

=+
=+

=

Examples

…1842184218421f2,15(x)

…1211109876543210x

…1414141414141f4,15(x)

…1211109876543210x

…1741317413174131f13,15(x)

…1211109876543210x

period 4

period 2

period 4

Quantum part of the algorithm
• For small numbers it is easy to determine the periods of these

functions. But what if N is hundred digits long? This will be
beyond the ability of any conventional computer: we need to
calculate fa,N for all needed x: superposition.

• First we have to show that there is a quantum circuit that can
implement fa,N (later).

• The output of this function will always be less than N, so we need
n = log2 N output qubits.

• We will need to evaluate fa,N for at least N2 values of x, so we will
need at least m = log2 N2 = 2 log2 N = 2n input qubits.

Quantum circuit for Ufa,N

• Operator Ufa,N

• where

• How is it formed? Later…

() Naf Na mod,,, ,
xyxxyxyx ⊕=⊕a

4

Quantum circuit

()()() () nm
m

f IHUMeasureIIQFTIMeasure
Na

00 ,
,

⊗⊗⊗⊗ ⊗†

States |φ0>, |φ1>, and |φ2>
• We start at

• Then we place the input in an equally weighted superposition of all
possible inputs

• Evaluation of f on all these possibilities gives us

• These outputs are periodic, e.g., for N = 15, we have n = 4 and m = 8.
For a = 13 we have

nm 00 ,0 =ϕ

{ }

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=
∑ ∈

m

nm

2

,
1,0

1
x

0x
ϕ

{ } { }

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑∑ ∈∈

mm

Na mm Naf

2

mod,

2

)(,
1,01,0 ,

2
x

x
x

xxx
ϕ

256
7,2554,2541,47,34,213,11,0

2

++++++
=

L
ϕ

Measure |φ2>
• Measuring the bottom qubits gives us for some

• However, by periodicity we also have

• How many of the 2m superpositions x have as output?

• Answer:

Na modx x

NaaZ

NaaNaa
sr

rr

mod :sany for fact,in and

 ,mod and mod 2

+

++

≡∈

≡≡
xx

xxxx

Na modx

⎥
⎦

⎥
⎢
⎣

⎢
r

m2

State |φ3>
• So

• We might also write this as

• Here t0 is the first time that the measured value occurs. It is called the
offset of the period.

• Example (cont’d), let us say that we measure 7 for the bottom qubits:

⎣ ⎦ ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
∑ ≡

r

Naa

m

Na

2

mod
3

mod,xx
xx

ϕ

⎣ ⎦ ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ +
=
∑ −

=

r

r

j

m

m

Najrt

2

1/2

0 0

3

mod, x

ϕ

⎣ ⎦4
2563

7,2557,2517,157,117,77,3 +++++
=

L
ϕ

Vandermonde matrix
• Evaluating polynomials:

• This polynomial can be represented by a column vector

• Suppose we want to evaluate this polynomial at numbers

• This can be achieved by

1
1

3
3

2
2

1
10)(−

−+++++= n
n xaxaxaxaaxP L

[]Tnaaaa 1210 ,,,, −L

1210 ,,,, −nxxxx L

Every row is a geometric series, matrix
is called the Vandermonde matrix,
denoted by),,,,V(1210 −nxxxx L

Vandermonde matrix (cont’d)
• Elements changed to “powers of one of the Mth roots of unity ω1

M”
(chapter 1)

• M = 2m is fixed, so ωM is simply ω. We obtain the M-by-M
Vandermonde matrix V(ω0, ω1, ω2, …, ωM-1)

• To evaluate P(x) at the powers of one of the Mth roots of unity

5

Discrete Fourier transform
• Definition of discrete Fourier transform (DFT)

• Formally, DFT is defined as

• Two tasks:
– It modifies the period from r to 2m/r
– It eliminates the offset.

()1210 ,,,,1 −= M

M
DFT ωωωω KV

jk

M
DFT ω1=

Quantum Fourier transform
• Denoted by QFT.

• Same operation, but more suitable for quantum computers.

• This quantum version is very fast and made of “small” unitary
operators that are easy to implement.

Measure the top qubits
• Assumption that r evenly divides into 2m (not in Shor’s actual

algorithm: finding period for any r). So we measure the top qubit
and we will find some multiple of 2m/r . We will measure

• We know 2m and after measurement also x, so we get

• Reduce this number to an irreducible fraction and take the
denominator to be the period r. If we don’t make the simplifying
assumption, given above: perform this process several times.

λλ number wholesomefor 2
r

x
m

=

rr
x

m

m

m

λλ ==
2
2

2

From the Period to the Factors
• Assumption the period r is an even number; if not, choose another a.

• So ar ≡ 1 mod N and we may subtract 1 from both sides to get
ar – 1 ≡ 0 mod N, or equivalently N | (ar – 1).

• Or N | (√ar + 1)(√ar – 1) or N | (ar/2 + 1)(ar/2 – 1), remember r is even.

• So any factor of N is also a factor of either (ar/2 + 1) or (ar/2 – 1) or both.

• Either way, a factor for N can be found by looking at GCD((ar/2 + 1), N)
and GCD((ar/2 – 1), N), which can be done by the classical Euclidean
algorithm.

• One problem: be sure that ar/2 ≠ –1 mod N. Solution: start over again.

• Example: period f2,15 is 4. So GCD(5,15)=5 and GCD(3,15)=3.

Shor’s algorithm
• Putting all pieces together, see p217 of the book.

• Complexity of this algorithm? O(n2 log n log log n), where n is the
number of bits to represent the number N.

• The best classical algorithms demand

• This is exponential in terms of n.

• Implementation of Ufa,N: see p217-218.

constant some is where)(
3/23/1 log ceO ncn

Final remark

“Even if a real implementation of large-
scale quantum computers is years away,
the design and study of quantum
algorithms is something that is ongoing
and is an exciting field of interest.”

6

Reading

• This lecture: Ch 6.4-6.5

• Next lecture: Ch 9

